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Novel antibiotics are urgently needed to address the looming global crisis of antibiotic

resistance. Historically, the primary source of clinically used antibiotics has been microbial

secondary metabolism. Microbial genome sequencing has revealed a plethora of unchar-

acterized natural antibiotics that remain to be discovered. However, the isolation of these

molecules is hindered by the challenge of linking sequence information to the chemical

structures of the encoded molecules. Here, we present PRISM 4, a comprehensive platform

for prediction of the chemical structures of genomically encoded antibiotics, including all

classes of bacterial antibiotics currently in clinical use. The accuracy of chemical structure

prediction enables the development of machine-learning methods to predict the likely bio-

logical activity of encoded molecules. We apply PRISM 4 to chart secondary metabolite

biosynthesis in a collection of over 10,000 bacterial genomes from both cultured isolates and

metagenomic datasets, revealing thousands of encoded antibiotics. PRISM 4 is freely avail-

able as an interactive web application at http://prism.adapsyn.com.
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T
he overwhelming majority of antibiotics currently in clin-
ical use are derived from naturally occurring small mole-
cules produced by microbes1. The biosynthetic pathways

responsible for the production of these molecules have been
honed over long evolutionary time scales in order to provide
microbes with competitive advantages in their natural environ-
ments2. These pathways are encoded within the genomes of the
producing organisms, and comparative genomics studies have
suggested a wealth of novel antibiotics encoded in the genomes of
both culturable and unculturable organisms that remain to be
discovered3–5. Directed discovery of these unknown antibiotics,
guided by genome sequencing data, could provide a means to
address the growing clinical need for new antibiotics to combat
drug-resistant pathogens6.

With the amount of microbial genome sequence information
deposited in public databases continuing to increase at an expo-
nential rate (Supplementary Fig. 1), methods to leverage this data
towards antibiotic discovery are urgently needed. However,
whereas a plethora of methods are available to identify the
genomic loci responsible for natural antibiotic biosynthesis7–9,
few tools exist to link these loci to the specific chemical structures
of their encoded products. The challenges inherent to the latter
task far exceed those involved in genome annotation: nature
employs a dizzying array of enzymatic catalysts to construct
structurally complex molecules from simple building blocks.
Moreover, these catalysts are arranged in multi-gene clusters that
can be categorized into dozens of distinct families. Existing tools
can generate predictions of genomically encoded natural anti-
biotic structures from small regions of this vast biosynthetic
space7,10, but a comprehensive platform is lacking.

We previously described PRISM, a genome analysis toolkit and
web application to predict the complete chemical structures of
genomically encoded nonribosomal peptides and polyketides11.
However, despite subsequent extension to families such as ribo-
somally encoded and posttranslationally modified peptides
(RiPPs)12, PRISM’s coverage of industrially important chemical
space remained incomplete. Here, we present PRISM 4, which
enables genome-guided chemical structure prediction for every
class of bacterial natural antibiotics currently in clinical use,
including aminoglycosides, nucleosides, β-lactams, alkaloids, and
lincosamides among other classes of metabolites. Moreover,
PRISM 4 achieves a dramatic increase in coverage of enzymatic
tailoring reactions encoded within canonical thiotemplated
pathways (Fig. 1 and “Methods”). PRISM achieves accurate
structure prediction by connecting biosynthetic genes to the
enzymatic reactions they catalyze, permitting the in silico
reconstruction of complete biosynthetic pathways (Supplemen-
tary Figs. 2 and 3) as well as their final products (Fig. 1a, b). In
total, PRISM 4 includes 1772 hidden Markov models (HMMs)
and implements 618 in silico tailoring reactions in order to
predict the chemical structures of 16 different classes of secondary
metabolites, making it a comprehensive resource to link microbial
genome sequence information to the natural antibiotics encoded
within (Fig. 1c, Supplementary Table 1, and Supplementary
Data 1).

