
[14:49 8/8/03 Bioinformatics-btn268.tex] Page: i207 i207–i212

BIOINFORMATICS Vol. 24 ECCB 2008, pages i207–i212
doi:10.1093/bioinformatics/btn268

Comprehensive in silico mutagenesis highlights functionally
important residues in proteins
Yana Bromberg1,2,∗ and Burkhard Rost1,2,3

1Department of Biochemistry Molecular Biophysics, Columbia University, 630 West 168th St, 2Columbia University
Center for Computational Biology and Bioinformatics (C2B2) & Herbert Irving Cancer Center and 3NorthEast
Structural Genomics Consortium (NESG) and New York Consortium on Membrane Protein Structure (NYCOMPS),
Columbia University, 1130 St. Nicholas Ave. Rm. 802, New York, NY 10032, USA

ABSTRACT

Motivation: Mutating residues into alanine (alanine scanning) is one
of the fastest experimental means of probing hypotheses about
protein function. Alanine scans can reveal functional hot spots, i.e.
residues that alter function upon mutation. In vitro mutagenesis is
cumbersome and costly: probing all residues in a protein is typically
as impossible as substituting by all non-native amino acids. In
contrast, such exhaustive mutagenesis is feasible in silico.
Results: Previously, we developed SNAP to predict functional
changes due to non-synonymous single nucleotide polymorphisms.
Here, we applied SNAP to all experimental mutations in the ASEdb
database of alanine scans; we identified 70% of the hot spots
(≥1 kCal/mol change in binding energy); more severe changes were
predicted more accurately. Encouraged, we carried out a complete
all-against-all in silico mutagenesis for human glucokinase. Many of
the residues predicted as functionally important have indeed been
confirmed in the literature, others await experimental verification, and
our method is ready to aid in the design of in vitro mutagenesis.
Availability: ASEdb and glucokinase scores are available at http://
www.rostlab.org/services/SNAP. For submissions of large/whole
proteins for processing please contact the author.
Contact: yb2009@columbia.edu

1 INTRODUCTION
The role of a protein in an interaction pathway is arguably its
most important function (Eisenberg et al., 2000). Thus, protein–
protein and protein–substrate interactions are essential for survival.
Typically very few residues are essential for any protein interaction
interface in the sense that mutating these significantly impacts the
reaction (Bogan and Thorn, 1998; Weiss et al., 2000); these crucial
residues are often referred to as protein–protein interaction hot
spots. One coarse-grained experimental probe for elucidating the
function of a protein is to mutate residues that are hypothesized
to be involved in function. Alanine, glycine, proline and cysteine
scanning mutagenesis (individual substitutions of residues by any
of the said amino acids) are used to identify functionally important
sites (Clackson and Wells, 1995; Gardsvoll et al., 2006; Konishi
et al., 1999; Kouadio et al., 2005; Qin et al., 2003). Because of a
variety of biophysical and technical reasons, alanine scans dominate.
Rarely multiple mutations are tested for the same residue (Xiang
et al., 2006; Yang et al., 2003). The impact of mutations on function
is captured by a variety of probes; one of the more accurate means
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is the measurement of the change in the binding energy between
the wild-type (native sequence) and the mutated protein. Although,
large energy changes may result from destabilization of the affected
proteins and from deformation of the binding sites, such dramatic
alterations often indicate that a hot spot was mutated. To illustrate
the relevance of hot spots to research: over 400 PubMed records
mention hot spots in 2007 alone. One reasonable definition for a hot
spot is that its mutation alters the binding energy by ≥1kcal/mol
(Kortemme and Baker, 2002).

Computational methods can identify hot spots for proteins of
known three-dimensional (3D) structure (DeLano, 2002; Guerois
et al., 2002; Shulman-Peleg et al., 2007), and more recent attempts
even spot these crucial sites from sequence (Gonzalez-Ruiz and
Gohlke, 2006; Ofran and Rost, 2007b). ISIS (Ofran and Rost,
2007a) was the first tool to specifically predict protein–protein
interaction hot spots from sequence, but estimates for the effects of
single substitutions have long been around (Epstein, 1966; Vegotsky
and Fox, 1962; Zuckerkandl and Pauling, 1965). The most recent
methods are tailored to predict the effects of non-synonymous single
nucleotide polymorphisms (SNPs), i.e. single nucleotide changes
that alter the protein sequence (Bromberg and Rost, 2007; Ng and
Henikoff, 2003; Ramensky et al., 2002; Yue et al., 2006). Such
methods have not been assessed in light of large-scale alanine scans
and hot spots. One reason might be that while function changes are
sensed by such methods, the amount or severity of change is not.
Thus, the predicted functional change may just as likely be a hot
spot as it may not be.

