
Comprehensive Lower Bound Estimation from Behavioral Descriptions �

Seong Y. Ohmy, Fadi J. Kurdahiy, and Nikil Duttz

y Department of Electrical & Computer Engineering
z Department of Information & Computer Science

University of California, Irvine, CA 92717

Abstract

In this paper, we present a comprehensive technique for
lower bound estimation (LBE) of resources from behavioral
descriptions. Previous work has focused on LBE techniques
that use very simple cost models which primarily focus on the
functional unit resources. Our cost model accounts for stor-
age resources in addition to functionalresources. Our timing
model uses a finer granularity that permits the modeling of
functional unit, register and interconnect delays. We tested
our LBE technique for both functional unit and storage re-
quirements on several high-level synthesis benchmarks and
observed near-optimal results.

1 Introduction

In order for high level design tasks such as High Level Syn-
thesis (HLS) to produce reliable results, such tasks must rely
on realistic and accurate models of hardware components.
Without such realistic models, designs tasks essentially pro-
ceed in a blind fashion, which could result in designs not
satisfying cost and/or timing constraints. Such an approach
would result in unnecessary iterations through the design
cycle and would increase the design turn around time and
potentially, would decrease the competitiveness of the de-
sign method itself.

Much of the earlier design prediction work assumed the
existence of netlist-based design descriptions as inputs, and
hence produced netlist-based estimators [1]. While such
tools provide an excellent feedback to the designer on the
design quality, they can only be used after the design data
path is synthesized, hence they provide back-end feedback.
However, if the designer starts with no feedback at all, or
with incorrect feedback, then there is no guarantee that the
design decisions initially made would indeed be the correct
ones which would produce the desired outcome. Thus it is

�This work was supported by a MICRO grant from the Univer-
sity of California and Compass Design Automation Inc., and by a
Fellowship from the Korea Organization of Science and Engineer-
ing Foundation.

very important to provide the designer with front-end feed-
back to provide initial guidance in making design decisions.
Specifically, we need to have the capability of bounding the
design space prior to starting the HLS tasks.

In order to achieve this goal, we have studied the problem
of providing lower bound estimates on resources given a
control and data flow graph description of the design and a
performance goal expressed as clock cycle constraint. The
main features of our approach are the following:

1. It employs a comprehensive cost model which includes
a realistic measure of both functional and storage re-
sources. Our studies of state-of-the-art libraries of RT
level components indicate that register cost can easily
surpass those of “large” Functional Units (FUs), such as
adders. Table 1 shows such an example from the VTI
0:8� cell library.

2. It is based on a unified paradigm which analyzes life-
times of resources (be it FUs or registers) to determine
lower bounds on these resources. This allows the user
to analyze the tradeoffs of resource allocation.

3. It assumes a more accurate timingmodel which includes
the delays of FUs, registers, and interconnects.

We have developed efficient algorithms and heuristics to
support this model. Our initial experiments on standard HLS
benchmarks [2] indicate that this model is quite accurate.
Our model is more comprehensive than previous ones, and
can be further expanded to account for additional physical
design effects such as interconnect cost. Finally, this esti-
mation scheme naturally lends itself to encapsulation within

Table 1: Area and delay figures for adders, multipliers, and
registers from the VTI 0.8� data path library.

Functional Unit Area (�2) Delay (ns) Library Name

Adder 40,000 15.0 DPADD001H (16 bit)
Multiplier 58,000 24.4 DPMLT011H (16 bit)
Register 41,440 2.17 DPDFF0801 (16 bit)

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0182 $3.50

system level synthesis frameworks by providing early and
accurate estimates of design quality when large behavioral
descriptions are partitioned onto several chips, without the
need of running HLS tools to obtain full design netlists.