Results
PRISM 4 generates accurate structure predictions for known
BGCs. To evaluate the accuracy of PRISM 4, we assembled a
comprehensive set of 1281 biosynthetic gene clusters (BGCs) with
known products from public databases and extensive literature
curation, subject to multiple rounds of manual review by a team
of natural products chemists to correct errors in chemical
structures or the boundaries of deposited nucleotide sequences
(Methods). PRISM 4 detected 1230 of these reference BGCs

(96%), representing an increase of 40% over the original PRISM
release, as well as a slight increase in sensitivity over antiSMASH
5, which detected 1212 (Fig. 2a). Moreover, PRISM 4 generated at
least one predicted chemical structure for 1157 of the 1230
detected BGCs (94%), an increase of at least 54% over anti-
SMASH 5 or NP.searcher, which predicted structures for 753 and
398 BGCs, respectively (Fig. 2b). To quantify the similarity of
predicted structures to the true cluster products, we calculated the
Tanimoto coefficient13 (Tc) between real and predicted structures
from each cluster, a measure of chemical similarity that reflects
the fraction of substructures shared between the two molecules,
and compared these to predicted and true structures from ran-
dom BGCs pairs (Methods). Using this metric, we found PRISM
4 achieved statistically significant predictive accuracy across a
wide range of secondary metabolite classes (Fig. 2e). For the
subset of 385 BGCs with structure predictions generated by all
four programs, we compared the Tc between true products and
predicted structures from PRISM 4, antiSMASH 5, and NP.
searcher, finding that PRISM 4 was significantly more accurate in
both comparisons (both p < 10–15, paired Brunner–Munzel test;
Fig. 2c and Supplementary Data 2); pairwise comparisons were
likewise highly significant (n= 398 and 753, respectively, both
p < 10–15; Supplementary Fig. 4). We additionally quantified the
accuracy of structure predictions based on the functional groups
they contained14. Using the Jensen-Shannon divergence to
compare the distributions of functional groups found in true and
predicted structures, we observed that the functional group
content of PRISM 4 predicted structures was significantly more
similar to that of true products than that of structures predicted
by antiSMASH 5 or NP.searcher (bootstrap p < 0.001; Fig. 2d).

In some cases, the precise substrate of the reaction catalyzed by
a given enzyme is not unambiguously predictable from protein
sequence alone: for instance, a halogenase may catalyze
chlorination at a number of different sites within a molecule.
For this reason, PRISM considers all possible sites of each
tailoring reaction, and combinations thereof, when generating
predicted structures. To validate this strategy, we compared the
median and maximum Tc between predicted and true structures
for each cluster, finding the maximum Tc to be significantly
greater (p < 10–15; Fig. 2e and Supplementary Fig. 5). We also
quantified the size of the combinatorial search space for each
family of metabolites (Supplementary Fig. 6), finding that the
majority of classes could usually be predicted within a dozen or
fewer combinatorial plans, but a subset of families were associated
with a greater degree of structural uncertainty (most notably
aminoglycosides, in which the configurations of the glycosidic
bonds cannot be predicted from primary sequence).

PRISM 4 predicts natural product-like products for cryptic
BGCs. To gain a broader perspective on PRISM 4’s ability to
predict encoded metabolite structures from genome sequence, we
used PRISM 4 to analyze secondary metabolism in a collection of
3,759 dereplicated complete bacterial genomes15. For this com-
parison, we focused on PRISM and antiSMASH, as platforms
designed to analyze BGCs from a wide range of biosynthetic
families. Among 22,446 identified clusters, PRISM 4 generated at
least one predicted structure for 7404, a significantly greater
proportion than antiSMASH 5 (p < 10–15, χ2 test), with 3184
clusters having structures predicted only by PRISM 4, compared
to 500 only by antiSMASH 5 (Fig. 3 and Supplementary Data 3a).
Notably, PRISM 4 predicted hundreds of complete chemical
structures for families of metabolites such as β-lactams, alkaloids,
phosphonates, cyclodipeptides, bisindoles, and aminoglycosides,
for which antiSMASH 5 predicted only a handful of structures, or
none at all (Fig. 3a). PRISM 4 also generated the majority of
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structure predictions for several bacterial phyla whose biosynthetic
capacity has historically not been widely appreciated, such as
Desulfobacterota, Spirochaetota, or Campylobacterota (Fig. 3b).
Given that phylogenetically distinct organisms are more likely to
produce novel products4,16, this finding suggests PRISM 4 may
have particular utility for genome mining of molecules with scaf-
folds or activities that diverge from those present in well-studied
organisms.

