
Comprehensive Java Metadata Tracking for Attack
Detection and Repair

Jeff Perkins
MIT/CSAIL

jhp@csail.mit.edu

Jordan Eikenberry
MIT/CSAIL

jeikenberry@csail.mit.edu

Alessandro Coglio
Kestrel Institute

coglio@kestrel.edu

Martin Rinard
MIT/CSAIL

rinard@csail.mit.edu

Abstract—We present ClearTrack, a system that tracks 32
bits of metadata for each primitive value in Java programs
to detect and nullify a range of vulnerabilities such as integer
overflow and underflow vulnerabilities, SQL injection vulner-
abilities, and command injection vulnerabilities. Contributions
include new techniques for eliminating false positives associated
with benign integer overflows and underflows, new metadata-
aware techniques for detecting and nullifying SQL and command
injection attacks, and results from an evaluation of ClearTrack
performed by a Test and Evaluation team hired by the sponsor
of this research (an anonymous agency of the United States
government). These results show that 1) ClearTrack operates
successfully on Java programs comprising hundreds of thousands
of lines of code (including instrumented jar files and Java system
libraries, the majority of the applications comprise over 3 million
lines of code), 2) because of computations such as cryptography
and hash table calculations, these applications perform millions
of benign integer overflows and underflows, and 3) ClearTrack
successfully detects and nullifies all tested integer overflow and
underflow, SQL injection, and command injection vulnerabilities
in the benchmark applications.

I. INTRODUCTION

Dynamic taint tracking has been implemented by many
systems [31], [34], [45], [43], [23], [15], [20] to address a
variety of security vulnerabilities such as SQL injection, com-
mand injection, and control-flow integrity [43], [23], [28]. We
present ClearTrack, a new metadata tracking system for Java.
ClearTrack rewrites Java bytecode to include instrumentation
that tracks metadata about the flow of information through the
program to make the following contributions:
Metadata: ClearTrack maintains 32 bits of metadata for every
value that the program manipulates, enabling ClearTrack to
track 32 distinct properties for each value simultaneously.
Unlike previous taint tracking systems [23], [15], [37], [27],
[43], [34], [31], ClearTrack tracks non-source taint metadata
such as the type of integer arguments (numeric or bitwise),
overflow status, divide-by-zero status, whether or not a value
has been bounds checked, and encoding types (such as xpath,
CSS, HTML, etc). Tracking these dynamic properties allows
ClearTrack to detect and repair vulnerabilities that lie beyond
the reach of other systems.
Overflow/Underflow Errors: ClearTrack tracks the status of
integer values to precisely and accurately detect integer over-
flow and underflow errors. To avoid false positives, ClearTrack
deploys the following new techniques:

• Report Only On Dangerous Operations: In contrast to
previous systems, ClearTrack reports an error only when
a value is used in a dangerous operation such as a memory
allocation or conditional, not when the overflow occurs.

• Numeric Type Inference: ClearTrack introduces the
concept of numeric and bitwise integers. Numeric values
are constants and those used with arithmetic operators
(plus, minus, etc). Bit-wise values are those used with bit
operators (bitwise-or, bitwise-and, etc). Overflows occur
only on numeric values. ClearTrack metadata is used to
set and propagate a tag for numeric vs bitwise values.

• Clearing Overflows: ClearTrack identifies operations
(such as bitwise-and) that safely clear the overflow or
underflow status of a value. Identifying such operations
enables ClearTrack to detect when the program clears
the overflow or underflow (typically with a bit masking
operation) and avoid false positives for legitimate values
derived from overflowed or underflowed values.

The experimental results show that our benchmark applications
contain millions of legitimate integer overflows and underflows
(sources of these legitimate overflows include, for example,
cryptography and hashing calculations) and that all of these
new capabilities are critical for avoiding millions of false
positives on these programs.
Repair: ClearTrack uses the metadata to automatically repair
incorrect or malicious inputs to SQL and shell commands.
ClearTrack implements a metadata aware tokenizer that en-
sures that any untrusted data is used properly only as a literal
(string, numeric or keyword) within the SQL or command
line string and does not contribute to the command syntax.
Untrusted data in SQL commands that would otherwise es-
cape the intended application quotes are properly escaped.
Untrusted data in shell commands that would not be treated
as a single command argument by the shell are forced to
be a single argument. Previous systems, in contrast, at most
signal an error when tainted data appears inappropriately in
the command string [37], [23], [27], [43].
Evaluation: This research was sponsored by an anonymous
agency of the United States government. The period of perfor-
mance was Aug 2010 to Dec 2014. ClearTrack was evaluated
by an independent Test and Evaluation (T&E) team hired by
the agency that sponsored this research, specifically at two
Red Team exercises held in Jul 2013 and Nov 2014.

The independent T&E team selected 13 benchmark Java

programs ranging in size from 9,000 to 540,000 lines of Java
source code (Section III). Including the instrumented jar files
and Java system libraries, the majority of the applications
comprised over 3 million lines of code.

Working independently of the ClearTrack developers, the
evaluation showed that, for the 1015 injected vulnerabilities
evaluated with 2030 malicious inputs and 10,150 benign
inputs, ClearTrack successfully nullified all 2030 presented
attacks and correctly processed all 10,150 benign inputs with
no false positives and no false negatives. Depending on the
application, the ClearTrack overhead ranged from 7.7% to
96.6% with an average of 44.5% (Section III).

We will make the ClearTrack implementation publicly avail-
able as open-source software on the publication of this paper.

II. IMPLEMENTATION

ClearTrack tracks 32 bits of metadata for each value in the
program. The metadata includes not only basic taint informa-
tion, but provenance information (file, socket, command line,
etc.) and, for integer values, information about their current
state (normal, overflowed, underflowed) and how they are
used (numerically or bitwise). The information propagates to
appropriately tag newly computed values as they are derived
from other values.

ClearTrack instruments the application, its libraries, and
the Java system libraries, by modifying the bytecode to track
metadata throughout the program. Each program variable has
a paired metadata 32 bit integer variable. Each assignment and
operation acts on both the primitive value and its correspond-
ing metadata value.

• Object Fields: For each primitive object field, ClearTrack
adds a corresponding metadata field. The metadata field
is initialized to zero (no information). When a field is set,
the metadata field is set as well, when a field is read, the
metadata field is read as well. Each original field access
instruction turns into two bytecode instructions.

• Parameters and Locals: For each original primitive
parameter and local variable, ClearTrack adds a corre-
sponding metadata parameter/local variable. ClearTrack
modifies method interfaces to accept corresponding meta-
data values for each parameter.

• Return Values: ClearTrack maintains a single object,
passed into each method, to carry the metadata for the
return value from the callee to the caller. The caller
extracts the metadata immediately after the call.