Here, we examined the potential of one particular implementation
for in silico mutagenesis, namely SNAP (Bromberg and Rost, 2007),
that has been optimized to predict the effect of non-synonymous
SNPs on a version of the public database PMD (Kawabata et al.,
1999; Nishikawa et al., 1994) curated by us. SNAP evaluates
functional effects of single amino acid substitutions using neural
networks; its output is a value from −100 (no effect) to +100
(effect). First, we established that SNAP correctly captured the effect
of alanine scans extracted from ASEdb (Thorn and Bogan, 2001).
Then, we assessed substitutions by amino acids other than alanine.
Combining these results, we could analyze in silico to which extent
alanine scans correlate with all possible mutations. For technical
reasons, we confined this analysis to one particular protein with
ample experimental data (hexokinase).

To the best of our knowledge this is the first comprehensive study
that connects biophysical data from alanine scans with methods
optimized to capture the functional effects of SNPs. Making this
connection is by itself an important novelty. What makes it even

© The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org i207

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/16/i207/199600 by guest on 16 August 2022

http://


[14:49 8/8/03 Bioinformatics-btn268.tex] Page: i208 i207–i212

Y.Bromberg and B.Rost

more interesting is that only in silico can we comprehensively
address the question as to how representative current alanine
scanning is, and only by this means can we comprehensively study
the effects of mutagenesis without exorbitant costs. Further large-
scale testing of our pilot study is required to establish more clearly
that our approach actually captures functionally important residues
and hot spots.

2 METHODS

2.1 Alanine scan data
Alanine scanning data was extracted from ASEdb database (Thorn
and Bogan, 2001). For each complex we recorded the name of the
mutated partner, the position of the mutation, and the change in energy
(��Gcomplex) of stability of the given complex due to the mutation. If
more than one complex was reported for the given mutant, only the complex
resulting in the highest energy change was retained. For the purposes of
ASEdb, ��Gcomplex is computed as the difference in energy of the wild-
type complex (�Gwild) as compared to the energy of the mutated complex
(�Gmut). Thus, a negative ��G represents a more stable complex (�Gmut
> �Gwild) and a positive ��Gcomplex represents a destabilized complex
(�Gmut< �Gwild). We used a value of 1 kCal/mol change in binding energy
as cutoff for determining hot spot residues.

2.2 Computing SNAP scores
SNAP outputs a score that ranges from −100 (no effect) to +100 (strong
effect). A score cutoff is chosen to classify all mutations into neutral and
non-neutral. By default, positive scores define non-neutral mutations; scores
�0 identify neutral mutations; higher scores yield stronger predictions. For
this work, we recorded SNAP predictions for all 19 non-native substitutions
for each mutated residue in the by ASEdb data sets. We also compiled the
average over all substitution scores at each position. Accuracy (often also
referred to as specificity) and coverage (also referred to as sensitivity) of all
performances were computed using Equation (1), where TP is the number
of hot spots predicted to be non-neutral, FP is the number of non-hot spots
predicted to be non-neutral and FN is the number of hot spots predicted to
be neutral.

Accuracy = TP

TP+FP
Coverage = TP

TP+FN
. (1)

We assumed that all residues predicted and not observed to be functionally
important were incorrect predictions (false positives). In particular, we
assumed that for each protein in ASEdb there is only one binding site, namely
the one probed in that experiment. This is obviously an extreme position that
will considerably underestimate our levels of accuracy.

The correlation between score distributions was computed by:

Correlation(X,Y )=
∑

(x− x̄)(y− ȳ)
√∑

(x− x̄)2
∑

(y− ȳ)2
(2)

2.3 Overlap between PMD and ASEdb
SNAP networks were trained on data from PMD (Glaser et al., 1998;
Kawabata et al., 1999) which slightly overlaps with ASEdb. To avoid over-
estimating performance by testing on mutants that were seen in training
we aligned all sequences in ASEdb against all proteins in PMD (BLAST at
e = 0.001). For each of the aligned sequences we collected the mutants found
in both databases and recorded their functional effects according to PMD.
These were then compared to the corresponding classifications from ASEdb.

2.4 Solvent accessibility
We utilized PROFacc (Rost, 2000, 2005; Rost and Sander, 1994) to predict
location of affected residues in ASEdb in protein structure. Residues were

split into three classes: buried = <9% exposed surface area, intermediate =
>9% and <36%, exposed = >36%. SNAP prediction accuracy and coverage
[Equation (1)] were computed separately for each accessibility class as well
as over all classes.