Because the true structures of the metabolites encoded by these
loci are not known, we were unable to directly assess the accuracy
of structure prediction. Instead, we asked whether predicted
structures had structural features characteristic of known natural
products17. Previous studies have found that a relatively small
proportion of natural products are within the chemical space
defined by Lipinski’s “rule of five,” a set of guidelines developed to
facilitate the design of orally bioavailable drugs18,19. Relative to
structures predicted by antiSMASH 5, a lower proportion of
PRISM 4 predictions were within Lipinski’s rule of five space20

(χ2 test, p < 10–15; Fig. 3c), having greater molecular weights
(paired Brunner–Munzel test, p < 10–15; Fig. 3d), more hydrogen
bond donors and acceptors (p < 10–15; Supplementary Fig. 7a, b),
and greater octanol-water partition coefficients (p < 10–15;
Supplementary Fig. 7c). PRISM 4 predictions were also more
structurally complex, as quantified using the Bertz topological
complexity index21 (p < 10–15; Fig. 3e), a measure of molecular
complexity that incorporates both the complexity of the bonding
and the distribution of heteroatoms. Moreover, PRISM 4
predictions were also more structurally diverse, as quantified by
the median intra-set Tc (p < 10–15; Fig. 3f). Finally, PRISM 4

predictions displayed a greater degree of structural similarity to
known natural products, as quantified either by their median Tc
to the set of known natural products in Natural Products Atlas
(p < 10–15; Fig. 3g), or by their ‘natural product-likeness’ score22

(p < 10–15; Supplementary Fig. 7d). Taken together, these results
indicate PRISM generates complex, diverse, and natural product-
like chemical structure predictions from large genomic datasets.

To evaluate the BGC detection functionality of PRISM and
antiSMASH, we carried out a blinded review of 200 randomly
sampled clusters detected only by one of the two methods.
Manual annotation suggested up to 55% of antiSMASH-only
BGCs represented false positives (FPs), compared to up to 37% of
PRISM-only BGCs (p= 0.016, χ2 test; Supplementary Fig. 8).
Among antiSMASH-only BGCs, recurrent categories of FPs
included minimal fatty acid synthases, DUF692-associated
bacteriocins, putative phosphonate BGCs associated with cell
wall biosynthesis machinery, and isolated prenyltransferases
classified as terpene BGCs. It should be noted that a trade-off
between specificity and sensitivity is inherent to any prediction
task, and the higher rate of FPs for antiSMASH also expectantly
affords it a greater ability to detect—though not to predict
structures for—novel or divergent BGC types.

PRISM 4 enables chemical structure prediction from metage-
nomic data. Rapid progress in metagenomic sequencing tech-
nologies, accompanied by rapid advances in computational
approaches for genome assembly from metagenomic data23, has
revealed a wealth of undiscovered antibiotics within uncultured
organisms3. We used PRISM 4 to analyze secondary metabolism

Fig. 1 A comprehensive platform for genome-guided prediction of secondary metabolite chemical structures. a Schematic overview of PRISM 4.

Microbial genome sequences are annotated using a library of 1,772 HMMs, and secondary metabolite BGCs are identified using a rule-based approach.

Combinatorial, graph-based chemical structure prediction is effected using a library of 618 virtual tailoring reactions. b Total number of HMMs, virtual

tailoring reactions, substrates, and sugars incorporated in PRISM 4. c Examples of predicted chemical structures generated by PRISM 4 for newly added