• Stack Usage: The Java Virtual Machine (JVM) is a stack
machine, with all expressions and method calls imple-
mented on the stack. ClearTrack instruments the bytecode
as follows. Each time the program pushes a value (field,
local, parameter) onto the stack, the instrumentation also
pushes the metadata for the value (so that the value and its
metadata form a pair on the stack). ClearTrack replaces
binary operators (e.g., add, subtract, multiply) with code
that manipulates the stack to perform the original binary
operation and also the corresponding metadata join op-
eration required to compute the metadata for the newly

computed value. When the program executes, the Java
JIT translates the stack operations into efficient register
code.

• Native Calls: ClearTrack supports metadata origination
at and propagation through native calls with method sum-
maries that appropriately augment the computed values
with metadata when the native call returns. Wrapper
methods convert the stack representation from the aug-
mented version used in the Java bytecode to the original
Java stack representation.

• Arrays: ClearTrack replaces each primitive array with an
object that contains an array storing the original values
and a corresponding parallel array storing the metadata.
Storing the values and the metadata in separate arrays
allows the values to be passed through to native and
uninstrumented routines without modification. As with
fields and locals, each time an array element is accessed,
the instrumentation also accesses the corresponding meta-
data.

• Reflection: ClearTrack instruments the reflection calls to
pass metadata correctly through the reflective call. All
of the reflection calls that return information about fields
and methods are modified to elide the metadata variables,
ensuring that the instrumentation is transparent to the
application.

• System Libraries: Java applications make heavy use of
the system libraries. To ensure correct results, ClearTrack
instruments the system libraries in the same manner as
the application is instrumented.
One complication is that the JVM sometimes directly
invokes specific system library methods, with the original
method type signature hardcoded into the JVM imple-
mentation. ClearTrack therefore generates two versions
of each library method: the instrumented version (with
an augmented type signature that includes the metadata
parameters) and a version with the original type signa-
ture that simply invokes the instrumented version. This
mechanism is critical for enabling the JVM to continue to
operate correctly in the presence of instrumented system
library methods.

ClearTrack provides 32 configurable metadata bits for each
primitive Java value. In the current ClearTrack implementation
these bits are configured as follows:

• Bits 0-1: These bits track trusted and untrusted, tracked
separately. Values derived only from trusted sources (such
as constants trusted files or databases) are classified as
trusted. Otherwise it classified as untrusted.

• Bits 2-14: These bits track whether or not string values
have been encoded for safety for various interpreters
(XPATH, CSS, HTML, LDAP, SQL, etc).

• Bits 15-26: These bits track the source of the value (Java
properties, database, environment variables, command
line arguments, files, etc).

• Bits 27-31: These bits track the overflow and type of
integer values (details in Section II-C).

A. Example

We next present a simple example that illustrates the
ClearTrack instrumentation. Note that ClearTrack operates
directly on Java bytecode, not Java source code. For read-
ability, we nevertheless present the example at the level of the
Java source code. Key concepts that the example illustrates,
such as metadata fields, parameters, and return values and
the additional instructions required to propagate the metadata,
transfer directly to Java bytecode.

The example is a method that shifts a Point object right by
an amount dx:

class Point {
int x, y;
int shift(dx) {
x = x + dx;
return x;

}
}

The ClearTrack instrumentation adds an int field x t and
y t for each of the x and y fields in the Point object.
This additional field stores the metadata for the corresponding
Point field. ClearTrack similarly adds a parameter dx t to
store the metadata for the dx parameter of the shift method.

Each method also takes an additional rval parameter to
store the metadata for the return value of the method. The
caller extracts this metadata from the rval parameter imme-
diately when the invoked method returns.
The instrumented version would be

class {
int x; int x_t;
int y; int y_t;
int shift (dx, dx_t, RetVal rval) {
x = Instrument.iadd (x, x_t, dx, dx_t, rval);
x_t = rval.metadata;
return x;

}
}

The instrumented code implements the integer add operation
by invoking the iadd method in the Instrument class. The
iadd method checks for overflow and underflow and sets the
appropriate bits in the metadata return value if these conditions
occur. The iadd method also propagates the metadata from the
operands of the add through to the result.

class Instrument {
int iadd(int v1, int v1_t,

int v2, int v2_t, RetVal rval) {
rval.metadata = v1_t | v2_t;
long result = ((long) op1) + op2;
if (result > MAX_INT_VALUE)
ret.metadata |= OVERFLOW;

else if (result (< MIN_INT_VALUE)
ret.metadata |= UNDERFLOW;

return (int) result;
}

}

Applying the instrumentation at the bytecode level enables
the Java JIT to productively optimize the metadata tracking

code in conjunction with the base code from the application.
Potential optimizations include placing metadata values in
registers, unrolling loops, eliminating unnecessary checks, and
inlining methods (such as the iadd method in our example).
The result is an efficient register-based implementation with
substantially less overhead (as a percentage of the total run
time) than would be incurred by an implementation that simply
interpreted the instrumented bytecode.

B. Optimized Method Summaries

ClearTrack also applies method summaries to optimize
some expensive operations. For example, instrumenting Java
I/O operations can incur substantial propagation overhead
because they often include data intensive operations such as
character encoding. Instead of instrumenting such methods,
ClearTrack applies method metadata propagation summaries to
implement the metadata propagation tracking at the granularity
of method calls (rather than at the granularity of individual
operations within the invoked method).

When a stream is created on an entity such as a socket
or file, ClearTrack sets the metadata system’s current con-
figuration for trusted/untrusted data (which classifies each
entity as trusted or untrusted). When the program creates
a stream based on an existing stream (such as adding a
BufferedInputStream to a FileInputStream), ClearTrack
takes the trusted/untrusted status from the existing stream. If
the bytes in the underlying stream have different metadata,
ClearTrack invokes an instrumented version of invoked meth-
ods to ensure that the metadata is correctly propagated for
each byte.

ClearTrack does not generate instrumented versions of many
container class methods (examples include some ArrayList
or HashMap methods) — because these methods are known to
not access the underlying objects in the container, they do not
change the metadata information of the objects in the container
or propagate the metadata from the contained objects to the
fields of the container object.

We generate the ClearTrack method summaries manually
for standard methods with known behavior. In the absence of
a summary, ClearTrack instruments the method.

C. Integer Overflow Errors

ClearTrack can precisely detect integer overflows (we use
the term overflow to refer to both integer overflow and
integer underflow errors; ClearTrack tracks both underflows
and overflows) without any false positives in our benchmark
evaluation programs. A key to the approach is that ClearTrack
takes an action only when an untrusted overflowed value is
used in a dangerous operation and not when an overflow
occurs. Dangerous operations are

• Array indexing
• Conditionals (loops or if statements)
• Memory allocation.

Note that printing (to text) is not considered a dangerous
operation. ClearTrack simply prints ‘Overflow’ for the value.

ClearTrack uses several metadata bits to track precise infor-
mation about the status of each value. These are:

• Overflow: Indicates that the value has overflowed or was
derived from an overflowed value.

• Underflow: Indicates that the value has underflowed or
was derived from an overflowed value.

• Bitwise: Indicates that the value was generated from a
bitwise computation or was derived from such a value.
Set on a bitwise operation and cleared on a numeric
operation. See Section II-E for more details.

