
  

Abstract—Optical neural networks offer radically new 

avenues for ultrafast, energy-efficient hardware for 

machine learning and artificial intelligence. Reservoir 

Computing (RC), given its high performance and cheap 

training has attracted considerable attention for photonic 

neural network implementations, principally based on 

semiconductor lasers (SLs). Among SLs, Vertical Cavity 

Surface Emitting Lasers (VCSELs) possess unique 

attributes, e.g. high speed, low power, rich dynamics, 

reduced cost, ease to integrate in array architectures, 

making them valuable candidates for future photonic 

neural networks. This work provides a comprehensive 

analysis of a telecom-wavelength GHz-rate VCSEL RC 

system, revealing the impact of key system parameters on 

its performance across different processing tasks. 

 
Index Terms—Optical computing, Vertical cavity surface 

emitting lasers, Neural networks. 

I. INTRODUCTION 

hotonic implementations of artificial neural networks 

(ANN) are receiving increasing research interest thanks to 

the advantages (e.g. high modulation rates, low power 

consumption, and unique architectures) offered by photonic 

hardware technologies [1]–[3]. Among those, Reservoir 

Computing (RC) is attracting growing attention, as it relies on 

simple and fast learning methods as it only requires the training 

of the output layer weights, hence substantially reducing 

computing time and hardware requirements [4]. RC employs a 

reservoir where the nodes are randomly interconnected along 

with self-connections. This creates intrinsic memory inside the 

ANN, an especially helpful feature in complex data prediction 

tasks [5], [6]. Furthermore, RC systems can be built with 

incredibly simplified photonic hardware using a single 

nonlinear element and a delay line [7]. Called a Time Delay 

Reservoir (TDR), this concept has been highly useful to 

develop photonic ANNs based on different devices [8]–[10]. 

Amongst these, Semiconductor Lasers (SLs) have shown to be 

excellent candidates for photonic TDRs due to their GHz speed 

and highly complex dynamics, demonstrating successful 

ultrafast operation across multiple processing tasks [5], [11]. 

Vertical Cavity Surface Emitting Lasers (VCSELs) are 
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particularly attractive for photonic RC systems due to their 

technological maturity, reduced cost, low energy operation, 

ease of integration in 2D/3D architectures, unique polarization 

properties, and for their extraordinary potential bandwidth that 

could rise the processing rate to THz [12], [13]. It is only very 

recently the first reports have emerged outlining enhanced 

performance in VCSEL-based RC systems [14], [15]. In order 

to enable future photonic ANN hardware for use in real-world 

systems, key work is required to determine their computational 

performance and the conditions for optimal operation. 

 This work focuses on this significant challenge reporting a 

comprehensive experimental analysis of the capabilities of a 

RC ANN system based on a commercially available 1550 nm-

VCSEL and off-the-shelf fibre-optic components. We 

investigate its computational performance across different 

processing tasks, its dependence on critical system parameters 

and determine the conditions for optimal operation. This work 

thus provides crucial knowledge to inform future developments 

in VCSEL RC systems for photonic ANN hardware yielding 

ultrafast and low-energy operation for machine learning and 

Artificial Intelligence (AI) functionalities and fully compatible 

with optical communications and data center technologies. 

II. DELAY-BASED RESERVOIR COMPUTING 

Whereas in a traditional RC system the reservoir is a 

randomly connected network of nonlinear nodes, in a TDR the 

nodes are unidirectionally arranged in a circle. This is achieved 

by using a delay line of time τ and a fast modulated input [7]. 

The nodes in a TDR are virtual, obtained by interpreting the 

output of the delay system over different time segments of 

length θ as different consecutive nodes. The value of θ is 

typically chosen smaller than the characteristic time scale of the 

nonlinearity to ensure the coupling of each node to the previous 

ones, therefore creating the network connectivity [7]. We 

choose τ to be a multiple of θ, therefore, the number of nodes 

in the network can be calculated as 𝑁 = 𝜏/𝜃. The information 

to be processed is a sequence of data inputs, each one injected 

over a time equal to τ so it can be mapped into N virtual nodes. 

In order to create the injected signal 𝐼(𝑡), a temporal mask, 

made of a sequence of 𝑁 random values uniformly distributed 

between 0 and 1 (where each value is held over a time equal to 

θ as in a piece wise function) is multiplied to each data input to 
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create transient responses at every node. 

