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Abstract—With the demands for increasing the power rating
and improving reliability level of the high power IGBT modules,
there are further needs of understanding how to achieve stable
paralleling and identical current sharing between the chips. This
paper investigates the stray parameters imbalance among parallel
chips inside the 1.7 kV/1 kA high power IGBT modules at
different frequencies by Ansys Q3D parastics extractor. The
resulted current imbalance is further confirmed by experimental
measurement.

Index Terms—Insulated-Gate Bipolar Transistor (IGBT),
Power Modules, Current Imbalance, Finite Element Method.

I. INTRODUCTION

In modern power electronic systems, there is an increasing
demand for improving the whole system endurance and safety
level while reducing manufacturing and maintenance costs
[1]. According to manufacturers’ questionnaires [2], [3],
semiconductor devices are considered the most critical and
fragile component in industrial power electronic systems, the
failure of which results in up to 34% of power electronic
system failures. Because IGBTs are one of the most critical
components as well as the most widely used semiconductor
devices in industrial power electronic systems in the range
above 1 kV and tens of kW [3], their reliability performance
has drawn more and more attention.

At present, power modules are the most used packaging for
IGBTs in modern medium and high power applications, for
instance wind turbine systems [4]. Inside the IGBT power
module, multiple chips are connected in parallel to increase
the current rating. However, due to the chip characteristics as
well as the layout design of the module [5], there could be
a considerable current difference among the paralleled IGBT
chips. This imbalance current sharing among the paralleled
chips can be a reliability critical issue, because the consequent
imbalance temperature will stress chips at different level
and lead to lifetime mismatch among different chips. This
challenge becomes even more critical for the MW-scale IGBT
modules, due to the high current ratings (typically kA-level)
and asymmetric geometry.

In the prior-art research, most focus is addressed on optimiz-
ing the current sharing among parallel connected IGBT power
modules in order to construct reliable high current converters
[6]–[10]. This can be achieved by designing bus bars with
consideration of current coupling effects to minimize the stray
parameters difference [6], [7], or by synchronizing IGBT
switching signals to trigger IGBTs simultaneously [8], as well
as adjusting the gate voltages and the gate resistances based
on the thermal imbalance [9], [10]. However, these methods
can be hardly applied in high power module construction,
where a unique gate lead is connected to the several sections
of the module [11]. An electromagnetic field analysis has
been applied in [12] to investigate the current differences
among 6 parallel IGBT chips based on a detailed structure
description, while the mechanisms leading to this current
difference have not been discussed. Partial Element Equivalent
Circuit (PEEC) method has been applied to analyze the current
imbalance of an IGBT module with 2 or 4 chips in parallel
[13], [14], which shows that stray parameters extracted at
specific frequency cannot reflect both the transient and on-state
electrical behavior. The proposed lumped element equivalent
resistance and inductance ladder can be used for predicting
the electrical behavior inside the module [15], which needs
fitting for hundreds of parameters, therefore it is quite time
consuming. A recent study on medium power module shows
that the module stray parameters difference can affect the
power loss and temperature distribution among parallel IGBT
chips [16]. Therefore, it is desirable to identify the stray
parameters inside the MW level IGBT power module at
different frequencies, and experimentally study the effects on
the current distribution.

This study applies Finite Element Method (FEM) and
Method of Moments (MoM) [17] in Q3D [18] to analyze
the stray inductance and resistance of a 1.7 kV/1 kA IGBT
power module at different frequencies. The setup and the
corresponding measurement are also illustrated. This paper
is organized as follows: Section II introduces the detailed
structure and parameters of the studied IGBT power module.
Section III describes the detailed principles of Q3D analysis,



the extracted stray parameters for different sections, as well
as the corresponding PSpice simulating results. Section IV
presents double pulse testing results of power modules from
different manufacturers, which confirm the simulating results
presented in Section III. The power loss distribution among the
sections at different frequencies are also presented. Section V
gives concluding remarks of the paper.

II. INFORMATION ABOUT THE STUDIED IGBT MODULE

This study focuses on a commercial 1.7 kV/1 kA IGBT
module, which is widely used in wind turbine systems, motor
drives and other high power converters. The main specifica-
tions are summarized in Table I.

The module package size is 234 mm by 89 mm by 38 mm.
An outline picture is shown in Fig. 1(a). There are two power
terminals for the DC plus connections (upper IGBT collector),
two power terminals for the DC minus connection (lower
IGBT emitter), one terminal with two screw connections for
the output phase. The upper IGBT gate terminals are on the
right side in Fig. 1(a), and the lower IGBT gate terminals are
on the left side, which are also aligned with the thermal resistor
connections. There are six sections connected in parallel to
increase the current capability, and the definition of section
numbers in this paper is shown in Fig. 1(b): the nearest section
to the gate terminals is defined as section 1, while the farthest
one is called section 6. Each section contains two IGBT chips
and two freewheeling diode chips, which are configured as
half-bridge for the standard applications.