• Divide by Zero: Indicates that the value was the result
of a divide by zero operation or was derived from such
a value. Set when a value is divided by zero. Note
that ClearTrack changes the standard Java semantics to
not throw an ArithmeticException on divide by zero.
ClearTrack instead sets and propagates the divide by zero
bit in the metadata. Unlike overflows, there are no bitwise
or arithmetic operators that clear the divide by zero.
Divide by zero values can, however, be safely printed
(they will print as infinity). This behavior allows safe
continued execution in the presence of divide by zero. It
is also configurable.

Each numeric operation (e.g., add, subtract, multiply, divide,
etc) is checked to determine if it overflows (see the iadd
method in Section II-A). If so, the metadata for the value is
marked as such. For all integer types except long, the overflow
check is achieved by performing the operation in a higher
precision type (e.g., long for integer) and checking the result
to ensure it fits in the destination type. Longs are handled
with operation-specific checks. For example, add operations
overflow iff the sign of each operand is the same and is
different from the result.

At each dangerous operation, the metadata for the value is
checked and an exception is thrown if the value is overflowed
or divide-by-zero.

The key to this approach is that the overflow can be cleared
if an operation occurs that removes the overflow. Under Java’s
semantics, the bits that are present in an integer (the lower
order bits) are correct when an overflow occurs. If operations
that clear the higher order bits are executed on the value,
the result will be exactly correct (as if arbitrary precision
arithmetic were used on the value). Operations that clear the
high order bits include, for example, masking operations and
casting operations (e.g., integer to short). ClearTrack thus
clears the overflow bits in the metadata when these operations
occur. Figure 1 defines the semantics of the overflow field
more precisely.

This approach ensures that ClearTrack does not interfere
with common anticipated and desirable sources of overflows
(cryptography, hashing, etc.) because the high order bits of
the overflowed values are masked off before being used in
dangerous operations.

ClearTrack can also optionally clear the overflow bit on
mod operations (%) and logical right shift (>>>). The mod
operation limits the size of the result in a manner very
similar to masking. However, unless the divisor is a power

of 2, the result will not be numerically the same as with
arbitrary precision arithmetic. In all of the actual use cases
we examined, however, mod was used to create a tag (such as
a hash table index) where the exact numerical value was not
relevant.

Logical right shift shifts in zeroes rather than sign extending
the value. The results of this operation are specific to the size
of the operand. Since bits beyond the bounds of the operand
are being explicitly discarded, clearing the overflow flag on
this operation is reasonable.

As described in section III-C, for untrusted values, only
clearing on bitwise-and is required for correct operation over
all of the evaluation programs. If trusted inputs are considered,
then mod and logical right shift need to clear overflows as well
on some of the programs.

E O(E) Comment

c - Constants are clean
V Vo The overflow field from

the metadata for V
op(E) O(E) Unary arithmetic/bit op
E1 op E2 O(E1) || O(E2) Most binary arithmetic/bit ops
E1 opc E2 - Bit-and, mod, logical right shift
abs(E) O(E) Includes inline abs code
(l-cast)E O(E) Cast to larger type
(s-cast)E - Cast to smaller type

Fig. 1. Definition of overflow for expressions. Clearing overflow on mod and
logical right shift is optional.

Normally conditionals are treated as dangerous operations
on overflowed values. However, in some cases, the conditional
and its block form a higher-level function over the value. In
this case, rather than treating the conditional as a dangerous
operation, ClearTrack simply marks the result of the combined
operation as overflowed. This is analogous to the way that
lower-level operations (such as add and multiply) are treated.

The most common example of this is code that is calculating
absolute value. For example:

if (x < 0)
x = -x

ClearTrack includes a template-matching component that
detects commonly-used code patterns. Matching conditional
branches and bodies are treated as a single functional block,
and the conditional on the overflowed value is allowed. The
resulting value is, however, still marked as overflowed.

The other templates (very similar) are:

if (x < 0) if (x < 0)
x = ˜x; x = x * -1;

D. Integer Divide-by-zero Errors

Divide-by-zero errors are treated very similarly to overflow
errors. The only difference is that the divide-by-zero metadata
flag cannot be cleared (as there is no correct value for infinity).
When such a value is used in a dangerous operation, an
exception is thrown. When printed, divide-by-zero values print
as ’Infinity’.

E. Integer Conversion Errors

When an integer value is cast to a smaller type (e.g., integer
to short) or between signed and unsigned types (e.g., short and
character) the original value may not be able to be represented
in the destination type. For example, consider the following
code:

char c = 0xFFFF;
short s = (short) c;

Since characters are unsigned, they can represent 0xFFFF
(65535). Shorts are signed, so the same bit pattern is inter-
preted as -1. Problems can also occur when casting from a
larger type to a smaller type (values too large for the smaller
type will be truncated).

ClearTrack checks each integer cast operation and marks
the result as overflowed if it is not equal to the original value.
This check is appropriate if the values being cast are used as
numbers.

In some cases, however, the values in integer variables are
manipulated as bits. In this case, a different numerical result
could be expected. Consider code that reads a short from a
binary stream as two bytes and then forms them into short.

...
short readShort(InputStream is) {
byte b1 = is.read();
byte b2 = is.read();
int value = (b1 << 8) | b2;
return (short) value;

}

Within a Java expression, all (non-long) integer operations
are performed as integers (32 bits). As an integer the result of
(b1 << 8) | b2 will always be a positive value (between 0
and 65535). When it is cast to a short, however, it will then
have a possible range of -32768 to 32767. This would fail
the overflow test (original value must match the result value).
This conversion, however, is expected and the resulting value
should not be marked as an overflow.

ClearTrack handles these situations by keeping track of the
type of each value. Values can be either bitwise or numeric.
Bitwise values are those that are created with bit operators
(bitwise-and, bitwise-or and compliment). Numeric values are
constants and values created with the numeric operators (plus,
subtract, minus, divide, and mod). The check for overflow on
a cast is only applied to numeric values.

F. Injection attacks
Injection attacks can occur when the program sends text

commands that include untrusted inputs to external subsystems
(such as SQL servers, command shells, etc). Because the
commands are parsed externally, attackers may be able to
inject text that subverts the intention of the application. For
example, consider a program that looks up some contact
information by running the grep program on a file. The
application might execute the following command using bash
(where the untrusted data is underlined) and send the results
to a remote user.
grep -i david ˜/contacts

Rather than entering a name as expected, an attacker could
enter ’david; cat /etc/passwd’ yielding the following command:

grep -i david; cat /etc/passwd ˜/contacts

This would send the contents of /etc/passwd and the contact
file to the attacker.

Injection problems can be addressed by ensuring that all
untrusted inputs are limited to numeric and string literals and
language-specific reserved values (for SQL, true, false, null,
etc). This restriction ensures that the untrusted input cannot
change the meaning of the command.