The output layer computes the output of the RC system based 

on the state of the reservoir. The weights in this layer, referred 

as output weights, are the only weights in a RC system that are 

optimized and calculated digitally offline via a supervised 

learning algorithm. To calculate the output weights, we first 

average the detected signal over bins of time width equal to θ 

to obtain the state of the individual nodes to build the averaged 

response signal (𝑥𝑡𝑟𝑎𝑖𝑛) matrix. Then, we split the data samples 

for training and testing, and use the training section of 𝑥𝑡𝑟𝑎𝑖𝑛 

alongside the labels of the data samples (𝑦𝑡𝑟𝑎𝑖𝑛) vector in Eq. 1 

to calculate the output weights (𝜔𝑜𝑢𝑡) vector using the Moore-

Penrose pseudoinversion matrix operation denoted by ⁺. This 

training phase yields the output weights, given by Eq. 1. 

𝜔𝑜𝑢𝑡 = 𝑦𝑡𝑟𝑎𝑖𝑛  (𝑥𝑡𝑟𝑎𝑖𝑛)+ (1) 

Once the output weights are calculated, we evaluate their 

performance using the testing section of the response signal to 

calculate the reservoir output. This is compared with the labels 

of the testing section to calculate the performance metric. 

III. EXPERIMENTAL SETUP 

The experimental setup of the VCSEL-based RC is depicted 

in Fig. 1. It consists of off-the-shelf fibre-optic telecom 

components, including a VCSEL emitting at 1551 nm with a 

lasing threshold current of 1.75 mA at 293K. The VCSEL’s 

spectrum showed two orthogonally polarised modes, the main 

lasing (parallel-polarised) mode and a subsidiary attenuated 

(orthogonally-polarised) mode. These were separated by 0.11 

nm (14.5 GHz) and corresponded to the two orthogonal 

polarizations of the fundamental transverse mode of the device. 

No polarization switching was observed for any applied bias 

current above the VCSEL’s lasing threshold. The device is 

subject to delayed optical feedback using an optical circulator. 

The delay feedback time was measured to be 65.0 ns; hence by 

injecting one sample every delay time this system currently 

processes information at a rate of ~15 MHz. A Variable Optical 

Attenuator (VOA1) and a Polarization Controller (PC1) are 

used to control the intensity and polarization (parallel or 

orthogonally-polarised) of the optical feedback, respectively. 

Under minimum feedback attenuation (maximized feedback 

strength) 16% of the light intensity was redirected into the 

VCSEL. A tunable laser provides CW light (with 25 dB 

polarization extinction ratio) and the signal I(t) is encoded by 

modulating its intensity with a Mach-Zehnder modulator using 

a 5 GHz bandwidth Arbitrary Waveform Generator (AWG) at 

5 GSa/s. This modulation rate leads to θ=200 ps and to N=325 

nodes. A second VOA (VOA2) and PC (PC2) control the 

intensity and polarization (parallel or orthogonal) of the 

VCSEL’s injected light via an Optical Coupler (OC2). The light 

sent for detection, extracted using OC1, is amplified optically 

and electrically, using an Optical Amplifier (OA) and an 

Electrical Amplifier (EA) respectively, to improve the Signal to 

Noise Ratio (SNR) before it is recorded with an 8 GHz and 20 

GSa/s real time oscilloscope. 

IV. METHODS FOR PERFORMANCE EVALUATION 

To evaluate the performance, we use a prediction task, a 

classification task, and a memory evaluation. In all methods we 

used 10000 data inputs randomly divided 80% for training and 

20% for testing, and cross-validated using 5 folds. 

A. The Mackey-Glass prediction task 

In this task the TDR has to predict the next value in a chaotic 

time series originating from a Mackey-Glass delay equation [4], 

[16]. We integrated the Mackey-Glass equation with an 

integration step of 0.17, and down-sampled to 33 samples per 

period to obtain the inputs. Performance is assessed calculating 

the Normalized Mean Square Error (NMSE) with Eq. 2, where 

�̅�𝑖 and 𝑦𝑖  are the predicted and the original time traces, 𝑛𝑠 is the 

number of samples, and 𝜎𝑦
2 is the variance of 𝑦𝑖 . 

𝑁𝑀𝑆𝐸 =  
∑ (�̅�𝑖 −  𝑦𝑖)2𝑁

𝑖=1

𝑛𝑠 𝜎𝑦
2

 (2) 
 

B. The nonlinear channel equalization task 

 The goal in this classification task is to recover a 4 amplitude 

level signal as inputs that has underwent mixing of neighboring 

information sections, a nonlinear amplitude distortion, and 

noise [17]. We used a noise strength corresponding to SNR=24 

dB. The performance is evaluated by calculating the Symbol 

Error Rate (SER), as the ratio of symbols incorrectly classified. 