2 Previous Work

There is some recent work for estimating lower bounds on
area cost and total control steps (or csteps) [3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. All of these works (with the exception of [7],
[10], [11], and [12]) are mainly concerned with FUs in their
area cost models. The work in [3] proposes a mathematical
model for predicting the area-delay curve. [4] proposes an
ILP formulation for lower bound estimation of performance
given resource constraints. [5] addresses lower bounds on
time and FU cost for functional pipelined data flow graph,
but not register cost. [6] also addresses lower bounds on
time and FU cost. It uses these two estimation algorithms
to predict system level area-delay curve. However, it does
not feature register cost estimation, either. An extension
of the work in [3] is described in [7] and addresses lower
bounds on time and area cost including interconnect cost,
but not register cost. [8] presents a formal approach which
seems to estimate FU cost better than [4] and [7] in some
benchmarks. It considers the interdependency of the bounds
of different FU types, but not registers in estimation. [9]
finds the lower bound on FU cost and utilizes it in finding an
optimal scheduling result effectively. [10] uses an ILP for-
mulation in calculating lower bounds on the number of FUs,
registers, and buses separately. However, it does not take into
account the dependencies among the number of resources of
each type in estimating the lower bounds, and furthermore
the solution can be computationally expensive. [11] presents
an integrated area-delay prediction model which includes
FU, register, and interconect costs for use in system level
partitioning. Finally, [12] considers a generalized memory
hierarchy scheme for a hardware/software co-design model
and predicts the sizes of the various memory components to
achieve a given performance goal.

3 The Area Cost Estimation Algorithm

Figure 1 shows the overall structure of the area cost esti-
mation algorithm LBE. In this paper, ASAPi(ALAPi) de-
notes the earliest (latest) cstep in which operationOi can be
started without violating both timing constraint and prece-
dence relations between operations, and ASAP 0

i (ALAP
0
i)

denotes the last cstep where operationOi is completed when
it is scheduled in ASAPi (ALAPi) cstep. In determining
these values for each operation, we take into account the
pre-defined transfer delay including the delays of registers
and interconnects along with the delay of FU itself, thus pro-
viding a more sophisticated timing model. In this paper, the
cstep interval [ASAPi, ALAPi] is called the time frame of
operationOi. We estimate the FU cost and register cost using

LBE()
f

parse input DFG;
read delay and area information;
read timing constraints including clock period and

maximum delay;
total cstep number = b (maximum delay) / (clock period) c;

for each operationOi in input DFG,
determine ASAPi;ALAPi;ASAP 0

i ;ALAP
0

i ;

Est Area Cost = Estimate FU Cost() + Estimate Reg Cost();

return(Est Area Cost);
g

Figure 1: Overall structure of the area cost estimation algo-
rithm.

these time frames.
In this paper, we assume that the register cost is a sec-

ondary cost with respect to FU cost. That is, we assume that
the FU cost estimation is performed before the register cost
estimation as in the traditional methods, where scheduling
is first performed to minimize the FU cost and subsequently
values are assigned to registers so as to minimize register
cost. In this sense, estimating the number of registers does
not necessarily correspond to an absolute lower bound, but
to a conditional lower bound on register cost subject to the
estimated FU cost. Our scheme, however, is flexible to al-
low modification of the estimation order between FUs and
registers.

Figure 2 shows an input DFG of the differential equation
example which solves the 2nd order differential equation
y00 + 5xy0 + 3y = 0, and Figure 3 shows the initial time
frames of the operations when the maximum delay is 80 ns
and the clock period is 20 ns. In this example, we assume that
the pre-defined transfer delay is 4.5 ns, and that additions,
comparisons, and subtractions are executed by ALUs with 15
ns delay and multiplications by multipliers with 15 ns delay.

4 Estimating a Lower Bound on FU Cost

4.1 Basic idea

The basic idea behind the FU cost estimation scheme stems
from the pigeon hole principle: ifN operations are scheduled
over K csteps, then it is guaranteed that at least dN=Ke

operations are scheduled into some cstep among those K
csteps. This can be stated slightlydifferently if we are talking
about a cstep intervalZ = [X;Y]whose length is Y �X+1.
In this case, if N operations of type T are scheduled in the
intervalZ, then at least dN=(Y �X+1)e FUs of type T are
required. Now given a particular operation Oi, then clearly,
Oi is guaranteed to be scheduled in Z if [ASAPi; ALAPi]
� Z. For each interval Z, we find the number of operations

+

−

−

<

dx
 A

*
 a b c d e

f g

1 2 3 4 5

6 7 8 9

 10

11

 u x dxdx y5 x3 dxu

u(ul) y(yl) ctrl x(xl)

 u1 u2 u3y1 y2x1 x2

 h

+

: value to be stored in registers

* * *

**

Figure 2: A DFG of the 2nd order differential equation ex-
ample.