ClearTrack contains a novel metadata-aware tokenizer that
considers both the character and its metadata when tokenizing.
ClearTrack adjusts the tokenization to ensure that untrusted
data follows the above policy for untrusted inputs. When
processing trusted characters, the metadata-aware tokenizer
acts in the same manner as a traditional tokenizer. It processes
untrusted data as follows.

First, when processing string literals (quoted strings), the
tokenizer includes all characters starting with the initial appli-
cation (trusted) quote character up to the enclosing application
quote character. Untrusted quote characters do not terminate
the quoted string. Consider the following example:

String sql = String.format
("...where ... and passwd='\%s'", passwd);

Regardless of the input values for passwd, the tokenizer will
treat them as a single quoted string (surrounded by application
quotes).

Second, when tokenizing tokens other than string literals,
the token terminates only on a trusted character. This ensures
that the untrusted input is treated as a single entity. Consider
the command injection example earlier in this section. In the
command
grep -i david; cat /etc/passwd ˜/contacts

the ClearTrack metadata-aware tokenizer produces the fol-
lowing tokens: ’grep’, ’-i’, ’david; cat /etc/passwd’, and ’ /con-
tacts’.

ClearTrack detects injection attacks only at the point where
the command is executed. This ensures that the check and
possible repair are subsystem (e.g., SQL, command shell)
specific. It also allows the same untrusted input to be passed
to different subsystems (with possibly different repairs).

G. SQL Injection Detection and Repair

In Java, SQL commands are executed via the execute()
methods in the sql.Statement class, the prepare() methods
in the sql.Connection class and the createQuery() call in
the org.hibernate.Session class. ClearTrack checks queries
at each of these calls using the metadata-aware tokenizer to
analyze the input.

With metadata-aware tokenization, an SQL injection attack
is present if either of two conditions hold. In string literals, an
attack is present if there are unescaped quotes within the string
literal. ClearTrack repairs these attacks by properly escaping
the quotes. This ensures that the input does not change the
meaning of the command so that the application executes

correctly for both malicious inputs and valid inputs that happen
to contain embedded quotes (e.g, O’Malley).

In other tokens, an attack is present if the token is neither
a valid SQL numeric constant nor a SQL reserved constant.
Consider the following example (where untrusted input is
underlined):
select * from table t

where value=123;drop table t

In these cases, ClearTrack could be configured to repair the
input by discarding the invalid value characters (in this case:
; drop table t). However, unlike quoted string repairs, this
risks database interactions that were not intended by the user
(if, for example, the invalid characters were simply a typo).
Thus, by default, ClearTrack throws an exception when it finds
an invalid input in a non-quoted string.

We tested ClearTrack on the 11 canonical examples of
injection attacks described by Ray and Ligatti [32]. Our taint-
aware tokenizer approach matches their suggested results for
10 of their 11 examples. The only previous work to handle
most of the examples correctly was Diglossia [37] which
requires a full SQL parser for its approach. Diglossia matches
the Ray and Ligatti results on the same 10 examples as does
ClearTrack. The one example with a different result is:
create table t (name CHAR(40))

Ray and Ligatti classify this as code injection. We do not as
we consider integer literals, even in SQL type definitions, to
be values and thus not an attack.

Using the taint-aware tokenizer allows ClearTrack to work
effectively without requiring a full SQL parser. This allows it
to support multiple dialects of SQL and versions for which
the full grammar may not be available.

H. Command Injection Detection and Repair
Command injection is treated in a similar fashion to SQL

injection except that the grammar is that of shell commands
(such as bash). In Java shell commands are executed by the
Runtime.exec() calls or the ProcessBuilder class using the
-c command line option to bash (or other shells). For example:
bash -c 'grep -i david ˜/contacts'

Similarly to SQL injection, the policy for command in-
jection is that untrusted input should only specify single
arguments to the command. Untrusted input should also never
specify a command itself.

Command injection attacks can also be repaired so that the
command executes as intended by the application. ClearTrack
accomplishes repair by automatically quoting all tokens that
contain untrusted input. For example, the input:
grep -i david; cat /etc/passwd ˜/contacts

is modified to:
grep -i 'david; cat /etc/passwd' ˜/contacts

This passes the entire input value (david; cat /etc/passwd) to
grep as a single argument. This approach also fixes inadvertent
input errors such as embedded blanks. For example, the
untrusted input ’David Smith’ would also be quoted ensuring
that it is treated as a single argument.

I. Pathname Traversal

ClearTrack includes a policy to detect pathname traversal
attacks. A pathname traversal attack occurs when untrusted

input can specify a pathname that specifies directories that are
not within the directory intended by the application. This can
occur with absolute pathnames (those that begin with slash)
and with relative pathnames that reference parent directories
(using ../).

Absolute pathnames are straightforward to detect. The lead-
ing slash should not be specified by untrusted data. Relative
pathnames are more complex. Consider a simple FTP server
that allows the user to traverse the user’s directory tree, but
does not intend the user to be able to enter a different user’s
tree. User fred should be able to specify a directory of

fred/root/dir1/../dir2

where, as shown, the application specifies the root, and the
user can use .. to traverse the tree under the root. However,
the following input is not valid because it leaves the users
directory tree and enters a different users tree:

fred/root/../../david/root/dir1

Simply disallowing parent directory references would not
allow valid traversals within the users directory tree. Clear-
Track implements a more precise policy that allows only
valid traversals. Untrusted parent directory references can only
reference directories below the trusted root of the path. In this
case, the trusted root is ’fred/’. If there is no trusted root, a
trusted ’./’ is added to the beginning of the reference.

Note that Java does not provide a call to change the current
working directory. All pathnames must be either absolute or
relative to the initial working directory.

III. EXPERIMENTAL EVALUATION

The United States government hired an independent test
and evaluation (T&E) team to evaluate ClearTrack. We next
present the results of this evaluation.

A. Applications and Vulnerabilities

The T&E team identified a set of Java applications (see
Figure 2) to drive the evaluation. The applications range in size
from 9K to 540K lines of Java source code. These numbers do
not include classes from external jar files or the Java system
libraries, which ClearTrack also instruments. Including these
classes, most of the applications comprise over 3 million lines
of code each.

The T&E team inserted vulnerabilities into the 5 largest
programs and developed malicious inputs to exercise the vul-
nerabilities. The vulnerabilities were chosen to cover a range
of scenarios over five axes: data source (environment, file,
socket), data type (primitive, array, reference), data flow (con-
stant, return value, basic, index alias, Java generics, variable
arguments), control flow (labeled break, callback, overloaded
functions, recursion, indirect recursion, infinite loop, call depth
(1, 2, 10, 50), interrupt, sequence) and vulnerability type (SQL
injection, command injection, path traversal, numeric over-
flow, numeric underflow, unexpected sign extension, signed to
unsigned conversion, unsigned to signed conversion, numeric
truncation). To test for false positives, the T&E team also
developed benign inputs to exercise the standard functionality
of each program.

Figure 3 summarizes the resulting inputs. There are a total
of 1015 distinct vulnerabilities, 2030 malicious inputs, and

10,150 benign inputs. Each of the benign inputs exercises a
different application setup with different arguments to exercise
a distinct execution path.