families of secondary metabolites. Source data are provided as a Source Data file.
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in a collection of 6,362 dereplicated metagenome-assembled
genomes (MAGs)15,23. PRISM 4 generated predicted structures
for 2630 of 10,814 clusters, representing the vast majority of
structure predictions for this collection of genomes (~96%), and
significantly more than antiSMASH 5 (p < 10–15, χ2 test; Sup-
plementary Fig. 9a, b and Supplementary Data 3b). In addition to
well-studied classes of metabolites, notably those originating from
thiotemplated assembly lines (nonribosomal peptides and poly-
ketides) as well as ribosomally synthesized and posttranslationally
modified peptides (RiPPs), we found biosynthesis of
phosphonate-containing natural products to be surprisingly
common among uncultured organisms (Supplementary Fig. 9a).
PRISM 4 metagenomic structure predictions also possessed
structural features characteristic of known natural products,
including a lower proportion in rule-of-five space, larger mole-
cular weights, greater topological complexity, increased internal
diversity, and greater similarity to known natural product struc-
tures than a matched set of structure predictions from anti-
SMASH 5 (Supplementary Fig. 9c–g). Collectively, these results
reinforce the notion that a wealth of biologically active metabo-
lites are encoded within the genomes of uncultured organisms,
and highlight the value of PRISM 4 for interrogation of antibiotic
biosynthesis in large metagenomic datasets.

Quantitative structure-activity relationships of cryptic mole-
cules. Taken together, these analyses indicate PRISM 4 generates
realistic structure predictions from the genomes of diverse cul-
tured and uncultured organisms, with a high degree of chemical
similarity to true products in the case of known BGCs, and

structural features characteristic of known secondary metabolites
in the case of cryptic BGCs discovered by genome mining. We
therefore asked whether these high-quality predicted structures
could be leveraged to address another key challenge in genome-
guided discovery of natural antibiotics: namely, prioritizing par-
ticular BGCs or producing organisms with the greatest likelihood
of producing biologically active metabolites for targeted dis-
covery. We undertook an extensive literature review to system-
atically curate bioactivity data for the 1281 BGCs in the
gold standard set, and trained support vector machines (SVMs) to
predict the probability that a given BGC produces a compound
with antibacterial, antifungal, antiviral, antitumor, or immuno-
modulatory activity, using tenfold cross-validation to evaluate
model accuracy. To evaluate the performance of these models,
we calculated the area under the receiver operating characteristic
curve (AUC), and compared the observed AUCs to those
expected from random predictors24. In all cases, these
models yielded significantly more accurate predictions of biolo-
gical activity than random expectation (all p < 10–15, Wilcoxon
rank-sum test; Fig. 4a). Furthermore, classifiers trained on the
chemical fingerprints of PRISM predicted structures were sig-
nificantly more accurate than classifiers trained on Pfam
domains, with a mean increase of 7.5% in the AUC (p < 10–15,
Fisher integration of DeLong tests; Fig. 4a). This increase in
performance supports the notion that chemical structure pre-
diction is essential to high-accuracy prediction of the biological
activity of genetically encoded metabolites. We refer to this
approach as quantitative predicted structure-activity relationship
modeling, or QPSAR.

Fig. 2 PRISM 4 generates highly accurate chemical structure predictions. a Number of BGCs within a manually curated gold standard set (n= 1,281;

dotted line) identified by PRISM 4, antiSMASH 5, and NP.searcher. b Number of BGCs within the gold standard set with at least one structure predicted by

each program. c Median Tanimoto coefficient between true and predicted structures for the subset of gold standard BGCs with at least one predicted

structure generated by all four programs (n= 385). d Jensen–Shannon divergence between functional group content of true and predicted structures for

each program. Errors bars show standard deviation of bootstrap resampling. e Median and maximum Tanimoto coefficients between true and predicted

structures generated by PRISM 4 for the gold standard set, by biosynthetic family, and compared to the median Tanimoto coefficient between predicted

structures and non-matched BGCs (“random pairs”). Top, statistical significance of the comparison between median and random Tanimoto coefficients

(***p < 0.001; **p < 0.01; *p < 0.05, two-sided t-test). Bottom, number of BGCs from each family in the gold standard set (n). Box plots show median

(horizontal line), interquartile range (hinges), and the smallest and largest values no more than 1.5 times the interquartile range (whiskers) throughout.

