
Comprehensive of N1-
Methyladenosine Modifications
Patterns and Immunological
Characteristics in Ovarian Cancer
Jinhui Liu1†, Can Chen2†, Yichun Wang3†, Cheng Qian1†, Junting Wei4,

Yan Xing1* and Jianling Bai5*

1 Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2 Department of

Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China, 3 Department of Urology,

The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 4 The Second Clinical School of Nanjing Medical

University, Nanjing, China, 5 Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China

Background: recently, many researches have concentrated on the relevance between

N1-methyladenosine (m1A) methylation modifications and tumor progression and

prognosis. However, it remains unknown whether m1A modification has an effect in the

prognosis of ovarian cancer (OC) and its immune infiltration.

Methods: Based on 10 m1A modulators, we comprehensively assessed m1A

modification patterns in 474 OC patients and linked them to TME immune infiltration

characteristics. m1Ascore computed with principal component analysis algorithm was

applied to quantify m1A modification pattern in OC patients. m1A regulators protein and

mRNA expression were respectively obtained by HPA website and RT-PCR in clinical OC

and normal samples.

Results: We finally identified three different m1A modification patterns. The immune

infiltration features of these m1A modification patterns correspond to three tumor immune

phenotypes, including immune-desert, immune-inflamed and immune-excluded

phenotypes. The results demonstrate individual tumor m1A modification patterns can

predict patient survival, stage and grade. The m1Ascore was calculated to quantify

individual OC patient’s m1A modification pattern. A high m1Ascore is usually

accompanied by a better survival advantage and a lower mutational load. Research on

m1Ascore in the treatment of OC patients showed that patients with high m1Ascore

showed marked therapeutic benefits and clinical outcomes in terms of chemotherapy and

immunotherapy. Lastly, we obtained four small molecule drugs that may potentially

ameliorate prognosis.
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Conclusion: This research demonstrates that m1A methylation modification makes an

essential function in the prognosis of OC and in shaping the immune microenvironment.

Comprehensive evaluation of m1A modifications improves our knowledge of immune

infiltration profile and provides a more efficient individualized immunotherapy strategy for

OC patients.
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INTRODUCTION

Most scientists have focused on the critical effect on RNA

methylation modifications in regulating genetic function. Different

fromDNAmethylation, RNAmethylation modifications, including

N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-

methyladenosine (m1A), mainly regulate genetic expression at the
post-transcriptional level (1–4). Among them, m1A methylation

modification refers to inserting amethyl ester to its nitrogen atom at

the adenine 1 position of RNA molecules such as mRNA, tRNA,

and rRNA (5, 6), and m1A methylation modification is mainly

enriched in mRNA 5’-untranslated region (UTR), which is different

from most common m6A RNA modification (5, 7).

m1A methylation modification maintains the structure and
function of non-coding RNAs (ncRNAs), a process that is

dynamically reversible and involves three classes of molecules:

methyltransferases, demethylases and binding proteins (8).

TRMT10C, Trmt61B and TRMT6/61A (methyltransferases)

mediate the methylation modification process, as TRMT10C

catalyzes m1A at site 9, Whereas the remaining two were
catalyzed at site 58 (9–11). Demethylases including ALKBH1 and

ALKBH3 can scrub the methylation modification signal from

single-stranded DNA and RNA (12–15). The m1A binding

proteins comprising YTHDF1, YTHDF2, YTHDF3 and YTHDC1

can read m1Amethylation modification information and recognize

and bind m1A methylation sites (16). These regulatory genes make

an essential function in the process of modifying m1A. More
researches have shown that abnormal expression or mutations of

m1A regulatory molecules can affect transcription and translation

processes, leading to abnormal pathological processes such as

abnormal cell proliferation, retarded organismal development and

tumorigenesis (17–20).

Using immune checkpoint inhibitors (ICIs), particularly PD-1,
PD-L1 and CTLA-4 have become pivotal drugs in tumor-targeted

molecular therapy with a brighter therapeutic future (21, 22).

Ovarian cancer (OC) is a commonmalignant carcinoma of female

reproductive organs, which seriously threatens women’s lives.

Currently, some scholars believe that the application of ICIs can

restore T cell function and achieve therapeutic effects (23).

However, in clinical practice, most OC patients show resistance
to ICIs or the clinical benefits are not as expected (24). The

application of ICIs therapy in OC is still controversial (25, 26).

Positive response to immunotherapy usually depends on tumor

cell interactions (27, 28) and immune regulation within tumor

microenvironment (TME) (29, 30). TME consists of tumor cells,

neighboring cells, vasculature and the extracellular matrix (ECM).
The interaction between tumor cells and other components of

TME can induce physiological or pathological changes (31). For

example, the immunosuppressive microenvironment in epithelial

ovarian cancer (EOC) makes it ineffective for immunotherapy.

However, the use of 5-azacytidine has been clinically found to not

only increase CD8+ T cells and NK cells, but also decrease the

macrophage and myeloid suppressor cell in TME. At this point,
the tumor immunosuppressive microenvironment is weakened

and the efficacy of immune checkpoint therapy is improved (32).

Therefore, understanding the interactions and detailed

mechanisms between immunotherapy and TME is a priority to

improve the efficacy of immunotherapy.

Recently, some researches have concentrated on exploring the

relationship between m1A regulators and TME. For example,
woo et al. believe that the cytokine CSF-1 has an adverse effect on

the prognosis of OC, and m1A methylation is engaged in the

degradation of CSF-1 mRNA. Among them, ALKBH3

overexpression increase the stability of CSF-1 and increase

CSF-1 expression (18). Wang et al. found that the silencing of

TRMT10C suppresses OC proliferation and migration (33).
However, the influence of m1A regulators on the development

and progression of OC depends on the interaction of multiple

regulators, rather than the influence of a single molecule. Thence,

a complete assessment of the immune status mediated by

multiple m1A regulators will facilitate our insight into the

regulatory role of m1A regulators in OC TME.