C. Memory evaluation 

To evaluate the memory properties of the VCSEL RC 

system we calculate its linear memory correlation. To do this, 

we inject as inputs a stream of pseudo-random numbers y(k) 

uniformly distributed between 0 and 1 into the reservoir. We 

train the reservoir to retrieve the number �̅�𝑖 (k) which was 

introduced i time steps before. We then calculate the correlation 

𝑚𝑖 for a memory depth i between the original time trace and the 

reconstructed one as described in Eq. 3. This correlation value 

measures how well the reservoir can hold and retrieve 

information that was injected a certain amount of time before.  

𝑚𝑖 = 𝑐𝑜𝑟𝑟(�̅�𝑖(𝑘), 𝑦(𝑘 − 𝑖)) (3) 

V. EXPERIMENTAL RESULTS 

A. Performance evaluation on injected power and current 

First, we show the performance dependence for the 

prediction task. We analyse in Fig. 2 the effect of the average 

optical injected power (�̅�𝑖𝑛𝑗). We provide results for two 

different polarization configurations of the optical feedback and 
 

Figure 1. Diagram of the experimental setup. 

 



injection. We define the PAR (ROT) polarization configuration 

as where the polarization of the optical feedback and injection 

signals are parallel (orthogonal) with respect to the polarization 

of the VCSEL’s dominant mode. Experimental results are 

measured for different VCSEL bias currents relative to the 

measured lasing threshold current in each case (𝐼𝑟 = 𝐼/𝐼𝑡ℎ,𝑓𝑏) as 

reported in Fig. 2. In all cases the optical input power was 

monotonically increased, and the frequency detuning (defined 

as the optical frequency difference between the injection and 

the VCSEL’s dominant mode) was set to ∆ν = -4 GHz. For 

comparison, the grey dashed line included in Fig. 2 indicates 

the performance of a memoryless linear reservoir in this 

prediction processing task, calculated by applying the same 

learning procedure on the injected signal. The results in Fig. 2 

show that the NMSE reduces as �̅�𝑖𝑛𝑗 increases until it reaches a 

low error level. The minimum NMSE for the ROT and PAR 

polarisation configurations were equal to NMSE = 0.012 with 

the PAR configuration providing lower overall errors for a 

broader parameter range. Furthermore, we observe that lower 

NMSE are attained with bias currents close to the lasing 

threshold. Also, lower applied bias currents can achieve similar 

performance than higher current values yet with lower input 

power requirements.  

Fig. 3 shows the performance of our VCSEL RC system on 

the classification task (under the same conditions as in Fig. 2). 

Fig. 3 shows that lower error values are obtained for bias 

currents closer to the device’s lasing threshold. In our set 

parameter space, minima SER values equal to 0.028 and 0.032 

were measured for the PAR and ROT configurations; hence 

revealing a slightly better experimental performance for the 

PAR configuration for the VCSEL RC system of this work. 

B. Performance dependence on frequency detuning 

Fig. 4 shows the impact of the frequency detuning on the 

performance of the prediction and classification tasks for the 

two different polarization configurations (with all other 

parameters fixed). For these experiments we kept �̅�𝑖𝑛𝑗 = 0.5 

mW and a bias current to the VCSEL at 1.10 · 𝐼𝑡ℎ,𝑓𝑏. The 

performance on both tasks reveals a region of low prediction 

errors achieved around ∆𝜈 = 0 GHz, for both the PAR and ROT 

polarization configurations. VCSELs can undergo injection 

locking and diverse nonlinear dynamics (e.g. period  1, period 

2, chaos) when subject to external polarised optical injection 

[18], [19]. For all cases analysed in this work, the regions where 

lower error is obtained coincide with the parameter range where 

the VCSEL is injection-locked to the external signal. In this 

region, the optical spectrum measured at the systems’ output 

reveals that the VCSEL’s emission shifts to the wavelength of 

the external signal (to which is locked). Errors increase for 

larger absolute detuning values for which the VCSEL unlocks 

to the optical input signal. The VCSEL RC system successfully 

performs both tasks with similar low error values. On the 

prediction task, the PAR configuration exhibits lower overall 

error (minimum NMSE of 0.010) than the ROT configuration 

(minimum NMSE of 0.019). On the classification task, the 

lowest measured SER values for the PAR (SER=0.036) and 

ROT (SER=0.044) polarization configurations are very similar, 

indicating again that the set polarization does not strongly 

impact overall system’s performance. Interestingly, the 

performance on either task changes slightly with ∆ν as long as 

the VCSEL is injection-locked to the external signal. 