The T&E team also developed a Test and Evaluation Work-
bench (TEW), which comprises an interconnected set of virtual
machines to compile and execute the benchmark applications.
The TEW also includes required support services such as the
MySQL, PostgreSQL, SQLServer (Microsoft), and Hibernate
database systems.

B. Application Executions

Working with the delivered ClearTrack system indepen-
dently from the ClearTrack development team, the T&E team
produced two versions of each application for each vulnera-
bility. The unprotected version executes in the standard Java
execution environment. The hardened version executes with
the ClearTrack metadata tracking, vulnerability detection, and
repair enabled. The T&E team next ran the unprotected ver-
sions of each application on the malicious and benign inputs
to verify that the malicious inputs successfully triggered the
vulnerability and that the benign inputs produce the expected
correct results.

The T&E team next ran the hardened versions of each
application on the malicious and benign inputs. The results
show that ClearTrack successfully nullified all of the exercised
vulnerabilities for all of the malicious inputs and generated no
false positives on any of the benign inputs. All executions were
performed on Debian 6.03 with the virtual machines executing
on a 12 core machine using Xeon 3.47Ghz processors. We next
discuss each class of vulnerabilities in more detail.

Program Application Lines of Code

Ant[4] 256K
Barcode4J[25] 28K
FindBugs[30] 208K
FTPS[5] 40K
HtmlCleaner[42] 9K
JMeter[7] 178K
PMD[17] 100K
SchemaSpy[16] 16K
CoffeeMUD[46]* 537K
Elastic Search[19]* 297K
Apache Jena[6]* 377K
Apache Lucene[8]* 440K
Apache POI[9]* 292K

Fig. 2. Evaluation applications and their lines of code. Those marked with a
star (*) were injected with vulnerabilities

C. Numeric Vulnerabilities

The T&E team inserted numeric vulnerabilities in the
following CWE (Common Weakness Enumeration) cate-
gories [1]. Each reads a value from an untrusted source that
can trigger the vulnerability.

• Numeric Overflow (CWE 190) and Underflow (CWE
191): Performs an operation that overflows or underflows
an integer type, then uses the result in a dangerous
operation.

Coffee Elastic Apache Apache Apache
Vulnerability MUD Search Jena Lucene POI

Path Traversal 38 37 43 39 38
Path Equivalence 15 14 10 14 15
Command Injection 18 23 17 22 19
SQL Injection 61 57 63 58 60
Numeric Overflow 27 29 22 25 26
Sign Extension 9 6 11 11 7
Signed to Unsigned 7 10 11 8 11
Unsigned to Signed 11 7 10 8 8
Numeric Truncation 9 9 9 9 9
Divide by zero 9 9 8 8 11
Totals 204 201 204 202 204

Fig. 3. Number of test cases by vulnerability and base program

• Unexpected Sign Extension (CWE 194), Unsigned to
Signed Conversions (CWE 195), Signed to unsigned
Conversions (CWE 195): Performs operations that move
data between signed and unsigned (character in Java)
types such that the destination does not match the source.

• Divide by Zero (CWE 369): Bypasses the standard Java
implementation to divide without checking for zero.

• Numeric Truncation (CWE 197): Unexpected truncation
that occurs when casting to a smaller type.

With the exception of divide by zero, all of these issues
result in a value that does not fit correctly within the size of
the destination type. For simplicity, we refer to all of these
vulnerabilities as overflows.

We compare the ClearTrack implementation with an imple-
mentation that triggers an error immediately when an overflow
occurs. We distinguish two cases: when the overflow occurs
in a trusted value derived from internal program values and
when the overflow occurs in an untrusted value derived (at
least in part) from user input.

The Overflow columns in Table 4 present the number of
such overflows that occur in each of the applications when
running on the benign inputs. As these numbers show, all of
the applications encounter significant numbers of overflows
even under normal execution. All of these overflows would
be false positives under implementations that trigger an error
immediately when an overflow occurs.

The next columns (Dangerous) present the number of times
that an overflown value (or a value derived from an overflown
value) is used in a dangerous operation disregarding opera-
tions such as bitwise and, logical shift, or mod that eliminate
the overflow. The remaining columns present how many values
survive when each of these operations is taken into account.
So, for example, all of the 27.6K uses of trusted overflown
values in CoffeeMUD are actually cleared by a bitwise and
before they are used in a dangerous operation. Similarly, the
19.9M uses of trusted overflown values in Elastic Search that
are not cleared by either bitwise and or logical shift are cleared
by a mod operation before they are used in a dangerous
operation.

These results show that ClearTrack correctly determines that
no overflown value reaches a dangerous operation for any of

the benign inputs — in other words, ClearTrack has no false
positives on these inputs.

D. SQL Injection

As shown in Figure 3 there were 299 inputs for SQL
injection vulnerabilities, 2 malicious and 10 benign inputs
for each vulnerability. These inputs cover the MySQL, Post-
greSQL, and Hibernate databases. ClearTrack detected all of
the malicious inputs with no false positives on the benign
inputs. With repair enabled, ClearTrack successfully repaired
all of string attacks triggered by the malicious inputs to enable
successful continued execution.

E. Command Injection

As shown in Figure 3 there were 99 inputs for command
injection vulnerabilities, 2 malicious and 10 benign inputs for
each vulnerability. Each input included untrusted input as part
of the issued command string. ClearTrack detected all of the
malicious inputs with no false positives on benign inputs.

With repair enabled, ClearTrack modified all of the com-
mand strings so that the command could execute with no
negative impacts. In most cases, the modified command simply
returned an empty data set. For example, one attack looks like:
find . -iname "*" -a -exec cat /etc/passwd;

ClearTrack ensures that the user input is treated as a single
value by quoting it as follows:
find . -iname '"*" -a -exec cat /etc/passwd;'

In this case, the malicious input will all be treated as the
argument to -iname and will simply not match any files. The
program will continue to operate correctly.

F. Path Traversal

As shown in Figure 3 there were 195 path traversal tests
and 68 path equivalence tests. A path equivalence (CWE-41)
attack uses special characters in file names to make equivalent
filenames that will not be treated as equivalent. For example
the filename execute.jsp and the filename execute.jsp/
refer to the same filename but may not be treated as equivalent.
Malicious patch equivalence inputs are often designed to avoid
black list checks. For example, a check that rejects requests
for files that end in .jsp might not detect the same file when
named with a trailing slash.

ClearTrack detected all of the malicious inputs with no false
positives on the benign inputs. Each test included untrusted
input as part of the pathname.

G. Overhead

To measure the execution time overhead, we measured
the execution time of each of the applications with and
without the ClearTrack instrumentation (with the exception
of CoffeeMUD, whose custom client precludes accurate ex-
ecution time measurements). The experiments executed each
application 100 times for each set of benign inputs, measuring
the total wall-clock time for each execution. We repeated
this process with the hardened version of each program and
compared the times. As shown in Figure 5 the execution time

overheads range from 7.7% for JMeter to 96.6% for Apache
Lucene with a mean overhead of 44.5% across all applications.