In this research, we compiled the genetic and clinical
information of 474 OC patients to synthetically assess m1A

modification modes and correlate them with TME. Ultimately,

we identified three m1A modification modes and observed

different immune status and prognosis among the modes, which

indicates that m1A modification in OC patients makes a critical

function in establishing a single TME. Therefore, we developed a
scoring system on the basis of genetic profile of the m1A regulators

to quantify the m1A modification pattern of each OV patient.

METHODS

Ovarian Cancer Data Source
and Preprocessing
Public RNA-seq expressed data and full clinical annotations are

available from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases. The exclusion criteria

include removing all samples without clinical follow-up
information, removing all samples with unknown survival

time < 30 days and removing all samples without survival
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status. After excluding samples with incomplete survival data, a

total of 3 eligible OC cohorts, including GSE9891, GSE29691 and

TCGA-OV, were collected to be processed. RNA sequencing data

of gene expression (FPKM values) and clinical information in

TCGA dataset were accessed directly from GDC website (https://

portal.gdc.cancer.gov/). FPKM data were converted to
transcripts per kilobase million (TPM) data. Normalized RNA

sequencing data and corresponded clinical information for

GSE9891, GSE29691 microarray dataset were accessed directly

from GEO website (http://www.ncbi.nlm.nih.gov/geo). Batch

effects between these cohorts were removed using “sva” R

package (34). OC patients with mutational data were obtained
from TCGA database. A total of 16 OC specimens and 16 normal

tissues were obtained from the first affiliated hospital of Nanjing

medical university. We obtain all the written informed consent

from patients.

Unsupervised Clustering Analysis of 10
m1A Regulators
Total 10 regulators were selected from TCGA and GEO datasets for

determining m1Amodification patterns. On the basis of expression

of 10 m1A regulators, we used the ConsensuClusterPlus package to

apply unsupervised clustering analysis in order to facilitate the

identification of different m1A modification patterns and the
classification of patients. The consensus clustering algorithm

determines how many clusters there are, and the process is

repeated a thousand times to ensure reliability (35, 36).

Gene Set Variation Analysis (GSVA)
GSVA, a non-parametric unsupervised method, can be applied

to assess the difference gene set enrichment between different
m1A modification modes (37). Download the gene set

“c2.cp.kegg.v6.2.symbols” from MSigDB database and use it for

running GSVA. An adjusted P<0.05 was regarded as

statistically significant.

TME Immune Cell Infiltration Analysis
CIBERSORT provides expression data for 22 common immune

cells LM22. Based on these data, we calculated the association
between m1Ascore and immune cell infiltration (38, 39). We

utilized the ssGSEA (single sample gene set enrichment analysis)

algorithm to assess the degree on immune infiltration.

ESTIMATE algorithm was utilized to score stromal and

immune gene sets and calculate tumor purity (40).

Identify Differentially Expressed Genes
(DEGs) Between Different
Phenotypes of m1A
We applied the empirical Bayesian approach of the limma
package to find out DEGs of the three m1A modification

patterns (41). The adjusted p for these genes is less than 0.05.

Construction of m1A Gene Signature
In order to quantify m1A modification pattern of single OC

patients, we built a score scheme to assess m1A modification

patterns, which we termed as m1Ascore. The m1Ascore was built

in the following steps: first, we normalized the DEGs extracted

from the different m1Aclusters and extracted overlapping DEGs.

overlapping DEGs were analyzed using unsupervised clustering

to classify OC patients into several groups. Consensus clustering

algorithms were used to determine the count of gene clusters and

their stabilization. We conducted prognostic analysis for each
overlapping DEG with Cox regression method and screened

genes with P<0.05. Principal component analysis (PCA) was

used for building m1A-associated gene signature. Principal

components 1 and 2 were both chosen for feature scores.

m1Ascore = ∑ (PC1i + PC2i). Where i is m1A phenotype-

related genes’ expression (42, 43).

IPS Analysis
IPS is a representative gene associated with immunogenicity
calculated using z-score. It uses PD-L1 expression of the four

tumor-associated immune cells individually as an evaluation

metric to distinguish the beneficiary population. Higher scores

were linked to high immunogenicity (44). OC patients’ IPS

comes from the Cancer Immunome Atlas (TCIA) (https://tcia.

at/home).

Connectivity Map (CMap) Dataset
CMap, as a gene expression profile database, allows the

comparison of differentially expressed gene profiles with

database reference datasets to obtain highly correlated agents

with diseases (45). We utilized the CMap database to obtain the

linkage between m1Ascore, OC and drugs. The 3D structures of

the obtained agents can be accessed from Pubchem website.

External Validation of 10 m1A
Regulators Protein Levels
The Human Protein Atlas (HPA) (https://www.proteinatlas.org)

includes tissue and cellular protein distribution data from 44

different normal tissue categories and 17 major cancer

categories. Immunohistochemical staining intensity, number,

location and patient information are available online. After
exploring 10 m1A-related genes in HPA database, seven m1A

regulators expression (ALKBH1, ALKBH3, TRMT6, TRMT10C,

TRMT61B, YTHDC1 and YTHDF2) in normal and OC tissues

was obtained.