The principle cross section of the power module is illus-
trated in Fig. 2. The package consists of a plastic frame and
a metallic baseplate. The plastic frame is mechanically stable,
and has high tensile strength within the whole temperature
range. It is also electrically insulating, and ensures a long
creepage distance at its surface. The silicone gel inside
provides good electrical insulation properties. The module
has a copper baseplate to provide fine thermal connection to
the cooling medium. The Direct Copper Bonding (DCB) -
substrate consists of a ceramic dielectric insulator with copper
bonded to it. The DCB provides electrical insulation between
the potential of the power devices and the potential of the
heat sink, while providing good thermal connection to the heat
sink. The upper copper layer of the DCB are also connected to
copper bus bars. The metallic backside of the IGBT chip, the
collector side, is soldered directly onto the upper copper layer.
Bond wires on the top of the chip provide electrical connection
to the gate and emitter contact of the chip. Aluminum (Al)
bond wires are widely used, and the number of bond wires is
determined by the rated current of the module.

In order to measure the current distribution, open power
modules without the plastic frame and silicone gel are tested
in this study. Each IGBT section is connected to the power
terminals through copper bus bar, as shown in Fig. 2. The
Rogowski coils can be easily inserted into the bus bars to
measure each section’s collector current.

Table I
MAXIMUM RATINGS AND SPECIFICATIONS OF THE IGBT MODULE UNDER

INVESTIGATIONS.

Specifications Value

Collector-emitter voltage, VCES 1700 V
Continuous DC collector current, ICnom 1000 A
Collector-emitter saturation voltage, VCEsat 2 V
Total power dissipation 6.25 kW
Temperature under switching conditions -40 ◦C ∼ 150 ◦C
Operation Temperature, Tvjop 150 ◦C
Rated short-circuit current, ISC 4 kA
Gate-emitter maximum voltage, VGEs +/- 20V
Gate threshold voltage, VGEth 5.8 V
Gate charge, QG 10 μC
Internal gate resistance, RGint 1.5 Ω

Number of parallel sections 6
Thermal resistance of junction to case, RthJC 24 K/kW
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Figure 1. The studied IGBT power module (a) packaging outline picture, (b)
internal structure of the power module with section definitions.
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Figure 2. Cross section of the IGBT power module.

III. EXTRACTION OF STRAY PARAMETERS

At first, a detailed model should be constructed in FEM
software, which should include the geometry and material
information. A detailed geometry of the studied IGBT module
is created in CAD program and then imported to the com-
mercial software ANSYS/Q3D, which uses FEM and MoM
to extract resistance, inductance and capacitance matrices.
The structure built in Q3D is shown in Fig. 3, where the
sources and sinks assigned are also indicated. The upper leg
of the half-bridge module is studied in this paper (as shown
in Fig. 1(b)). Simulations are performed in Q3D at different
frequencies (1 kHz - 5 MHz), and the stray inductances (Lx)
and resistances (Rx) of six sections (from the power terminals
to each section) are extracted, as shown in Fig. 4. The
simulations are done in such a way that, when extracting the
inductance and resistance of a certain section, only the IGBT
chip of this section conducts. For example, the current path
is shown in Fig. 4 for the case when parameters of Section 1
are extracted and S11 (the section number is indicated by the
second number of subscript) conducts. The simulation results
at different frequencies are summarized in Table II.

It is worth noting that simulations should be performed at
each frequency separately instead of the “frequency sweep”
available in Q3D. This is because the finite element mesh for
the adaptive solution is optimized for the simulated frequency
only, so the accuracy of the results could vary at frequencies
significantly far away from this solution frequency.

The difference in the inductances and resistances of different
sections is observed. The results show that the middle section
(section 2-4) have lower stray inductance and stray resistance
than the other sections. It is noted that the stray inductance
is almost constant with frequency, while the stray resistance
increases with frequency rising due to skin and proximity
effects. The imbalance of stray resistance is also higher at 5
MHz than 1 kHz. It means the current imbalance can be more
obvious during switching transient, and particular sections may
be more stressed and fail first under high frequency operations.