*1 *2 *3 *4 +5

 <9+8*7*6

−10

 −11

cstep

1

2

3

4

Figure 3: The initial time frames of the operations.

of type T guaranteed to be scheduled during that interval,
and estimate the lower bound on the number of FUs of type
T . After that, we enumerate all the cstep intervals Z �

[1; total cstep number] to get a tighter lower bound. The
maximum such number over all enumerated intervals yields
an estimated lower bound on the FU cost of type T .

For example, the four multiplicationsO1, O2, O3, andO6

in Figure 3 are guaranteed to be executed in cstep interval
[1; 2], since their time frames are fully included in this inter-
val. So d4=2e = 2 is estimated as a candidate of the lower
bound on the number of multipliers for this interval. To get a
tighter lower bound, these candidates are estimated over all
the cstep intervals and the maximum one is selected. In this
case, max(0; 1; 2) = 2 is finally chosen as the lower bound
on the number of multipliers. In a similar way, the lower
bound on ALU count is estimated as 2.

The above basic idea is generalized to support multi-
cycling, chaining, and functional pipelining of operations.
Figure 4 shows an extended version of the FU cost esti-
mation algorithm. In this algorithm, (T) denotes a set
of operations of type T , and Pi;z (Qi;z) is the intersection
of interval Z and the earliest (latest) cstep interval during
which Oi may be performed by an FU of type T . Oi is
guaranteed to occupy an FU for as many csteps as Li;z at
least in the intervalZ. Therefore,

P
Oi2 (T)

Li;z represents
the total number of FU slots required in the interval Z, and

d(
P

Oi2 (T)
Li;z)=jZje yields a lower bound on the number

of FUs of type T estimated for intervalZ. We enumerate all
the cstep intervals Z to get a tighter lower bound, and then
select the maximum one as the lower bound on the number
of FU of type T .

As for the pipelined operations, we only have to count
the first stage of them in estimating the lower bound on
the number of the pipelined FUs [13]. Therefore, for each
pipelined operationOi, we assume thatASAP 0

i andALAP 0
i

are equal toASAPi andALAPi respectively, and then apply
the same procedure above.

An estimated lower bound on the total FU cost is derived
by applying the above procedure for all the types.

Estimate FU Cost()
f

for each FU type T ,
 (T) = set of operations of type T ;
for each cstep interval Z � [1; total cstep number],

for each operation Oi in (T),
Pi;z = [ASAPi;ASAP

0

i] \ Z;
Qi;z = [ALAPi;ALAP

0

i] \ Z;
Li;z =min(jPi;zj; jQi;zj);

LBT =maxz (d (
P

Oi2 (T)
Li;z) = jZj e);

Est FU Cost =
P

T
(LBT � AreaT);

updateEst FU Cost;
return(Est FU Cost);

g

Figure 4: FU cost estimation algorithm.

4.2 Refining the lower bounds

Once the lower bounds on FU counts are estimated using
the above procedure, we can use those bounds as an initial so-
lution which is further refined to obtain tighter lower bounds.
First, each FU is assumed to be used as many as the initial
lower bound on the number of FUs of that particular type.
This constraint may restrict the time frames of the operations
to be scheduled.

For example, the initial time frame ofO3 is [1; 2] as shown
in Figure 3. However, if we assume that the number of multi-
pliers available is equal to the lower bound on the number of
multipliers(= 2), O3 cannot be scheduled into cstep 1, since
at least 2 other multiplicationsO1 and O2 are guaranteed to
be scheduled into cstep 1. Therefore, the time frame of O3

shrinks to [2,2]. In a similar way, we can adjust the ALAP
times of the operations. More sophisticated methods, which
restrict the time frames effectively under the resource con-
straints, can be found in [13] and [14]. Figure 5 shows the
time frames of the operations modified by this update proce-
dure. In this example, time frames of operationsO3,O4,O5,
O7, O8, and O9 are modified compared with those in Figure
3.