Quantitative Real Time PCR
Trizol reagent (Thermo Fisher Scientific, USA) was utilized to

isolate and extract RNA from tissue samples. NanoDrop 2000

spectrophotometer (Thermo Scientific, USA) was designed to

assess RNA quantity control and concentration. A high-capacity

reverse transcription kit (Takara, Japan) was designed for reverse

transcription of total RNA to cDNA. qRT-PCR was conducted in
a Light Cycler 480II (Roche) using SYBR Green technology

(Takara). Record the cycling threshold (Ct) for each gene and

calculate the target gene mRNA expression with the 2-DDCt

method. All steps of the qRT PCR were performed according to

the reagent instructions and all experiments were repeated 3

times. PCR primers are showed in Table S1.
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Statistical Analysis
Correlation coefficients between immune cells andm1A regulators

expression were calculated by Spearman correlation analysis.
Differences between three groups were compared with Kruskal-

Wallis test, and associations among categorical covariates were

tested with c2 test (46). Based on the relevance of m1Ascore to

patient prognosis, the optimal cut-off value for each dataset sub-

group was defined using the survminer R package. This value

dichotomizes the patients into high and low m1Ascore subgroups.

Log-rank statistics were used for reducing the batch effect of
calculations. Kaplan-Meier method was applied for drawing OS

plots and log-rank test was utilized to identify statistics differences.

Univariate Cox regression were used to compute risk ratios for

m1A regulators and genes associated with m1A phenotype.

Multivariate Cox regression was applied for identifying

independent survival factors as well as the “forestplot” R
package to visualize the results. The Maftools package and its

“oncoplot” feature are used to present mutational differences. P <

0.05 is considered statistically significant. All data were processed

in R 3.6.1 software.

RESULTS

m1A Regulators Mutation and Expression
Difference and Its Clinical Relevance in OC
The total workflow is as shown in the following figure

(Supplementary Figure 1). According to previous literature

reports, we identified 10 m1A methylated genes. First, we

integrated somatic mutations and copy number variants

(CNVs) of these genes to characterize the mutations. As can be

seen in Supplementary Figure 2, the mean mutation rate of

m1A regulators is very low, and only 7 of 436 specimens have

m1A regulator mutations, with a frequency of 1.61%.

Subsequently, we analyzed the change frequency of the CNV
in m1A regulators. Figure 1A shows that copy number variation

was present in all 10 regulators, of which, most were dominated

by copy number amplification, with only YTHDF2 exhibiting a

copy number deletion. Figure 1B further visualizes the location

of CNV alterations in the m1A regulators on the chromosome.

By analyzing the expression of these 10 m1A regulators, we
identified two subgroups that did not cross over, which

demonstrated that we could completely distinguish between

OC and normal samples based on m1A regulators expression

levels (Figure 1C).

For searching the link between m1A methylation regulators

and OC, we compared m1A regulator mRNA expression in OC
and normal tissues from two databases, TCGA and GEO,

respectively. TCGA data showed aberrant expression of all

m1A regulators in OC. The expression of all genes in OC was

greater than that in normal (p<0.001, Figure 1D). However, the

different expression of these m1A regulators was not the same as

that in GSE27651 database. In GSE27651 dataset, there was no

statistical difference in ALKBH3 and TRMT61A expression
between OC and normal samples. And compared with normal

tissues, ALKBH1 expression (P<0.01) was significantly decreased

in OC, while the expression of YTHDC1 increased (P<0.05,

Figure 1E). Furthermore, we compared the differences in m1A

regulator expression at the protein level between two tissues.

A B

D E F G

I H

C

FIGURE 1 | Landscape of genetic and expression variation of m1A regulators in ovarian cancer. (A) The CNV variation frequency of m1A regulators in TCGA-OV

cohort. The deletion frequency, green dot; The amplification frequency, red dot. (B) The location of CNV alteration of m1A regulators on 23 chromosomes using

TCGA cohort. (C) Principal component analysis for the expression profiles of 10 m1A regulators to distinguish tumors from normal samples in TCGA cohort.

(D, E) Boxplot and differential expression heatmap of m1A RNA methylation regulators in OC and normal tissues from (D) TCGA and (E) GEO datasets. (F) The PPI

network of m1A RNA methylation regulators. (G) Spearman correlation analysis of m1A RNA methylation regulators in TCGA cohort. (H) Spearman correlation

analysis of m1A RNA methylation regulators in GSE27651 cohort. (I) The interaction among m1A regulators in ovarian cancer. Violet dots in the circle, risk factors of

prognosis; green dots in the circle, favorable factors of prognosis. The lines linking regulators showed their interactions, and thickness showed the correlation

strength between regulators. *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant.
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The results proved that ALKBH3 expression was lower in tumor

compared to normal tissues, TRMT61A expression differences

were not meaningful and the rest were expressed higher in OC

(Supplementary Figure 3A). The above analysis indicates a high

degree of heterogeneity in genetic variation and expression

differences between normal and OC tissues, which indicates
that the imbalance in the expression of m1A regulators makes

a critical function in the development of OC and that genetic

variation may interfere with their expression levels.

Next, we tried to clarify the relationship among the 10 m1A

RNA methylation regulators. Analysis of the String database

(Figure 1F) showed that ALKBH1 may be a central gene of the
m1A RNA methylation regulator. However, further analysis did

not display an expression correlation between ALKBH1 and

other regulators. Interestingly, in TCGA cohort, we found that

TRMT10C was positively related with seven m1A regulators,

particularly YTHDF1 and YTHDF2. In contrast, YTHDC1 was

negatively correlated with other eight regulators, particularly
YTHDF1 and TRMT10C (Figure 1G). This suggests that

TRMT10C and YTHDC1 may be key genes in m1A RNA

methylation regulators affecting OC occurrence and development.

However, in the GSE27691 cohort, we found that TRMT61A was

negatively correlated with the expression of seven m1A regulators,

particularly YTHDC1 and YTHDF1. In contrast, YTHDF1 was

positively correlated with six other regulators, particularly
YTHDC1 (Figure 1H). Broadly speaking, the correlation trends

between the regulators in the TCGA and GEO databases were

generally consistent.