In order to study the imbalanced stray parameters effects
on the electrical behavior, further PSpice simulations are

Source 1

Sink 2

Sink 1

Source 2

Figure 3. The studied IGBT power module geometry in Q3D.
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Figure 4. The circuit diagram of the upper leg of half-bridge IGBT module.
The current path through the Section 1 is shown.

conducted based on the ANSYS/Q3D calculation results. Fig.
5 depicts the simulated circuit where the stray inductance
and resistance of each section are included. The parameters
of the components are estimated from the geometry of the
physical module obtained by the aforementioned method. The
adopted IGBT model is a lumped charge IGBT model, which
demonstrated good accuracy [19]. The load inductance LLoad

is 84 μH, and the freewheeling diode parameters are from the
datasheet. Fig. 6 shows the turn-on waveforms under 600 V
DC voltage. It is worth noting that the adopted parameters
are the ones extracted under the specific IGBT switching
frequency (i.e. 5 MHz), therefore the simulation results only
accurately reflect the current sharing among parallel IGBTs
during switching transient. For studying the current sharing
during the conduction state, parameters at a lower frequency
should be included in Fig. 5.

The PSpice simulation results are consistent with the Q3D
analysis: sections 2-4 conduct more current than the other
sections due to the lower stray inductance and resistance.
Because sections 2-4 conduct higher current during transient,
it can lead to more power loss. This imbalance phenomenon
will be further investigated by the experiments in next section.

IV. EXPERIMENTAL VALIDATION

In order to validate the simulated results of the stray pa-
rameters’ effects in the power module, experiments on current



Table II
THE STRAY RESISTANCE Rx AND INDUCTANCE Lx OF EACH SECTION’S POWER STAGE AT DIFFERENT FREQUENCY.

Frequency Parameters Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

1 kHz
Lx (nH) 74 46 35 48 69 90
Rx ( μΩ) 342 225 179 213 264 346

10 kHz
Lx (nH) 72 44 34 46 65 86
Rx ( μΩ) 568 323 208 287 400 611

100 kHz
Lx (nH) 70 43 33 44 62 82
Rx ( μΩ) 1449 850 469 665 931 1559

1 MHz
Lx (nH) 69 42 33 43 61 81
Rx ( μΩ) 4301 2633 1524 1942 2711 4604

5 MHz
Lx (nH) 69 42 32 42 61 81
Rx ( μΩ) 10065 6401 4645 5622 7457 10171

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6
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Figure 5. The PSpice circuit for simulating the current imbalance during
switching transient.
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Figure 6. Simulated IGBT turn-on current among the 6 sections in the PSpice
circuit of Fig. 5.

sharing inside the DUT have been conducted in the lab.

A. Testing Setup Description

Recently, several non-destructive testing concepts have been
proposed to perform repetitive overcurrent and short circuit
testing of IGBTs while avoiding significant device damage. A
state-of-the-art non-destructive tester (NDT) with current and
voltage limits of 6 kA and 1.1 kV has been constructed in

the Device Characterization Laboratory of CORPE (Center of
Reliable Power Electronics), Aalborg University [20].

A detailed electrical schematic of the NDT is shown in Fig.
7. Table III summarizes the specifications of the components.
There are several components in parallel to enlarge the current
capability and to minimize the stray inductance at the same
time. In the same schematic, five Schottky diodes and an
optional load inductance LLoad are present. The circuit is
divided into two loops: Loop 1 is the main loop including the
series protection, while Loop 2 includes the parallel protection.
The Device under Test (DUT) is located in the common
branch. The main difference with respect to traditional testing
setup is the presence of an additional leg in parallel to the
DUT, where a parallel protection is included together with
a capacitor bank CNEG and a negative battery VNEG. The
parallel protection has a twofold role: 1) to assist the series
protection during its turn off by diverting the tail current
of series protection IGBTs, and 2) to act as a crow-bar in
case instability occurrence. To enhance its promptness and
effectiveness, a negative bias is fed to its emitters by the
battery VNEG and the capacitors CNEG. In this way, the
typical large voltage tail at the turn on of the IGBT switches is
accelerated and the voltage zeroes more promptly. To prevent
supplying negative voltage to the DUT, Schottky diodes are
placed in the circuit. The setup implementation in the lab is
illustrated in Fig. 8. More details of the specifications and
principle of the NDT can be found in [20].

The NDT can be also profitably used for an improved
double pulse tests. In the double pulse tests, the series
protection is deactivated and a 84 μH inductance LLoad is
integrated. The first pulse is driven by parallel protection, and
the second pulse is switched by the DUT. In this case, the self-
heating effects on DUT due to the first pulse can be eliminated,
so the DUT operates at a specific junction temperature.

The DUT is the 1.7 kV/1 kA IGBT module introduced in
section II. The DUT is an open module without silicone gel,
and a Rogowski coil is inserted into each IGBT section to
measure single section currents. Modules from two manufac-
turers (module A and module B) with same ratings have been
tested. A customised “Ultra mini CWT” Rogowski probe with
custom coil length has been adopted for current measurements
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Figure 7. Detailed schematic of the Non-destructive Testing circuit.

Table III
RATINGS OF THE MAIN COMPONENTS IN THE CIRCUIT OF FIG. 7.