We also measured server overhead on OpenCMS [2] (an
open source content manager with over 100k lines of code).
OpenCMS runs as a web application in the Apache Software
Foundation’s Tomcat framework [3]. It uses a database to store
web site content and configurations. ClearTrack instrumented
both the OpenCMS application and Tomcat (another 340K
lines of code).

We measured the ClearTrack overhead with a script devel-
oped to send 1,000 benign URLs to an OpenCMS installation
and record the resulting HTML responses. (The URLs were
captured while interacting with the installation to manage
a web site.) The total time required to process all of the
URLs was measured both before and after hardening of the
OpenCMS code by ClearTrack. The average overhead was was
13.8%. A comparison of the recorded HTML responses shows
that ClearTrack did not alter the functionality.

We performed OpenCMS experiments on a virtual machine
running Ubuntu 12.04 on a 3.6Ghz 4 core iMac with 32
GBytes of memory. Both the client and the server ran on the
same machine, using localhost for negligible network delays.

IV. RELATED WORK

A. Integer Overflows

1) Runtime Instrumentation for Overflow Errors: IOC [18]
dynamically instruments C/C++ code to identify possible
overflow errors. IOC signals overflows as they occur and not
when they are used in dangerous operations. The results show
that the vast majority of overflows that IOC found are false
positives. RICH [11] compiles C programs to dynamically
check integer operations for overflows. Like IOC, it signals
overflows as they occur and the majority of the detected
overflows are false positives.

Because ClearTrack signals an error only when over-
flowed values are used in dangerous operations, and because
ClearTrack correctly clears the overflow flag on operations
such as bitwise-and, it supports legitimate uses of overflows
in operations such as hashing, cryptography, and random
number generation. Our results show that programs generate
millions of legitimate overflows, all of which, in the absence
of techniques such as those deployed in ClearTrack, would be
false positives.

IntPatch [44] and IntTracker [38] insert overflow checks
only at operations that they can statically determine (via type
or static analysis) may flow to memory allocations. They
argue that such operations do not have benign overflows. Both
analyses are conservative so they may check operations that
do not lead to memory allocations. And some programs may
perform operations with benign overflows even in allocation
size calculations. Either condition may lead to false positives.

ClearTrack differs from both IntPatch and IntTracker in
that it tracks all overflowed values precisely at run-time
with no false positives. This approach enables it to check a
variety of possibly dangerous operations (such as comparisons
and array indexing) as opposed to only memory allocations.

Trusted values Untrusted values
App Overflow Dangerous bitwise-and logical shift mod Overflow Dangerous bitwise-and

CoffeeMUD 68.0K 27.6K 0 0 0 16.7K 1.03K 0
Elastic Search 41.2M 51.1M 28.2M 19.9M 0 8.33M 9.72M 0
Apache Jena 15.8K 0 0 0 0 5.78K 5.76K 0
Apache Lucene 19.6M 9.07M 2.21K 0 0 84.7K 878K 0
Apache POI 3.92K 0 0 0 0 345 139K 0

Fig. 4. Operations that overflow and overflowed values that reach dangerous operations for trusted and untrusted values. The bitwise-and, local shift, and
mod columns indicate how many overflows reach dangerous operations when the overflow bit is cleared on those operations. Results are totaled over runs on
each of the ten different application setups.

Number Average
Program Inputs Overhead

Ant 5 33.6%
Barcode4J 1 45.7%
FindBugs 2 54.4%
HtmlCleaner 1 33.0%
JMeter 1 7.7%
PMD 1 62.0%
SchemaSpy 1 22.8%
Apache Jena 10 37.6%
Apache Lucene 10 96.6%
Apache POI 10 55.8%
Elastic Search 10 51.5%

Fig. 5. Overhead percentage over 10 runs of each program. As indicated, some
of the programs were run over multiple input sets. Results over different input
sets are averaged together.

Since benign overflows are certainly possible in non-memory
allocation cases, the IntPatch and IntTracker approach cannot
be applied to them.

2) Symbolic Test Generation: A number of tools [12],
[13], [21], [22], [24], [26], [35], [40] employ various forms
of symbolic test generation (e.g., concolic testing) to look
for possible overflow bugs. By design, these tools can only
uncover overflow problems on paths they are able to fully
explore. Fully analyzing complex significant real-world pro-
grams is beyond the current state of the art.

DIODE [36] focuses on overflowed values that are used in
memory allocation sites. It looks at memory allocation sites
that are exercised by its seed inputs and can either find an
input value that triggers an overflow or show that there is no
input that would trigger an overflow for the observed target
expression at that site. It is, however, limited to the seed-
input/allocation site combinations exercised by its test inputs.

By using run-time instrumentation, ClearTrack, however,
has the capability to catch all overflows that lead to dangerous
operations without incurring false positives.

3) Static Analysis: Several static analysis tools have been
proposed to find integer overflow and/or sign errors [14],
[33], [41]. KINT [41], for example, generates constraints from
source code and user annotations to determine if an integer
error can occur. A substantial number of false positives still
exists. KINT also proposes NaN integers that track whether
or not they have overflowed. Unlike ClearTrack, NaN integers
require a dedicated NaN value (which could occur normally)
and have no facility to clear overflowed values (which is

critical to resolving false positives (see Section III-C).

B. Java Taint Tracking Systems

Phosphor [10] is a taint tracking system for Java that, like
ClearTrack, tracks 32 bits of metadata for each primitive Java
value. The reported overhead numbers for the two systems are
similar. Unlike ClearTrack, Phosphor only implements source
taint/propagation and does not implement any actions based
on taint information. In particular, it does not identify, track,
or clear numeric errors such as overflows or underflows. It
also does not identify or repair SQL or command injection
attacks.

WASP [23] is a taint tracking system for Java strings that
tracks trusted, rather than untrusted, data. Trusted data com-
prises string constants and strings derived from configuration
files. WASP uses its MetaStrings library to mimic and extend
the behavior of Java’s standard string classes. It replaces
strings allocated in the application with the MetaStrings equiv-
alent.

Chin et al. [15] modify the Java String classes to imple-
ment a string taint tracking system that distinguishes trusted
from untrusted data. The modified String classes are com-
patible only with the IBM JVM and do not support com-
mon string related functions, such as regular expressions and
String.format().

Unlike WASP and Chin et. al., ClearTrack tracks all Java
primitives, not just strings. ClearTrack can therefore accurately
track metadata through character primitives, character arrays,
byte arrays, integer types, and transfers between strings and
other types. It also tracks 32 bits of metadata instead of a single
trusted bit. WASP, unlike ClearTrack, does not track strings
created in Java libraries. Unlike Chin et. al., ClearTrack is
compatible with standard JVMs.