We discuss the prognostic relevance of m1A regulators in

patients with OC (Supplementary Figure 3B). We found that

some m1A regulators, including ALKBH1, ALKBH3, TRMT6,

TRMT10C, YTHDF1 and YTHDF2 are oncogenic and that

overexpression of these genes results in worse prognosis for

OC patients. The m1A regulator network diagram further

describes the connections and interactions between m1A

regulators and their prognostic significance for OV patients

(Figure 1I). We revealed that m1A regulators expression
showed significant correlations both within the same category

and between different categories.

m1A Regulators-Mediated m1A
Modification Patterns
According to 10 m1A regulator expression, we used R program
to classify OC patients with different m1A modification patterns

and eventually identified three different modification patterns

by using an unsupervised clustering approach, namely m1A

cluster-A (227 patients), B (148 patients), and C (236 patients)

(Figure 2A and Supplementary Figures 4A–C). To discover the

prognostic worth of the three m1A modification patterns, we

concluded Kaplan-Meier analysis, the survival curves showed
that the m1A cluster-B modification pattern was more

pronounced among the three m1A modification subtypes (P =

0.009, Figure 2B). We also plotted heat maps to discuss the

correlation between clinicopathological characteristics of OC

patients and m1A modification patterns (Figure 2C).

Subsequently, we performed GSVA enrichment analysis of
the three m1A modification patterns to investigate the associated

pathways and biological significance. As shown in Figures 2D, E,

m1A cluster-A and m1A cluster-C are similar in that both are

significantly enriched for a number of gene replication and

repair-related pathways, including homologous recombination,

mismatch repair, and DNA replication. Differently, ECM-

A B

D E

C

FIGURE 2 | The m1A modification patterns in OC and biological characteristics of m1A subtypes. (A) The principal component analysis for the transcriptome

profiles of three m1A modification patterns. (B) Survival analyses of the three m1A modification patterns based on 611 OC patients. (C) Unsupervised clustering of

10 m1A regulators in two independent ovarian cancer cohorts. (D, E) GSVA enrichment analysis showing the activation states of biological pathways in distinct m1A

modification patterns. The red represented activated pathways and blue represented inhibited pathways. (D) The m1A cluster A vs m1A cluster B; (E) The m1A

cluster B vs m1A cluster C.
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receptor interaction and focal adhesion were heavily abundant in

m1Acluster-B, which may be related to the cellular matrix and its

role in TME.

Immune Characteristics in Different m1A
Modification Patterns
To better understand the relationship between m1A modification

patterns and immunity, we explored immune characteristics of

different m1A modification patterns. Analysis of cellular

infiltration in the TME showed that the three m1A modification

patterns had distinctly different TME cellular infiltration
characteristics, with the most abundant immune cellular

infiltration in m1A cluster-B, including many CD4+ T cells,

plasmacytoid dendritic cells, monocyte, NK cells, MDSC, etc.

(Figure 3A). This immunological profile corresponds to a

tumor immune-inflamed phenotype (47), and tumor patients

with this profile are the most responsive to immunotherapy,
and m1A cluster-B patients do show a matched survival

advantage (Figure 2B).

Furthermore, the results of GSVA analysis showed (Figure 2E)

that the cluster B modification pattern significantly correlated with

intrastromal interactions. Therefore, we hypothesized that the

matrix in cluster B activates the anti-tumor effects of immune

cells. We then employed ESTIMATE algorithm to calculate the
proportion of the immune matrix component of each m1A

modification pattern in the TME and presented it as immune

score, stromal score and estimate score, which were positively

correlated with immunity, stroma and the sum of both. We found

that clusters-A and B had significantly more immune and stromal

components in TME than cluster-C (p<0.05, Figure 3B).
In clinical tumor immunotherapy, the main immune checkpoint

inhibitors currently in use include CTLA-4 inhibitors and PD-1

inhibitors. In order to advance the study of ICIs, understanding

immune checkpoints expression in three m1A modification

patterns is necessary. Therefore, we explored immune checkpoints

expression in different m1A modification patterns. As seen in

Figure 3C, immune checkpoint expression was slightly different

in m1A subtypes, with slightly higher immune checkpoint

expression in cluster A compared to cluster C (p < 0.05).

Construction of m1A Gene Signature
and Its Immunological and Clinical
Characterization
To explore the biology of each m1A modification pattern, we

identified 527 m1A-associated DEGs (Figure 4A) and conducted

GO and KEGG analysis on these genes (Supplementary Figure

4D). Based on 527 m1A phenotype-related genes, an unsupervised

cluster analysis was then performed, and the patients were divided
into different genomic groups. Similarly, unsupervised clustering

algorithm exhibited three m1A modification genomic phenotypes,

which termed as m1A gene clusters A, B, C (Figure 4B and

Supplementary Figures 4E–G). This demonstrates that there are

indeed three distinct patterns of m1A modification in OC. We

observed that the three different gene clusters have different clinical
characteristics (Figure 4B). Compared with m1A gene cluster-A

and cluster-C, OC patients in m1A gene cluster-B displayed poor

differentiation and higher frequency of recurrence (Figure 4B); and

of the three m1A gene clusters, patients in gene cluster-C had longer

survival times (p=0.001, Figure 4C). Moreover, m1A regulators’

expression in the three m1A gene clusters also had significant

differences (Figure 4D). In addition, we performed immune
correlation analysis on the m1A gene cluster A-C. As shown in

Figure 4E, the three m1A gene modification patterns have different

TME cell infiltration characteristics. Unlike the m1A modification

pattern, the m1A gene modification pattern has the most abundant

immune cell infiltration in m1A gene cluster-A, such as activated

A B

C

FIGURE 3 | TME cell infiltration characteristics and immune checkpoints in distinct m1A modification patterns. (A) The abundance of each TME infiltrating cell in three

m1A modification patterns. (B) The box plot indicated the correlation between different m1A modification patterns and immune scores, stromal scores and estimate

score. (C) The expression of CTLA-4, PD1, PD-L1 and PD-L2 among distinct m1A modification patterns. *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant.
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CD8+T cell, MDSC, immature DC, monocyte, plasmacytoid DC,

etc. After applying ESTIMATE algorithm, we found that gene

cluster-A has the most immune and matrix components in TME,

followed by gene cluster-B (P<0.05, Figure 4F). These findings

demonstrate that m1A methylation modifications play an
important regulatory effect on building of different TME landscapes.