If there is any adjustment in the time frames, we estimate
the lower bounds again using the modified time frames to

get tighter lower bounds. In this example, there is no update
in the estimated FU cost because the initial lower bound
estimation is exactly the same as the optimal one. This update
procedure, however, is particularly effective in estimating a
better register cost when it is a secondary cost with respect to
FU cost as in the traditional design methods, since modifying
the time frames of operations also affects the lifetimes of
values between operations.

*1 *2

*3

 *4

+5

 <9

+8

*7

*6

−10

 −11

cstep

1

2

3

4

Figure 5: The adjusted time frames of the operations.

The time complexity in estimating the initial FU cost is
O(N � C2) and that in refining the estimation is roughly
O(N � (N +E)) [13], whereN andE represent the number
of operations and the number of edges in the given DFG
respectively, andC the total number of csteps. Thus the total
time complexity of this algorithm is O(N � (C2 +N +E)).

5 Register Cost Estimation

5.1 Basic technique

The main difficulty in estimating the register cost arises
from the fact that no prior scheduling is assumed. This means
that the lifetimes of variables are not known a priori, since
these lifetimes are only known once scheduling is performed.
Therefore, the estimation approach should consider all the
possible lifetimes of all the variables.

Figure 6 shows our register cost estimation algorithm. In
this algorithm, the weight of a variableVi;j , denoted byWi;j,
represents the minimum size of lifetimes of the variable. That
is, once variable Vi;j becomes active, it should remain active
for at leastWi;j contiguouscsteps. If the weight of each vari-
able is determined, we compute

P
Vi;j

Mi;j;z for each inter-
valZ. Since

P
Vi;j

Mi;j;z is the total number of register slots
required for interval Z, d (

P
Vi;j

Mi;j;z) = jZj e represents
the minimum number of registers required for that interval,
that is, a lower bound on the register count. We enumerate
all the cstep intervals Z � [1; total cstep number + 1] to
get a tighter lower bound and then select the maximum one
as the lower bound on the register count.

This basic technique, however, suffers from a serious
drawback: in most cases, the weight of a variable is usu-
ally too small, and thus this basic procedure would yield a
trivial lower bound on the register cost. In order to alleviate
this problem, we need to find the largest possible weights

Estimate Reg Cost()
f

for each variable Vi;j , calculateWi;j ;
Fanout Reduction();
Variable Merging();
for each interval Z � [1; total cstep number + 1],

for each variable Vi;j ,
if Oj is pipelined, Sj = ASAPj;
else Sj = ASAP 0

j ;
Pi;j;z = [Sj �Wi;j + 1; Sj] \ Z;
Qi;j;z = [ALAP 0

i + 1; ALAP 0

i +Wi;j] \ Z;
Mi;j;z = min(jPi;j;zj; jQi;j;z j);

LBReg =maxz (d (
P

Vi;j
Mi;j;z) = jZj) e);

Est Reg Cost = LBReg �AreaReg ;
return(Est Reg Cost);

g

Figure 6: Register cost estimation algorithm.

for the variables. As mentioned before, the update proce-
dure described in Section 4.2 helps increase their weights
by restricting the time frames of operations, when the FU
estimation is performed before register estimation. For fur-
ther improvements, however, we apply two additional tech-
niques: Fanout Reduction and Variable Merging. Table 2
shows the variables and their weights before and after these
improvement techniques are applied.

Table 2: The weights of the variables.
Variables and Weights before Improvements

variable u1 u2 u3 x1 x2 y1 y2 ul xl

weight 3 1 3 1 1 2 4 1 3

variable yl a b c d e f g h

weight 1 1 1 1 1 1 1 1 1

After Fanout Reduction and Variable Merging

variable (u3,yl,d) y2 (x2,xl) (a,f ,h) b (c,g,ul)
weight 5 4 5 3 1 3

5.2 Fanout reduction

Consider two shared variables Vi;j and Vi;k, which have
the same sourceOi and thus represent the same data value. If
Oj is guaranteed to be completed before Ok, then Vi;j does
not need to be considered when computing the register cost
estimate, since the lifetime of Vi;j is always included in that
of Vi;k. For example, if ALAP 0

j � ASAP 0
k or Ok is data

dependent on Oj, then we only have to consider Vi;k in our
basic procedure. This technique will help reduce the total
problem size and also simplify the variable merging problem
explained later.