2.5 Human hexokinase data
The sequence of human hexokinase (SWISS-PROT identifier
HXK4_HUMAN; P35557; 465 amino acids) was taken from SWISS-PROT
(Bairoch and Apweiler, 2000; Bairoch et al., 2005) Four evaluations of
residue importance were performed using scores from alanine, glycine,
cysteine and average substitutions. For residues with the native amino acid
non-X, the SNAP score of the by-X substitution was recorded; for residues
with acid X, the average SNAP score was taken.

3 RESULTS AND DISCUSSION

3.1 Results of alanine scans can be predicted
We extracted 1073 mutants from 48 distinct protein chains from
ASEdb. Of these 323 were classified as hot spots at the cutoff of
>1 kcal/mol change. Using this distribution with a random model
(probability of observing a hot spot at any given residue is 0.5) to
predict hot spots would result in 30% accuracy at 50% coverage
[Equation (1)]. With default parameters, accuracy and coverage of
SNAP predictions were 36% and 70%, respectively. When excluding
any overlap between ASEdb and PMD (Section 2), these numbers
fell to 33% and 67% (Fig. 1). While both of these sets of numbers
significantly exceeded random, it is unclear which better estimated
the method’s performance. Of 174 overlapping mutants 45 (∼26%)
were annotated differently between PMD and ASEdb (i.e. PMD
annotated the mutant as non-neutral when the corresponding ASEdb
energy change was <1 kCal/mol, or vice versa). SNAP correctly
classified 20 (∼44% of 45) of these according to the ASEdb
energy change. This implies that SNAP did not ‘memorize’ the
training samples, but learned to make decisions based on observed
patterns. Arguably, removing the overlapping mutants is therefore
unnecessary and artificially reduces performance by decreasing
sample diversity in the data set.

Increasing the SNAP non-neutrality cutoff (to 5 or 10, i.e.
fewer residues predicted as hot spots; Fig. 1) reduced coverage
without increasing accuracy correspondingly. Slightly increasing
the threshold for considering a residue as a hot spot (from 1
to 2 or 2.5 kcal/mol) slightly increased coverage and decreased
accuracy. In contrast, significantly increasing this energy threshold
(from 1 to 4 or 4.5 kCal/mol) significant raised coverage (80
and 90%, respectively). Overall, more severe (larger) changes in
binding energy tended to yield higher SNAP scores. When we
considered as neutral only mutations for which the binding energy
remained identical between wild-type and mutant, our default
method achieved 84% accuracy at 62% coverage.

Extending ‘no change’ to an interval of ±0.2 kcal/mol in the
change of binding energy (approximation of experimental error
in energy change measurement) yielded 68% accuracy at 63%
coverage. SNAP predictions were more accurate for residues that
were predicted to be buried: 80% buried hot spots were identified,
79% intermediate ones, and only 55% of the exposed hot spots.
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Fig. 1. Variation of SNAP cutoff influences performance. By varying the
threshold in the SNAP output (−100 to +100) for considering a mutation as
effecting function, we can dial through the ROC curve for interaction hot
spots. On the one end, choosing a very low threshold we find all hot spots
at very low accuracy (−50 on the lower right), conversely, at high positives
we find few hot spots but those we find at high accuracy (50 at top left).
Performance is slightly worse for the reduced data set where all mutants
overlapping with PMD are removed; it is unclear which data set is better
for estimating the method’s performance (Results). For the full ASEdb data
set at thresholds >30, we find ∼25% of the observed hot spots, and ∼45%
of the sites predicted at that threshold are hot spots. To compile accuracy
we assumed that proteins have only one binding site and that was the one
probed in ASEdb; the degree to which this statement is wrong describes the
degree to which our method underestimated accuracy.

3.2 Accuracy higher than it appears?
SNAP identifies functional effects of single amino acid substitutions.
The tool was not explicitly developed to outline residues of
functional importance. Surprisingly, it recognized 70% of the hot
spots in the ASEdb data set, albeit it did so at very low accuracy.
To some extent, low accuracy undoubtedly reflected limitations in
our method. However, there are three major problems with the data
and the way we used them that also contributed to low accuracy.
Firstly, a particular mutation may not destabilize an interaction
enough to pass the chosen threshold. For example, the K110A
mutant in the basic fibroblast growth factor (bFGF) is part of a
second important binding site (Springer et al., 1994). Mutation of
this residue by an alanine slightly stabilizes the probed complex
(��Gcomplex=−0.33 kcal/mol). Secondly, all experiments probe