Due to individual differences in m1Amodification, based on 527

DEGs, we built a score system to accurately assess m1A

modification pattern of single OC patients, and termed it the

m1Ascore. First, the alluvial map visually displays the attribute

changes of a single OC patient (Figure 5A). To better characterize
the immunological profile of m1A feature, we analyzed the

association between immune cells and m1Ascore (Figure 5B).

Kruskal-Wallis test showed significant differences in m1Ascore

between m1A gene clusters. Gene cluster-C scored highest

median value and the lowest was for gene cluster-B (Figure 5C).

In contrast, the highest median value was observed in m1A cluster

B, while the lowest median value was observed in m1A cluster C

(Figure 5D). Combining previous survival analysis in different

clusters (Figures 2B and 4C), this indicates that the m1Ascore

may be positively correlated with the survival of OC patients.

Until we determined the prognostic value of m1Ascore, we
evaluated the significance of the m1Ascore in immunological terms.

First, we examined the correlation between immune cells and

m1Ascore, and found that M1 macrophages, CD8+ T cells,

gamma delta T cells, T follicular helper cells decreased as

m1Ascore increased, with a negative correlation between the two;

in contrast DCs and resting CD4 memory T cells were positively
related to m1Ascore, and cell infiltration increased with increasing

score (Figure 5E). Subsequently, following the optimal cutoff values

defined from survminer package, we dichotomized OC specimens

into high- and low-m1Ascore groups and initially assessed the TME

immune infiltration in these two groups. Figure 5F shows that

intrinsic immune cells, including monocyte, NK cells and
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FIGURE 4 | The m1A gene clusters in OC and biological characteristics of m1A gene subtypes. (A) 527 m1A phenotype-related genes shown in venn diagram.

(B) Unsupervised clustering of overlapping m1A phenotype-related genes in TCGA and GEO cohorts to classify patients into different genomic subtypes, termed as

m1A gene cluster A-C, respectively. The gene clusters, m1A clusters, tumor stage, grade, survival status and age were used as patient annotations. (C) Kaplan-

Meier curves indicated m1A modification genomic phenotypes were markedly related to overall survival of OC patients. (D) The expression of 10 m1A regulators in

three m1A gene clusters. (E) The abundance of each TME infiltrating cell in three m1A gene clusters. (F) The box plot indicated difference in immune scores, stromal

scores and estimate score between three m1A gene clusters. *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant.
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plasmacytoid DCs, were predominantly increased in highm1Ascore

subgroup. On the contrary, there are more adaptive immune cells,

consisting of B cells, CD4+ T cells and CD8+ T cells in low

m1Ascore subgroup. Similarly, we apply the ESTIMATE
algorithm between the two groups, and noticed no significant

difference in infiltrating components in TME between the two

groups (Supplementary Figure 4H). Furthermore, GSEA revealed

that the low m1Ascore group mainly enriched some metabolic

pathways and gene replication and repair-related pathways,

including DNA replication and oxidative phosphorylation

signaling. These are all tumor-related pathways, suggesting a poor

prognosis for the low m1Ascore group (Figure 5G).

Next, we deeply analyze the value of m1Ascore in the prognosis
of OC patients. High m1Ascore group patients showed better

survival benefits (Figure 6A). Similarly, the high m1Ascore group

consistently showed a marked survival advantage in patients

stratified by different clinical characteristics (Figure 6B).

Moreover, high m1Ascore group had a significantly greater
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FIGURE 5 | Construction of m1A signatures. (A) Alluvial diagram showing the changes of m1Aclusters, gene cluster, m1Ascore and patient survival status.

(B) Correlations between m1Ascore and the known gene signatures using Spearman analysis. Negative correlation was marked with blue and positive correlation with

red. (C) Differences in m1Ascore among three gene clusters. (D) Differences in m1Ascore among three m1A modification patterns. (E) The correlation between m1Ascore

and several immune cell, including resting dendritic cells, macrophages M1, resting memory CD4+ T cells, CD8+ T cells, follicular helper T cells and gamma delta T cells.

(F) The abundance of each TME infiltrating cell in low- and high-m1Ascore group. (G) Enrichment plots showing cell cycle, citrate cycle TCA cycle, DNA replication,

mismatch repair, and oxidative phosphorylation pathways were enriched in the low m1Ascore subgroup. *P < 0.05; **P < 0.01; ***P < 0.001. ns, not significant.
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proportion of early-stage patients and recurrence-free population

(Figure 6C), and these patients had higher m1Ascore (P<0.05,
Figure 6D). This means that high scoring populations

characterized by m1Acluster-B modification modes and

immune activation phenotypes have a more favorable

prognostic outlook. The above outcomes indicate that m1Ascore

can also be employed to assess several clinical features of OC

patients, including clinical stage, grade, and survival status.

Correlation Between m1A Score and
Tumor Burden Mutation
There is a statistics association between tumor burden mutations

(TMB) and tumor stage, grade, residual tumor size, and immune

infiltrating cells in TME, which indicates that TMB has a major
role in predicting OC survival and guiding immunotherapy in OC

patients (48). Given TMB’s clinically important nature, we

attempted to probe the inherent relevance between TMB and

m1Ascore to clarify genuine markings of the two groups. First, as

shown in Figure 7A, although not statistically significant, low

m1Ascore subgroup patients showed greater TMB than high

m1Ascore group. Correlation analysis also confirmed that

m1Ascore is significantly negatively associated with TMB
(Spearman coefficient: R = -0.18, p = 0.0051; Figure 7B). Then,

patients were dichotomized into high and low TMB groups. As

shown in Figure 7C, we observed that OS was better in high-TMB

patients (p=0.016). Collectively, these findings indicate that

m1Ascore can be treated a predictor independent of TMB.