As an example, the two fanouts y1 and y2 in Figure 2
have the same source but different destinations: O3 and
O8 respectively. For these shared variables, the condition
“ALAP 0

3 � ASAP 0
8” is satisfied when the total number of

csteps is 4 (see Figure 5). So we only have to consider

the variable y2 in estimating the register cost. In a similar
way, u1 and u2 are reduced by u3, x1 by x2, and e by xl
respectively.

5.3 Variable merging

Since our goal is only in counting the number of regis-
ters, we do not need to assume a particular register binding.
In this case, the lifetimes of some variables can be merged
for the purpose of estimation only. For example, if Oj is
not pipelined, two variables Vi;j and Vj;k can be merged as
a new variable, say Vi;k, with a larger weight, since they
cannot be active at the same time. This modification helps
increase

P
Vi;j

Mi;j;z in Figure 6 and also reduces the num-
ber of variables or problem size. In this technique, shared
variables are not considered for merging. However, by the
fanout reduction procedure described above, we can reduce
the number of shared variables.

As an example, the two variables x2 and xl in Figure 2
can be merged as a new variable, since the destination of x2
is the source of xl. In this case, the initial weight of the new
variable is 5, while the sum of the weights of the old two
variables is 4, as shown in Table 2. As a result, our algorithm
computes Mi;j;z for the new merged variable as 1 when the
interval Z = [2; 2], while Mi;j;zs for the old variables are 0
respectively for the same interval. In a similar way, we can
merge other variables as shown in Table 2.

The time complexity in calculating the weights of variables
and in the improvement steps is roughlyO(E �(N+E)), and
the complexity in estimating the register cost is O(E � C2),
where N represents the number of operations,E the number
of values to be stored in registers, and C the total number of
csteps. Thus the total time complexity of this algorithm is
O(E � (C2 +N + E)).

6 Experimental Results

In order to validate the proposed lower bound estimation
algorithms, we applied them to three well-known high level
synthesis benchmarks from the HLS benchmark suite [2]:
(1) the 2nd order differential equation, (2) the 5th order el-
liptic wave filter (EWF), and (3) the AR filter. Experimental
results on these benchmarks are given in Tables 3, 4, 5, 6,
and 7. In these experiments, we assumed that clock period
is 20 ns and the total transfer delay including register and
interconnect delay is 4.5 ns. The FU delays are specified in
the tables. The CPU time for each experiment is less than
0.05 seconds on a SUN 4 workstation. Basically we com-
pared our results with OASIC [10], ILP approach [15], HAL
[16], and InSyn [17]. In many cases, however, we could
find some better designs (denoted by ‘Manual Design’ in the
tables) with less register cost than the designs reported in
[15] and [16], though they are not optimal in some cases. As
a result, these designs help us compare more accurately our
estimates (especially register cost) with those of the actual

(possibly optimal) designs obtained through the conventional
scheduling and allocation processes.

Table 3: 2nd order differential equation

Delay Actual Design Our Estimation
(ns) Source FU Reg. FU Reg.

80 y ILP [15] 2(+), 2(?) 4 2(+), 2(?) 4
80 z Manual 2(+), 2(?) 5 2(+), 2(?) 5
120 z Manual 2(+), 3(�) 6 2(+), 3(�) 6
140 z Manual 2(+), 2(�) 5 2(+), 2(�) 5

y: The input variables are NOT stored in registers.
z: The input/output variables are stored in registers.
?: multiplier (delay = 15.0 ns), �: multiplier (delay = 24.4 ns)
+: ALU (delay = 15.0 ns)

Table 4: 5th order elliptic wave filter - design I

Delay HAL [16] Manual Design Our Estimation
(ns) FU Reg. FU Reg. FU Reg.