only one particular reaction. A residue not predicted to be a hot spot
might be involved in another interaction. For instance, the H114A
mutation in angiogenin is known to greatly decrease enzymatic
activity of angiogenin with respect to tRNA (Shapiro and Vallee,
1989). However, the change in energy recorded in ASEdb is of the
bound angiogenin to ribonuclease inhibitor complex. The mutant
described has very little effect on this binding (∼0.7 kCal/mol).
Thirdly, the precise threshold for considering a residue a hot spot
is neither well-defined nor reaction-independent. For instance, the
mutation of residue D28 in CD2 to alanine changes the binding

energy of its complex with CD48 by >1.7 kcal/mol although this
residue has been shown in a more detailed study to contribute little
to the actual binding (Davis et al., 1998). Instead, this particular
mutation likely induces local changes in the adjacent binding site.
Considering all the possible false assignments of functionality
importance using alanine scans, it is not surprising that a fair number
of non-hot spot residues are assigned to the non-neutral class by
SNAP, and vice versa. Nevertheless, as the severity of change
correlated fairly well with the SNAPs scores absolutely crucial
hot spots (e.g. >4 kCal/mol change) are virtually guaranteed to be
included in the prediction at any cutoff.

The observation that buried hot spots are predicted more reliably
could be due to the fact that buried residues are, on average, more
sequence conserved than exposed residues (Rost and Sander, 1994)
and that the success of SNAP is intricately linked to sequence
conservation. Another reason might simply be that the experimental
results are more reliable for the exceptional buried hot spots.

3.3 Predicting HXK4 functional residues
We used scores for substitutions ‘by alanine’, ‘by cysteine’, ‘by
glycine’, and the average over all possible substitutions to highlight
residues of importance in the human glucokinase protein. For alanine
substitutions, the most conservative of all, a total of 214 of 465 (46%)
residues in the human glucokinase (Hexokinase IV or D; HXK4)
sequence were predicted to be functionally important at the default
SNAP score cutoff. For cysteine and glycine, the functional residue
counts were 254 and 275, respectively. The average substitution by
all 19 non-native amino acids outlined 232 residues as functionally
important (Fig. 2).

We chose this example because HXK4 is experimentally well
studied; it is an enzyme that functions in glucose metabolism
(Kamata et al., 2004). Variants of the glucokinase encoding gene
are implicated in type 2 diabetes (MODY-2 maturity onset diabetes
of the young) (Vionnet et al., 1992). The enzyme exists in three
forms—super-open, open and closed. It has at least two functional
sites: the glucose binding site (including residues E256, E290, T168,
K169, N204 and D205) and the allosteric binding site [including
V455, A456 and Y214, mutations of which cause a metabolic
disease persistent hyperinsulemic hypoglycemia (Christesen et al.,
2002; Glaser et al., 1998)]. Kamata et al. (2004) describe a
synthetic glucokinase activator which binds the allosteric site and
interacts with residues R63, M210, I211, Y215, M235 and V452.
Allosteric binding is facilitated by the flexibility of connecting
region I (residues 64–72), which, although not responsible for
binding itself, is very important to proper function. In the super-open
form glucokinase has reduced affinity for glucose and no allosteric
binding site. A slow, energetically costly, conformational change
transforms the protein into the open form upon glucose binding;
this form has higher affinity for glucose binding, and is capable to
rapidly transform into the closed form.

Binding of the allosteric regulator prevents glucokinase from
going into its super-open form and thus contributes to continuous
glucose metabolism (Kamata et al., 2004). The crystal structure of
HXK4 was solved by Kamata et al. (2004) (PDB: 1v4s, Fig. 2);
it captures the closed (glucose bound) conformation of HXK4.
The synthetic activator loosely bound to the allosteric site is
also seen. In all SNAP evaluations, the glucose binding site is
very well highlighted with red (implying sites predicted to be
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Fig. 2. Comprehensive mutagenesis for human glucokinase (HXK4). The
crystal structure of HXK4 was taken from Kamata, et al (PDB: 1v4s; 2004);
visualization by GRASP2 (Nichols, et al. 1991). The two ligands in the
picture are glucose (yellow spheres) and a synthetic activator (green spheres).
The scale of predictions ranges from blue (neutral; SNAP score <−50) to
red (strong effect; SNAP score >50). Blue indeed largely highlights regions
that have not been implicated in functional changes, red highlights important
residues, and white regions are unknown. Measurements shown reflect SNAP
scores of mutation to alanine (A), to glycine (B), to cysteine (C) and to all
19 non-native acids [average score] (D).

functionally important). Neighboring internal regions also shown in
red somewhat correspond to the stretches of sequence involved in
facilitating transformation changes. Some of the residues interacting
with the synthetic compound are also lit up. Quantitative predictions
for the binding residues discussed here are given in Table 1.