Besides, we use maftools package to compare the distribution of
somatic variation between low and high m1Ascore groups in

TCGA. Figure 7D illustrates that low m1Ascore group exhibited a

more extensive TMB than the high m1Ascore subgroup. These

results provide new insights into the mechanisms underlying

tumor m1Ascore composition and gene mutation, and indirectly

confirm the value of m1Ascore in predicting the outcome

of immunotherapy

The Role of m1A Modification Patterns in
Ovarian Cancer Treatment
In recent years, platinum-based drugs and paclitaxel have been

used as representative drugs for chemotherapy of OC (49). For

A B

D

C

FIGURE 6 | Characteristics of m1A modification in OC patient subtypes. (A) Survival analyses of low and high m1Ascore patient groups in OC cohort using Kaplan-

Meier curves. (B) Kaplan-Meier curves depicted the survival difference between low and high m1Ascore in the stratified analysis of OC patients, including age, grade,

stage, and BRCA mutation. (C) The proportion of patient survival status, stage and grade in high and low m1Ascore groups. (D) Boxplots for m1Ascore between

different characteristics OC patients, including patient survival status, stage and grade.
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this reason, based on the two treatment cohorts of TCGA and

GSE9891, we explored whether m1Amodification characteristics

can predict the response of patients to these two first-line

chemotherapeutic agents, including cisplatin and paclitaxel. It

can be seen from Figure 8A that patients with low m1Ascore

showed significant treatment sensitivity to both groups of drugs,
which indicates that the m1Ascore facilitates the forecasting of

patient reaction to chemotherapy.

Moreover, we utilized CMap database to examine the potential

role of m1Ascore in the development of new drugs for OC. First,

we screened for differentially expressed genes between the groups

with high and low m1Ascore (Supplementary Figures 5A, B) and

conducted GO and KEGG enrichment analysis on these genes
(Supplementary Figures 5C, D). Subsequently, we utilized CMap

database to analyze these genes and find drugs with high

association with OC. The top 10 small molecule drugs highly

correlated with OC are shown in Table 1. Among these agents, we

obtained chemical structure information from PubChem for 4

most important small molecule agents (Figures 9A–D).
ICI has emerged as a key drug for immunotherapy (23).

However, there is still several patients who do not respond to

immunotherapy, which to some extent limits the application of

ICIs. Therefore, Charoentong et al. developed a quantitative

scoring scheme called immune phenotype score (IPS) to

ascertain the determinants that influence tumor immunogenicity.

In this scoring scheme, IPS is an excellent predictor for detecting
anti PD-1 and anti CTLA-4 antibody responses (44). Here, we

completely analyzed the link that exists between IPS and immune

characteristics. The IPS-CTLA4-neg-PD-1-neg, IPS-CTLA4-neg-

PD-1-pos, IPS-CTLA4-pos-PD-1-neg, IPS-CTLA4-pos-PD-1-pos

scores were designed to assess the likelihood of patients receiving

ICIs therapies. The results proved that the score increased

significantly in the high m1Ascore group (Figure 8B): IPS-

CTLA4-neg-PD-1-neg, P = 0.023; IPS-CTLA4-neg-PD-1-pos,
P = 0.036. This indicates that the high m1Ascore group shows

higher IPS and appears to have more immunogenic phenotypes.

These results suggest that the effectiveness of ICIs may be better in

patients with high m1Ascore.

Besides, we also investigated some common immune

molecules expressions in different m1Ascore groups, including

CD274, PDCD1, CD40, CXCL9 and so on. We observed that
most genes, except CD70, showed higher expression levels in the

low m1Ascore group (Figure 8C). This may also be a major

factor in the lower survival rate of low m1Ascore patients

(Figure 6A). These results above imply that quantification of

m1A modification patterns might be used as a prospective and

stable biomarker for chemotherapeutic response and
immunotherapy evaluation.

Clinical Validation of Proteins, mRNA
Expression of m1A Regulators
We used the HPA database to analyze m1A regulator protein

expression. Since immunohistochemical data for TRMT61A,

YTHDF and YTHDF3 were missing from the HPA data, we
only analyzed the remaining seven m1A regulators. Compared to

the normal tissue, TRMT10C, TRMT6 and YTHDF2 were
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D

C

FIGURE 7 | The Correlation between the m1Ascore and somatic variants. (A) TMB difference in the high and low m1Ascore subgroups. (B) Scatterplots

depicting the positive correlation between m1Ascores and tumor mutation load. (C) Kaplan-Meier curves for high and low TMB groups of the TCGA-OV patient.

(D) The single-nucleotide variant was constructed using high m1Ascores on the left (red) and low m1Ascores on the right (blue). Individual patients are

represented in each column.
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relatively highly expressed in the tumor tissue, while YTHDC1

was relatively less expressed. TRMT61B was moderately

expressed in both tumor and normal samples. ALKBH1 and
ALKBH3 were both lowly expressed in tumor and normal

samples (Figures 10A–G).