340 3(+), 3(�) - 3(+), 3(�) 11 3(+), 3(�) 11
360 3(+), 2(�) - 2(+), 2(�) 10 2(+), 2(�) 10
380 2(+), 2(�) 12 2(+), 2(�) 9 2(+), 2(�) 9
400 2(+), 2(�) - 2(+), 2(�) 9 2(+), 2(�) 9
420 2(+), 1(�) 12 2(+), 1(�) 9 2(+), 1(�) 9

�: multiplier (delay = 24.4 ns), +: adder (delay = 15.0 ns)

Table 5: 5th order elliptic wave filter - design II

Delay OASIC [10] HAL [16] Our Estimation
(ns) FU Reg. FU Reg. FU Reg.

340 3(+), 2(�p) 10 3(+), 2(�p) 12 3(+), 2(�p) 10
360 3(+), 1(�p) 10 3(+), 1(�p) - 3(+), 1(�p) 10
380 2(+), 1(�p) 9 2(+), 1(�p) 12 2(+), 1(�p) 9

�p: 2-stage pipelined multiplier (delay of 25.0 ns), +: adder (delay of 15.0 ns)

Table 6: 5th order elliptic wave filter - design III

Delay InSyn [17] Our Estimation
(ns) FU Reg. FU Reg.

340 3(+), 2(�p) 8 3(+), 2(�p) 8
360 3(+), 1(�p) - 3(+), 1(�p) 8
380 2(+), 1(�p) 8 2(+), 1(�p) 8
400 - - 2(+), 1(�p) 8
420 - - 2(+), 1(�p) 8
560 1(+), 1(�p) 9 1(+), 1(�p) 8

Note: The input variables are NOT stored in registers.
�p: 2-stage pipelined multiplier (delay = 25.0 ns)
+: adder (delay = 15.0 ns)

Table 7: AR filter

Delay ILP [15] Manual Design Our Estimation
(ns) FU Reg. FU Reg. FU Reg.

120 - - 4(+), 4(?) 6 4(+), 4(?) 6
140 - - 4(+), 4(?) 6 4(+), 4(?) 4
160 - - 2(+), 3(?) 6 2(+), 3(?) 4
180 2(+), 2(�) 6 2(+), 2(?) 5 2(+), 2(?) 3

Note: The input variables are NOT stored in registers.
?: multiplier (delay = 15.0 ns), +: adder (delay = 7.5 ns)

The results are quite encouraging, indicating that the lower
bound estimation algorithms achieve perfect accuracy with
respect to estimating the functional unit requirements. The
estimated lower bound on register count is also quite accurate

as shown in the tables. We note here that the register cost
estimate predicts a lower bound on register count across all
possible schedules that can be accomplished given the FU
resources. In most cases, the lower bound on register cost is
equal to the actual register count. In other cases, the bound
is 1 or 2 registers below the actual count. Note that no prior
scheduling is assumed in our estimation.

Figure 7 shows the behavioral “shape function” that is
generated for the EWF example (Table 4), and the predicted
lower bound shape function. The area and delay figures for
the adders, multipliers, and registers were generated using
the VTI 0.8� data path library described in Table 1. We
note that the layout areas of a register and an adder are quite
comparable in this library, indeed the register cost is slightly
more than the adder’s. This suggests that the register cost
is as significant as the adder cost and must be considered in
order to have realistic estimation of the overall design area.

300 350 400 450
Delay (ns)

0

200000

400000

600000

800000

La
yo

ut
 A

re
a

(s
q.

 m
icr

on
s)

 Predicted Shape Function
 Actual Design Points
 FU Model

Figure 7: The actual and lower bound shape functions of
the EWF with non-pipelined multiplier.

7 Conclusions
We presented an LBE technique that accounts for func-

tional and storage units with a finer granularity of time, and
presented experimental results of our approach on several
HLS benchmarks. These results confirm the importance of
accounting for both storage and functional units in lower
bound estimation. Our estimates for functional unit and stor-
age requirements are quite accurate and validate our approach
for these examples.