TaintDroid [20] tracks 32 bits of taint information with a
modified Android VM at the level of primitives, strings and
arrays (conflating the taint over array elements). TaintDroid
is designed to track information leaks specifically and sets
the 32 bits to track different information sources. It does
not support detection of integer overflow errors. Because it
conflates the character taint within strings (it records the same
taint for all characters within the same string), it does not
support the detection of SQL or command injection attacks
(detecting these attacks requires maintaining character-level
metadata within each string). Users must flash custom-built
firmware to their device to use TaintDroid.

TaintART [39] applies an approach similar to TaintDroid
but applies it to newer versions of Android that use the
Android RunTime (ART) environment. ART uses ahead-of-
time compilation for Android applications. TaintART modifies
the ART compiler to track taint. Like TaintDroid it conflates
string and array elements for efficiency.

Unlike TaintDroid and TaintART, ClearTrack precisely
tracks metadata for all primitive values, including characters
within strings and elements within arrays. ClearTrack therefore
supports the detection of SQL and command injection attacks.
ClearTrack also detects integer errors such as overflows.
Because ClearTrack instruments the bytecode, instrumented
applications execute without modification on new versions of
standard JVMs. TaintDroid and TaintART, in contrast, work
only with their modified Android VM and must be manually
ported to new Android VMs (and specific devices) as they are
released. The latest version of Android supported by Taint-
Droid is 4.3 (released in July 2012 and no longer supported).
TaintART supports Android 5.0 and 6.0. The current version
of Android is 8.X.

C. Other Taint Tracking Systems

There are a numerous systems that implement run-time taint
tracking on various platforms (discussed in more detail in
the following subsections). However, these systems are either
limited in the number of bits they track, the precision of
their tracking (for example conflating all elements of the same
array), cannot be applied to Java, have significant overhead,
or some combination thereof.

1) Binary systems: There are a number of taint tracking
systems for binaries. These suffer from high overhead (300%
or more) and/or cannot be applied to systems (such as the
JVM) that use JITs to dynamically compile code. Even when
they can handle dynamic code creation, support for that
increases the overhead of the system.

LIFT [31] is a binary taint tracking system built on a dy-
namic binary instrumentation tool (StarDBT). It has overhead
of approximately 360% on SPEC INT2000 applications. It was
not tested on systems (such as Java) that include dynamically
generated code.

Saxena et al. implement a binary taint tracking system [34]
at the byte level that has approximately 100% overhead. It
cannot be applied to dynamically compiled Java code as it
relies on static binary rewriting to add instrumentation to
binaries.

EMS64 [45] is a binary system for memory shadowing
system on 64 bit architectures. When configured to support
8 bits of shadow memory for each program byte, it has
approximately 300% overhead (including shadow memory
propagation).

None of these systems detect or track overflowed values.
2) C Source systems: Xu et al. implement a C source taint

tracking system [43] with overhead from 61% to 106% on
non-server programs.

Xu’s system is optimized to track two bits of taint per byte.
This results in one byte of taint information for each 32 bit

word which is a key to their performance (two bits is faster
than one by 7% to 466%). Tracking 32 bits of information (as
done by ClearTrack) would require 16 bytes of information
for each 32 bit word which would significantly increase both
overhead and the memory footprint of the approach.

This (and other similar systems) cannot effectively be ap-
plied to the JVM because they do not support dynamic code
creation. The approach also cannot be directly applied to Java
code because it relies on an address transformation to locate
the taint for the data at a particular memory address, a low
level manipulation not possible in Java.

3) PHP string systems: Mui et al. implement complemen-
tary encoding [27] to track user input in PHP. Untrusted
characters are encoded differently from trusted characters. The
system is implemented by modifying the PHP interpreter to
treat both versions of the character as the same except at check
points. The system is effective at maintaining character taint as
long as characters are not manipulated at a low level (such as
encoding them to/from byte arrays, using less-than or greater-
than comparisons, or using characters as array indices). The
system supports SQL queries and cross-site scripting.

Diglossia [37] tracks string taint in PHP as a shadow string.
Trusted characters in the shadow string are mapped to different
characters (somewhat similar to complementary encoding).
The system applies checks by ensuring that untrusted input is
not included in the query. Diglossia supports database queries
in SQL, JSON, or JavaScript.

Neither of these systems supports integer values or trans-
lations to/from bytes and byte arrays, nor do they detect or
track overflowed values.

D. Injection Attacks
1) SQL Injection: SQL injection attacks have been ad-

dressed by a number of taint tracking systems on a variety
of platforms including Wasp [23](Java), Diglossia [37] (PHP),
Mui et al. [27] (PHP), and Xu et al. [43] (C).

ClearTrack is the only system, of which we are aware, that
automatically repairs queries.

2) Command Injection and Path Traversal: Nguyen-Tuong
et al. implement a PHP taint tracking system [29] by mod-
ifying the PHP interpreter. It addresses command injection
by disallowing some system calls that contain any tainted
data. This approach would not allow legitimate commands that
contain tainted arguments.

Xu et al. implement a C source taint tracking system [43]
that supports policies that can be used to address command
injection and path traversal. The policies, however, are too
simple to precisely define command injection or path traversal.
The policy only rejects the presence of dangerous operators
and does not support quoted strings or other more subtle
restrictions.

ClearTrack is the only system, of which we are aware, that
automatically repairs commands.

V. CONCLUSION

We present ClearTrack, which precisely and efficiently
tracks metadata on all primitive values in Java programs.

Results from an evaluation performed by an independent
test and evaluation team hired by the United States govern-
ment demonstrate ClearTrack’s effectiveness in leveraging the
tracked metadata to detect and nullify malicious inputs without
false positives or false negatives on the benchmark applications
and inputs.

REFERENCES

[1] Mitre cwe list. https://cwe.mitre.org.
[2] Alkacon Software. OpenCms. http://www.opencms.org/en/download/,

May 2012.
[3] Apache Foundation. Apache Tomcat. http://tomcat.apache.org/, Septem-

ber 2015.
[4] Apach Foundation. Apache Ant. http://ant.apache.org/, July 2015.
[5] Apach Foundation. Apache FtpServer. http://mina.apache.org/

ftpserver-project/, July 2015.
[6] Apach Foundation. Apache Jena. https://jena.apache.org/, November

2015.
[7] Apach Foundation. Apache JMeter. http://jmeter.apache.org/, November

2015.
[8] Apach Foundation. Apache Lucene. http://lucene.apache.org/, Septem-

ber 2015.
[9] Apach Foundation. Apache POI. https://poi.apache.org/, September

2015.
[10] J. Bell and G. Kaiser. Phosphor: Illuminating dynamic data flow

in commodity jvms. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’14, pages 83–101, New York, NY, USA, 2014.
ACM.

[11] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song. Rich:
Automatically protecting against integer-based vulnerabilities. In In
Symp. on Network and Distributed Systems Security, 2007.

[12] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[13] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: Automatically generating inputs of death. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS
’06, pages 322–335, New York, NY, USA, 2006. ACM.

[14] E. N. Ceesay, J. Zhou, M. Gertz, K. Levitt, and M. Bishop. Using
type qualifiers to analyze untrusted integers and detecting security flaws
in c programs. In Proceedings of the Third International Conference
on Detection of Intrusions and Malware & Vulnerability Assessment,
DIMVA’06, pages 1–16, Berlin, Heidelberg, 2006. Springer-Verlag.