In terms of mRNA levels, TRMT6, TRMT61A, TRMT61B,

TRMT10C, YTHDF1 and YTHDF2 YTHDF3 were

overexpressed in tumor sample. While ALKBH1 and YTHDC1
were overexpressed in normal sample. ALKBH3 expression had

no difference between the tumor and normal sample

A B

C

FIGURE 8 | m1A modification patterns in the role of OC clinical therapies (A) Box plot showing the sensitivity of patients with high and low m1Ascore subgroups to

chemotherapy drugs, including cisplatin and paclitaxel. (B) The association between IPS and immune checkpoints in OC patients with different m1Asocre. (C) The

expression of immune-relevant genes in high and low m1Ascore subgroups. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

TABLE 1 | Results of CMap analysis.

cmap name mean n enrichment p-value specificity percent non-null

resveratrol 0.520 9 0.700 0.00006 0.0931 66

guanabenz -0.440 5 -0.859 0.00008 0 60

amodiaquine 0.708 4 0.900 0.0001 0 100

indoprofen -0.673 4 -0.910 0.0001 0 100

oxybenzone -0.584 4 -0.851 0.00092 0.0141 75

pyrvinium 0.543 6 0.730 0.00103 0.0884 66

pyridoxine 0.386 4 0.836 0.00111 0 50

natamycin 0.367 4 0.808 0.00253 0 50

aciclovir -0.352 6 -0.679 0.00294 0.0199 50

antimycin A 0.464 5 0.715 0.00439 0.0281 60
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(Figures 11A–J). The mRNA expression detected by PCR was in
general agreement with the TCGA database (Figure 1D).

DISCUSSION

More and more evidences show that under the interaction between

multiplem1Aregulators,m1Amodificationmakes a critical function

in inflammation, immuneresponse, andtumorigenesis (50,51).Most
previous researches have focused on a single cell or a single regulator

(51, 52), and thus a comprehensive understanding of the overall

infiltration characteristics of the immune microenvironment

mediated by the co-regulation of multiple m1A regulators is still
lacking. Lately, m6 A modification has been fully explored in the

tumor immune infiltration of OC (53). In this research, we

highlighted the effect of m1A modifications in TME cell infiltration

to enhance the knowledge of anti-tumor immune response and allow

for targeted immunotherapy regimens to be proposed.

In our research, on the basis of 10 m1A regulators, we identified
three different m1A modification patterns. Each of the three

modification patterns has a different TME immune cell infiltration

profile, where the ESTIMATE algorithm showed substantial innate

immunity andmatrix activation in both cluster-A and B. Combined

with immune cell infiltration profile, we observed that cluster-B

A B DC

FIGURE 9 | The 3D structure of the four small molecule drugs for OC. (A) resveratrol, (B) amodiaquine, (C) pyrvinium, and (D) pyridoxine.

A B

D E F

G

C

FIGURE 10 | Protein expression of 10 m1A regulators in the tumor and normal tissues in the HPA database. (A) ALKBH1 expression. (B) ALKBH3 expression.

(C) TRMT10C expression. (D) TRMT6 expression. (E) TRMT61B expression. (F) YTHDC1 expression. (G) YTHDF2 expression.
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corresponds to immune-inflamed phenotype, which contains many

CD4+ T cells accompanied by myeloid cells and monocytes

infiltration that activates an adaptive immune response. Cluster-A

corresponds to the immune-excluded phenotype. Although there is
also a large infiltration of immune cells within this tumor phenotype,

most immune cells are present in thematrix that surrounds the nests

of tumor cells, instead of penetrating the parenchyma. This limits

tumor entry for immune cells to exert their immune effects. The

characteristics of cluster-C correspond to an immune-desert

phenotype. The immune-desert phenotype is related to immune
tolerance and absence of T cell activation (47). By combining the

immune cell infiltration profiles of individual clusters, this confirms

the validity of the immunophenotypic categorization of the various

m1Amodification patterns. Thus, having thoroughly explored TME

cell infiltration profiles induced by different m1A modification

patterns, improves the future application of precision-focused,

personalized therapy against OC. Furthermore, in this research,
differences in the mRNA transcriptome between different m1A

modification patterns have been demonstrated to be markedly

linked to m1A and cellular matrix-related biological pathways.

These DEGs are considered to be m1A-associated signature genes.

In agreement with the clustering of m1A-modified phenotypes,

three genomic clusters were defined on the basis of DEGs that
were likewise associated with matrix and immune activation. This

reaffirms important role of m1A modifications in structuring

the diverse TME landscape. Hence, a comprehensive evaluation of

m1A modification patterns will strengthen our visibility into the

infiltration features of TME cells.

Given individual differences in m1A modification, a scoring

system was developed to precisely assess the pattern of m1A
modification in single OC patients, referred to as the m1Ascore.

m1Acluster B, characterized by an immune-inflamed phenotype,

showed the highest m1Ascore and the best prognostic outcome,

whereas the immune-desert phenotype, characterized bym1Acluster

Cwas the exact opposite. These results were also fully validated in the

m1A genomic clusters. This suggests that m1Ascore is a reliable
prognostic factor in OC and can be used to comprehensively assess

individual tumor m1A modification patterns.

ICTs, including anti-PD-1 and CTLA-4 therapies have

completely improved therapeutic and prognostic profile for a

variety of advanced cancers, including OC (54). Although the

survival of OC patients receiving immunotherapy has been

significantly improved, there are obvious individual differences
in the response of patients to immunotherapy. Therefore, finding

markers that predict the results of immunotherapy is of clinical

relevance. Earlier studies indicated that large CD8+ T cell

infiltration plus the presence of nonsynonymous mutations

propel the reaction to anti-PD-1 therapy. Furthermore, by

confirming the predictive worth of m1Ascore in two anti-PD-1
and anti-CTLA-4 immunotherapy cohorts, we discovered that

high m1Ascore patients were more likely to be treated with ICIs.

Thus, we prove that m1A modification patterns play a nontrivial
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FIGURE 11 | The mRNA expression of the 10 m1A regulators in tumor and normal samples. (A–J) The mRNA expression of (A) ALKBH1, (B) ALKBH3, (C) TRMT6,

(D) TRMT61A, (E) TRMT61B, (F) TRMT10C, (G) YTHDC1, (H) YTHDF1, (I) YTHDF2 and (J) YTHDF3. *P < 0.05; **P < 0.01; ns, not significant.
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part in molding distinct immune TME landscapes, meaning that

m1A modification influences ICI treatment efficacy.