As we move towards sub-micron technologies, the effects
of interconnects will begin to dominate the design. Our
present model does not estimate interconnect and multiplex-
ing costs and delay, but the timing model can accommodate
such estimates once available. Currently, the user provides
some initial estimates of such delays. Once an RT level
structure is further defined, it is possible to use accurate
layout-based estimation schemes [1] to quickly get a better
prediction of the interconnect delay before committing to a
costly layout step. Clearly, better accounting for interconnect
is needed and will be addressed in future work.

References
[1] C. Ramachandran, F. J. Kurdahi, D. Gajski, V. Chaiyakul, and

A. Wu, “Accurate Layout Area and Delay Modeling for System
Level Design,” Proc. ICCAD ’92, Nov. 1992.

[2] N. Dutt and C. Ramachandran, “Benchmarks for the 1992 High
Level Synthesis Workshop,” Technical Report, ICS Depart-
ment, UC Irvine, 1992.

[3] R. Jain, A. C. Parker, and N. Park, “Predicting System-Level
Area and Delay for Pipelined and Non-pipelined Designs,”
IEEE Trans. CAD, vol 11. no. 8, pp. 955-965, August 1992.

[4] M. Rim and R. Jain, “Estimating Lower-Bound Performance
of Schedules Using a Relaxation Technique,” Proc. ICCD ’92,
pp. 290-294, Oct. 1992.

[5] Y. Hu, A. Ghouse, and B. S. Carlson, “Lower Bounds on the
Iteration Time and the Number of Resources for Functional
Pipelined Data Flow Graphs,”Proc. ICCD ’93, pp. 21-24, 1993.

[6] A. H. Timmer, M. J. M. Heijligers, and J. A. G. Jess,
“Fast System-Level Area-Delay Curve Prediction,” Proc. 1st
APCHDL, pp. 198-207, 1993.

[7] A. Sharma and R. Jain, “Estimating Architectural Resources
and Performance for High-Level Synthesis Applications,”
IEEE Trans. VLSI Systems, vol 1. no. 2, pp. 175-190, June
1993.

[8] Samit Chaudhuri and Robert A. Walker, “Computing Lower
Bounds on Functional Units before Scheduling,” Proc. 7th In-
ternational Symposium on High-Level Synthesis, pp. 36-41,
May 1994.

[9] Seong Y. Ohm and Chu S. Jhon, “A Branch and Bound Method
for the Optimal Scheduling,” Proc. CICC ’92, May 1992.

[10] C. H. Gebotys and M. I. Elmasry, “Simultaneous Schedul-
ing and Allocation for Cost Constrained Optimal Architectural
Synthesis,” Proc. 28th DAC, pp. 2-7, June 1991.

[11] Kayhan Küçükçakar, “System-Level Synthesis Techniques
with Emphasis on Partitioning and Design planning,” PhD The-
sis, EE-systems Dept., USC. Sept. 91.

[12] P. Gupta and A. C. Parker, “SMASH: A Program for Schedul-
ing Memory-Intensive Application-Specific Hardware,” Proc.
7th International Workshop on HLS, pp. 54-59, May 1994.

[13] Seong Y. Ohm, Fadi J. Kurdahi, and Nikil Dutt, “A Unified
Method for the Lower Bound Estimation on Resources,” Tech-
nical Report, ECE Department, UC Irvine, 1994.

[14] A. H. Timmer and J. A. G. Jess, “Execution Interval Analysis
under Resource Constraints,” Proc. ICCAD ’93, pp. 454-459,
Nov. 1993.

[15] M. Rim, R. Jain and R. D. Leone, “Optimal Allocation and
Binding in High-Level Synthesis,” Proc. 29th DAC, pp. 120-
123, June 1992.

[16] P. G. Paulin and J. P. Knight, “Scheduling and Binding Al-
gorithms for High-Level Synthesis,” Proc. 26th DAC, pp. 1-6,
June 1989.

[17] A. Sharma and R. Jain, “InSyn: Integrated Scheduling for
DSP Applications,” Proc. 30th DAC, pp. 349-354, June 1993.