[15] E. Chin and D. Wagner. Efficient character-level taint tracking for Java.
In Proceedings of the 2009 ACM Workshop on Secure Web Services,
2009.

[16] J. Currier. SchemaSpy. http://schemaspy.sourceforge.net/, August 2010.
[17] A. Dangel and R. Pelisse. Pmd. https://pmd.github.io/, October 2015.
[18] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow

in c/c++. In Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 760–770, Piscataway, NJ, USA,
2012. IEEE Press.

[19] Elastic. Elastic Search. https://www.elastic.co/products/elasticsearch,
October 2015.

[20] W. Enck, P. Gilbert, B. Chun, and L. Cox. TaintDroid: an information
flow tracking system for real-time privacy monitoring on smartphones.
In OSDI, 2010.

[21] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random
testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[22] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox fuzzing for
security testing. Queue, 10(1):20:20–20:27, Jan. 2012.

[23] W. G. J. Halfond, A. Orso, and P. Manolios. Using positive tainting and
syntax-aware evaluation to counter sql injection attacks. pages 175–185,
2006.

[24] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing
for overflows: A guided fuzzer to find buffer boundary violations. In
Proceedings of the 22Nd USENIX Conference on Security, SEC’13,
pages 49–64, Berkeley, CA, USA, 2013. USENIX Association.

[25] J. Marki. Barcode4j. http://barcode4j.sourceforge.net/, February 2012.
[26] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation to find

integer bugs in x86 binary linux programs. In Proceedings of the 18th
Conference on USENIX Security Symposium, SSYM’09, pages 67–82,
Berkeley, CA, USA, 2009. USENIX Association.

[27] R. Mui and P. Frankl. Preventing web application injections with
complementary character coding. In Proceedings of the 16th European
Conference on Research in Computer Security, ESORICS’11, pages 80–
99, Berlin, Heidelberg, 2011. Springer-Verlag.

[28] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. 2005.

[29] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening web applications using precise tainting. In
R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura, editors, SEC, pages
295–308. Springer, 2005.

[30] B. Pugh, A. Loskutov, K. Lea, and D. Hovemeyer. Findbugs. http:
//findbugs.sourceforge.net/, March 2015.

[31] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. Lift: A
low-overhead practical information flow tracking system for detecting
security attacks. In Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on, pages 135–148, Dec 2006.

[32] D. Ray and J. Ligatti. Defining code-injection attacks. In Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’12, pages 179–190, New York, NY,
USA, 2012. ACM.

[33] D. Sarkar, M. Jagannathan, J. Thiagarajan, and R. Venkatapathy. Flow-
insensitive static analysis for detecting integer anomalies in programs.
In Proceedings of the 25th Conference on IASTED International Multi-
Conference: Software Engineering, SE’07, pages 334–340, Anaheim,
CA, USA, 2007. ACTA Press.

[34] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained binary
instrumentationwith applications to taint-tracking. In Proceedings of the
6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’08, pages 74–83, New York, NY, USA, 2008.
ACM.

[35] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine
for c. In Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-13, pages 263–272,
New York, NY, USA, 2005. ACM.

[36] S. Sidiroglou-Douskos, E. Lahtinen, N. Rittenhouse, P. Piselli, F. Long,
D. Kim, and M. Rinard. Targeted automatic integer overflow discovery
using goal-directed conditional branch enforcement. In Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages
473–486, New York, NY, USA, 2015. ACM.

[37] S. Son, K. S. McKinley, and V. Shmatikov. Diglossia: detecting code
injection attacks with precision and efficiency. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications
security, CCS ’13, pages 1181–1192, New York, NY, USA, 2013. ACM.

[38] H. Sun, X. Zhang, C. Su, and Q. Zeng. Efficient dynamic tracking
technique for detecting integer-overflow-to-buffer-overflow vulnerability.
In Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’15, pages 483–494, New
York, NY, USA, 2015. ACM.

[39] M. Sun, T. Wei, and J. C. Lui. Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 331–342, New York, NY, USA, 2016. ACM.

[40] T. Wang, T. Wei, Z. Lin, and W. Zou. Intscope: Automatically detecting
integer overflow vulnerability in x86 binary using symbolic execution.
In NDSS. Citeseer, 2009.

[41] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Improving
integer security for systems with KINT. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 163–177, Berkeley, CA, USA, 2012. USENIX Associ-
ation.

[42] S. Wilson, P. Moore, and V. Nikic. htmlcleaner. http://htmlcleaner.
sourceforge.net/, October 2015.

https://cwe.mitre.org
http://www.opencms.org/en/download/
http://tomcat.apache.org/
http://ant.apache.org/
http://mina.apache.org/ftpserver-project/
http://mina.apache.org/ftpserver-project/
https://jena.apache.org/
http://jmeter.apache.org/
http://lucene.apache.org/
https://poi.apache.org/
http://schemaspy.sourceforge.net/
https://pmd.github.io/
https://www.elastic.co/products/elasticsearch
http://barcode4j.sourceforge.net/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://htmlcleaner.sourceforge.net/
http://htmlcleaner.sourceforge.net/

[43] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In Proceedings
of the 15th Conference on USENIX Security Symposium - Volume 15,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association.

[44] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou. Intpatch: Automat-
ically fix integer-overflow-to-buffer-overflow vulnerability at compile-
time. In Proceedings of the 15th European Conference on Research
in Computer Security, ESORICS’10, pages 71–86, Berlin, Heidelberg,
2010. Springer-Verlag.

[45] Q. Zhao, D. Bruening, and S. Amarasinghe. Efficient memory shadow-
ing for 64-bit architectures. In Proceedings of the 2010 International
Symposium on Memory Management, ISMM ’10, pages 93–102, New
York, NY, USA, 2010. ACM.

[46] B. Zimmerman, L. Fox, and T. Thrin. CoffeeMud. http://sourceforge.
net/projects/coffeemud/, January 2015.

http://sourceforge.net/projects/coffeemud/
http://sourceforge.net/projects/coffeemud/

	Introduction
	Implementation
	Example
	Optimized Method Summaries
	Integer Overflow Errors
	Integer Divide-by-zero Errors
	Integer Conversion Errors
	Injection attacks
	SQL Injection Detection and Repair
	Command Injection Detection and Repair
	Pathname Traversal

	Experimental Evaluation
	Applications and Vulnerabilities
	Application Executions
	Numeric Vulnerabilities
	SQL Injection
	Command Injection
	Path Traversal
	Overhead

	Related work
	Integer Overflows
	Runtime Instrumentation for Overflow Errors
	Symbolic Test Generation
	Static Analysis

	Java Taint Tracking Systems
	Other Taint Tracking Systems
	Binary systems
	C Source systems
	PHP string systems

	Injection Attacks
	SQL Injection
	Command Injection and Path Traversal

	Conclusion
	References