C. Memory results 

The memory properties of the VCSEL RC system are shown 

in Fig. 5. We note the presence of a high memory correlation 

for depths 6, 7, and 13. Whilst this effect can be seen in the 

detected signal, this memory does not originate from the 

inherent dynamics of the VCSEL. We believe this additional 

memory is introduced by other elements in the setup (e.g. the 

Mach-Zehnder modulator), or detected from reflected light 

from the VCSEL. Regardless, we observe the memory 

correlations have non-zero values and show a continuous 

profile, characteristic of SLs [5], from memory depth 0 to 8 or 

10 with a decaying profile as depth increases. This type of 

profile can be clearly observed for the PAR configuration in the 

 
Figure 4. Performance on the prediction (Pred.) and classification (Clas.) tasks 

for the PAR and ROT configurations as a function of the frequency detuning 

(∆𝜈) for �̅�𝑖𝑛𝑗=0.5 mW and 𝐼𝑟=1.10. 

 

 
 

 
Figure 3. Performance on the classification task as a function of the average 

optical injected power for the PAR and ROT configurations. Results are 

presented for different bias currents and a frequency detuning of ∆ν = -4 GHz. 

 

Figure 2. Performance on the prediction task as a function of the average 

optical injected power for the PAR and ROT configurations and different bias 

currents (frequency detuning of ∆𝜈 = -4 GHz). 

 
 



top plot of Fig. 5 for �̅�𝑖𝑛𝑗 around 0.13 mW. The bottom plot in 

Fig. 5 also exhibits this profile, albeit weaker, for �̅�𝑖𝑛𝑗 around 

0.25 mW. If the average optical injected power is further 

increased the memory decreases and collapses. This profile is 

explained by the VCSEL’s injection locking dynamics, where 

high memory correlation values are found as the VCSEL 

transitions from an unlocked dynamical state to an injection-

locked state [5], [14], [15]. We hypothesize that as the 

VCSEL’s suppressed orthogonally-polarized mode is 

noticeably weaker than the dominant parallel polarized mode, 

using the ROT polarization configuration requires stronger 

injection locking conditions to obtain similar memory 

properties. 

VI. CONCLUSION 

We report a comprehensive analysis of the performance of a 

photonic RC system based on an off-the-shelf 1550nm-VCSEL 

on different processing tasks. Very low error values are 

achieved for low bias currents and very low optical injected 

power across a broad parameter range, showing parameter 

resilience for two different polarization configurations. Our 

results indicate slightly improved performance for the PAR 

configuration than for the ROT. We hypothesize that the 

frequency difference and gain asymmetry of the polarization 

modes supported by the VCSEL of this work yield experimental 

conditions favoring the PAR configuration. Tailored VCSELs 

with engineered optical frequency and gain distributions could 

improve the ROT configuration’s outcome. The lowest error in 

our system for the studied tasks (NMSE=0.010; SER=0.028) 

are comparable to those reported in other time-delayed photonic 

RC systems based on edge-emitting lasers [5] (NMSE=0.019) 

and VCSELs [15] (SER=0.015). Encouragingly, slightly 

reduced error (NMSE=0.010) for the Mackey-Glass prediction 

task is observed in our VCSEL system when compared to those 

reported for an edge-emitting laser RC system. It is worth 

noting that our setup exhibited a SNR between 5 and 10 dB 

depending on the injected power, which is lower than in recent 

works due to the different experimental conditions, and that the 

system’s performance is currently limited by experimental 

factors such as noise, which create the flat error profiles in our 

findings. Noise impacts negatively on performance and 

memory, thus further improving noise conditions is crucial to 

demonstrate full and new functionalities with VCSEL RC 

systems. Despite these limitations, the VCSEL RC system of 

this work, built with off-the-shelf fibre-optic telecom 

components, delivers excellent processing capabilities and 

improved performance. This work comprehensively analyzing 

the effect of key physical parameters on the VCSEL RC 

system’s computational performance and memory operation, 

opens the door towards future VCSEL-based photonic 

hardware for machine learning and AI functionalities. 
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Figure 5. Memory correlation dependence on �̅�𝑖𝑛𝑗 for the VCSEL-based RC 

system for 𝐼𝑟 = 1.10 and ∆𝜈 = -4 GHz. Results are presented for the PAR (top) 

and the ROT (bottom) polarization configurations, sharing x-axis. 

 
 