Luckily, we have found several small molecule medicines, such

as resveratrol, amodiaquine, pyrvinium and pyridoxine, that can

improve ovarian cancer treatment outcomes. Among them,

resveratrol, as a natural polyphenolic organic compound, has
antioxidant, anti-inflammatory, anti-cancer and cardiovascular

protective functions. In a variety of tumor models, including

ovarian cancer and pancreatic cancer, resveratrol was proven to

be potent in controlling tumor cell proliferation and cancer

development. Nevertheless, resveratrol is impacted by several

factors during cancer treatment and further clinical studies are
needed to confirm its role (55, 56). Usually, amodiaquine is

applied to treat various types of malaria, acting in the intra-

erythrocytic phase, mainly controlling symptoms quickly and with

good tolerability (57). Currently, some studies have revealed that

amodiaquine has potential anticancer effects in some cancers and

has a wide range of applications (58, 59). Pyrvinium, as a
cyanamide dye-like compound, has a significant anti-pinworm

effect, interfering with the respiratory enzyme system of the worm

and inhibiting oxygen uptake. In clinical trials, pyrvinium

pamoate is considered to be an anthelmintic with anticancer

effects. It kills tumor cells and restrains cancer cell metastasis by

suppressing lipid anabolic metabolism (60, 61). Pyridoxine, also

known as vitamin B6, is an essential trace element for maintaining
the metabolic and regulatory processes of the body. Some studies

have proven that pyridoxine intake is negatively associated with

breast cancer risk, which means that pyridoxine has a potential

protective function on the risk of breast cancer (62, 63). The

above-mentioned agents have their own different effects in the

anti-tumor field. However, clinical trials are still needed to validate
the application of these drugs in OC patients.

Finally, we measured mRNA and protein expression levels of

m1A regulators in OC and normal samples. We found higher

protein and mRNA expression of TRMT6, TRMT10C and

YTHDF2 in tumor samples. TRMT61A, TRMT61B, YTHDF1

and YTHDF3 mRNAs were higher in tumor tissues, but protein

expression was weaker or not apparently distinct between tumor
and normal samples. ALKBH1 and ALKBH3 mRNAs were

higher in normal samples, but protein expression did not differ

markedly between tumor and normal samples. YTHDC1 protein

mRNA and mRNA expression were higher in normal tissues.

mRNA and protein expression were broadly in agreement with

TCGA and GEO databases.
However, our study also has some deficiencies. Our research

materials are all derived from databases, and the results are

obtained on the basis of bioinformatics. There is a lack of clinical

cohorts and prospective clinical trials to validate the correlation

between m1A modification and tumor immunity.
In clinical applications, m1Ascore can be applied to synthetically

assess the m1A methylation modification pattern and the

corresponding immune cell infiltration characteristics in
individual patients, so as to facilitate the determination of tumor

immunophenotypes and guide more effective clinical medications.

We also proved that m1Ascore can be used not only to assess the

clinicopathological characteristics of patients, including clinical

stage and tumor mutation burden, but also as an independent

prognostic biomarker. Furthermore, we validated that m1Ascore

predicts the effectiveness of adjuvant chemotherapy and the clinical

response of patients to anti-PD-1/CTLA-4 therapy. Thus, we herein

provide clinicians with new ideas for immuno-oncology and

individualized immunotherapy in OC.

CONCLUSION

In conclusion, this research investigated the regulatory role of m1A

methylation modifications in the immune microenvironment of

OC. m1A methylation modifications are one of the critical factors

contributing to the heterogeneity of individual tumor immune

infiltration. A thorough evaluation of m1Amodification patterns in

single OC patients may facilitates our comprehension of tumor
immune landscape and provide more efficacious therapeutic

approaches for OC patients.
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Supplementary Figure 1 | The workflow employed in the development of the

m1Ascore.

Supplementary Figure 2 | The mutation frequency of 10 m1A regulators in 436

patients with ovarian cancer. Each column represented individual patients. The

upper barplot showed TMB and the number on the right indicated the mutation

frequency in each regulator. The right barplot showed the proportion of each variant

type. The stacked barplot below showed fraction of conversions in each sample.

Supplementary Figure 3 | (A) Differential expression of the m1A methylation

regulators at the protein level. (B) Kaplan-Meier curves demonstrate the prognostic

relevance of m1A methylation regulator expression to OC patients.(A)

Supplementary Figure 4 | (A) Cumulative distribution function curves for

unsupervised clustering of 10 m1A regulators, k = 2-9. (B) Relative change in area

under the CDF curve for unsupervised clustering of 10 m1A regulators, k = 2-9.

(C) Heat map of the consensus matrix for the OC sample at k = 3. (D) Gene

Ontology (left) and Kyoto Encyclopedia of Genes and Genomes (right) enrichment

analyses of 527 m1A phenotype-related DEGs. (E) Cumulative distribution function

curves for unsupervised clustering of 527 m1A phenotype-related genes in OC

cohort, k = 2-9. (F) Relative change in area under the CDF curve for unsupervised

clustering of 527 m1A phenotype-associated genes, k = 2-9. (G) Heat map of the

consensus matrix for k = 3. (H) The box plot indicated difference in immune scores,

stromal scores and estimate score between low and high m1Ascore subgroup

Supplementary Figure 5 | (A) Volcano plot of differentially expressed genes

between high and low m1Ascore groups. (B) heatmap of differentially expressed

genes between high and low m1Ascore groups. (C) Kyoto Encyclopedia of Genes

and Genomes and (D) Gene Ontology enrichment analyses of differentially

expressed genes between groupings of high and low m1Ascore.
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