Characteristic Value

DC Maximum voltage 1.1 kV
DUT Maximum current 6 kA
DC capacitors CDC 5 x 1100 μF, 1100 V
Stray inductance of the main loop 37 nH

Series protection
2 x Dynex DIM1500ESM33-TS000
3 kA/ 3.3 kV

Parallel protection
2 x Mitsubishi CM1200HC-66H
2.4 kA/ 3.3 kV

Auxiliary capacitors CNEG 3 x 1100 μF, 1100 V
Schottky diodes 5 x 170 V, 1.2 kA

owing to its non-intrusive behaviour (typical impedance in the
range of a few pH) and its range of several kA [21].

B. Experimental Results

According to the simulation results in Section III, the stray
parameters imbalance is identified among the parallel sections,
which could lead to current imbalance during the switching

Figure 8. The non-destructive testing setup in the lab.

Gate Voltage

Collector Voltage

700 V 650 A

Collector Current

Figure 9. Double pulse testing waveforms for module A at 700 V DC
voltage. Time scale: 2 μs/div; Collector Voltage(C1): 200 V/div; Collector
Current(C2): 500 A/div; Gate Voltage(C4): 10 V/div.
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Figure 10. Measured current distribution among six sections of module A
during turn-on transient.

transient. The freewheeling diode’s reverse recovery current
can lead to a current peak during the IGBT turn-on transient,
which can be used for investigating the imbalance. In order
to clearly evidence the current imbalance, the anti-parallel
diode in the 3.3 kV IGBT series protection is adopted as
freewheeling diode to achieve high current peak. Fig. 9 shows
the experimental waveforms of the DUT from manufacturer A,
where the collector voltage is 700 V.

In Fig. 10, the current distribution among the six sections
of module A is illustrated at 600 V DC voltage, which has
been measured by means of an equal number of Rogowski
coils. A non perfect current balance among the six sections
can be recognized especially during the turn-on transient. It
is worth noting that the experimental current distributions are
in good agreement with the PSpice simulation results in Fig.
6 based on the parameters from the Q3D analysis: sections
2-4 conduct more current than the other sections. Fig. 11
gives the calculation of different sections energy loss during
the turn-on transient of Fig. 10. The turn-on loss of section
3 is almost twice of section 6. A further comparison of the
accumulated energy loss with time is illustrated in Fig. 12.
It can be seen that middle sections (2,3,4) have higher losses
than the others. The obtained result could be very useful in
many situations, e.g. to accurately design the cooling system
in order to save design margin.
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Figure 12. The measured accumulated energy loss among six sections along
with time propagation (from time zero to the respective time instants).

It is worth noting that the current during turn-on transient
is more imbalanced than the current during on-state. This
interesting results suggests that different loss distributions
can be observed at different operating frequencies. In order
to better investigate the frequency effects, a study case is
proposed where the IGBT module is operated at different
frequencies (i.e. 1 kHz, 5 kHz and 10 kHz) with a duty
cycle of 50%. The total power loss (including switching loss
and conduction loss) of the sections has been measured and
reported in Fig. 13. At higher operating frequency, the total
power loss increases significantly. It is worth pointing out
that the experimental results are in good agreement with the
predicted behavior: at increasing frequencies the imbalance
slightly increases.

In order to check whether the observed current imbalance
phenomenon is consistent among different technologies, an-
other IGBT power module (module B) with the same ratings
but from a different manufacturer has been tested at the same
conditions. Even though module A and B have the same
outline and connection, they have different internal structure
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Figure 13. Total power loss (including switching loss and conduction loss)
among six sections at different switching frequencies.
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Figure 14. Measured current distribution among six sections of module B at
same condition of Fig. 10.

and geometry. Tests at same conditions are applied on module
B, and the inside current distribution during turn-on is plotted
in Fig. 14. Due to the internal design difference, the
current distribution is slightly different from module A. By
comparing Fig. 10 and Fig. 14, it can be seen that middle
sections are slightly more stressed than the lateral ones. This
similar current distributions reveal that there is some space for
improving the current distributions inside such class of power
modules. It also shows some improvement margins from the
thermal management point of view.

V. CONCLUSION

This paper investigates the effects of the stray parame-
ters imbalance among parallel chips inside the typical wind-
turbine-scale IGBT power module by means of Q3D simula-
tions. It has been shown that the stray parameters imbalance
can lead to current imbalance among the parallel chips. Both
simulations and experiments show that some chips are more
stressed than others by the imbalanced power loss. Fur-
thermore, the observed imbalance phenomenon is frequency-



dependent. The proposed study can provide a feedback to
module designers on optimizing module’s internal structure
and geometry, as well as give suggestions for application
engineers to improve the thermal management and/or cooling
system design.
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