When considering the four images of glucokinase (Fig. 2), it
is intuitively clear that for this example by-alanine substitutions
appear to be best in identifying functionally important residues
(red predictions limited to potential functional sites and there is
a higher resolution of color; i.e. very few residues for which
prediction is made with low confidence). However, a more detailed
study/comparison is required to determine which, if any one (as
opposed to a few), substitution scoring is best at finding all
functionally important residues.

3.4 Alanine scans correlated with average over all
possible scans

Because in silico mutagenesis is so much cheaper than its
experimental sister, we could comprehensively analyze the degree
to which alanine scans are representative of all possible mutations.
We found that SNAP prediction scores for by-alanine substitutions
correlated strongly with the average SNAP scores over all possible
substitutions [for both, reported ASEdb mutant locations (Fig. 3)
and over all glucokinase residues (data not shown)]. This suggested

Table 1. Evaluation of human glucokinase (HXK4) functional cites

Residue Interaction SNAP scores
site**

Ala Cys Gly Average

R63 A −7 −21 0 −18
T168 G 53 58 55 59
K169 G 35 44 37 38
N204 G 53 57 52 57
D205 G 56 58 55 58
M210 A 42 52 46 47
I211 A −33 0 16 0
Y214 A −33 −5 −26 0
Y215 A 50 58 54 48
M235 A 15 18 22 13
E256 G 60 69 61 66
E290 G 53 58 55 57
V452 A −12 −55 −2 −12
V455 A 31 35 39 38
A456 A N/A −19 −23 17

∗Using SNAP scores of by alanine, cysteine, glycine and average over
all possible substitutions at a given location we predicted HXK4 sites of
importance. Zero and negative scores indicate neutral predictions, while positive
scores are non-neutral. Higher absolute value of a given score indicates better
reliability of the prediction. The glucose binding site residues were correctly
identified by all methods. The allosteric interaction residues were predicted
somewhat worse. Arguably, this is due to the fact that the synthetic molecule
interactions do not exactly mimic the natural allosteric regulator binding patterns.
∗∗‘A’ stands for allosteric site and ‘G’ for glucose binding site.

that using alanine scans aimed at estimating functional importance of
residues may likely be just as informative as sequentially substituting
each of the other 18 amino acids. For ASEdb mutagenesis sites, the
average correlated also significantly with by-cysteine and by-glycine
substitutions.

3.5 Computational mutagenesis is a good first step
toward annotating protein active sites

ASEdb data is likely skewed with regard to interface residues;
i.e. most alanine scanning mutagenesis experiments are performed
on suspected sets of binders. When considering entire protein
sequences, however, other notions become important. For instance,
core residues may be predicted as functionally important due to their
utter necessity for maintenance of protein stability. There currently
is no simple automated way to separate out the reasons behind
functional importance annotations. However, as the example with
HXK4 shows, there is validity in filtering entire sequences.

First, the ability to consider all possible substitutions at each
residue may aid experimentalists in choosing the optimal site for
mutagenesis. Second, in this particular sequence, and likely in
many others, over half of the residues are excluded from functional
considerations by almost any measure. This significantly narrows
down the number of suspects. Third, SNAP scores have a scale
meaning; i.e. substitutions that have severe effects are more likely to
have higher scores. This suggests priorities for processing mutations
of interest. While in silico mutagenesis may not yet be good enough
to do the experiment, we challenge that tools of the type we used
have finally come sufficiently of age to aid experimental mutagenesis
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Fig. 3. Average substitution effect correlated with single amino acid
substitutions. Among all single amino acid substitutions (at ASEdb mutant
sequence positions), the distribution of predictions that best estimated the
average was that of alanine, followed by cysteine, and glycine. These are
also the amino acids that are often used in experimental mutagenesis studies
to define functional sites.

in their design and prioritization. In other words, comprehensive
in silico mutagenesis is not ready to be an end, but certainly it is
ready to make for a good beginning.

4 CONCLUSION
Alanine scans aid the experimental elucidation of protein function.
We demonstrated that SNAP, a method developed for a very different
purpose, namely to predict the effects of non-synonymous SNPs,
correctly identified over 70% of the functionally important sites in
ASEdb. As an example for a comprehensive in silico mutagenesis,
we presented a demi-formal, graphical and intuitive evaluation
of predictions made for all possible substitutions in the human
glucokinase. This exercise highlighted the potential value in using
SNAP predictions to guide experiments. Our work also suggested
that alanine scans may be surprisingly representative of what could
be found if we had the means to experimentally test the mutation of
all residues by all non-native amino acids in say all human proteins.
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