Source data are provided as a Source Data file.
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We next used the trained QPSAR models to systematically
discover biosynthetic loci responsible for the production of
bioactive metabolites within the complete collection of over
10,000 complete or metagenome-assembled bacterial genomes. At
a false discovery rate of 10%, PRISM 4 identified 1589 BGCs
producing antibacterial compounds, 331 antiviral BGCs, 289
immunomodulatory BGCs, 272 antifungal BGCs, and 248
antitumor BGCs, in addition to a further 1055 BGCs with more
than predicted biological activity (Fig. 4b). To obtain a global
overview of the chemical diversity within this dataset, we applied
the non-linear dimensionality reduction technique UMAP (uni-
form manifold approximation and projection)25 to the chemical
fingerprints of PRISM predicted structures. Unlike some other
non-linear dimensionality reduction methods, UMAP approxi-
mately preserves global structure, meaning points that are close in
the low-dimensional space are also close in the high-dimensional
space, and vice-versa. This visualization of the complete predicted
chemical space revealed substantial chemical diversity within each
bioactivity class (Fig. 4c). Notably, predicted structures from
complete and MAGs were evenly distributed across the manifold
(Fig. 4d), suggesting that potential differences in the quality or
completeness of MAGs26 do not necessarily preclude realistic
structure prediction. We also asked whether the MAGs, recovered
predominantly from environmental and non-human gastroin-
testinal samples23, were enriched or depleted for the production
of metabolites with specific biological activities, relative to the set
of complete genomes. Intriguingly, this comparison revealed a
marked enrichment for biosynthesis of immunomodulatory
agents within the latter set (χ2 test, p= 3.7 × 10–8; Fig. 4e),
suggesting a particularly underappreciated diversity of this class
of metabolites beyond well-studied microbes. Collectively, these
results highlight the importance of chemical structure prediction
in deriving accurate models of biological activity for cryptic
biosynthetic loci, and provide a roadmap for targeted discovery of
thousands of antibiotic, antitumor, and immunomodulatory
compounds encoded within sequenced bacterial genomes.

Discussion
Early microbial genome sequencing projects revealed dozens of
cryptic biosynthetic loci within the genomes of well-studied,
industrially important microorganisms, spurring predictions that
genome mining would usher in a second ‘golden age’ of antibiotic
discovery. Yet, despite notable successes, the impact of genomics
on natural antibiotic discovery has been considerably more
modest than originally anticipated. Although it is now straight-
forward to identify clusters of genes responsible for secondary
metabolite biosynthesis, translating between genome sequence
and the complete chemical structures of the natural antibiotics
encoded therein represents a key challenge, and one that has
taken on an increasing importance in an era of growing global
antibiotic resistance. PRISM 4 represents the most comprehensive
effort to address this challenge to date. Our analyses of the natural
molecules encoded within thousands of sequenced genomes
uncover a vast undiscovered landscape of evolved chemistry. We
show that these predicted chemical structures can further be
leveraged to develop accurate models of biological activity, which
we use to identify thousands of antibiotic, antitumor, and
immunomodulatory agents. We make this resource freely avail-
able to spur discovery at http://prism.adapsyn.com.

Some limitations should be noted. In developing PRISM 4, we
set out to codify an enormous corpus of knowledge, accumulated
over decades of research in biosynthesis and enzymology, into an
algorithmically tractable form. An inevitable consequence of this
approach is that PRISM relies on homology between newly
detected proteins and known enzymatic machinery in order to
reveal BGCs and predict the structures of their genetically
encoded products. For this reason, PRISM can neither identify
BGCs from undescribed families, nor predict novel enzymatic
activities. More generally, current models of secondary metabolite
biosynthesis are incomplete, which places an inherent limit on the
accuracy of structure prediction; we have sought to address this
by revising the systems used for BGC detection and structure
prediction as additional information has become available.

Fig. 3 PRISM 4 reveals secondary metabolite biosynthesis in 3,759 complete bacterial genomes. a, b Number of BGCs with at least one chemical

structure predicted by PRISM 4, antiSMASH 5, or both methods in a collection of 3,759 dereplicated complete bacterial genomes, by biosynthetic family

(a) and phylum of producing organisms (b), as classified in the Genome Taxonomy Database (GTDB)15. c–g Structural features of n= 4220 pairs of

predicted secondary metabolites from BGCs with products predicted by both PRISM 4 and antiSMASH 5. c Percent of predicted structures in Lipinski rule

of five space20. Error bars show the standard error of the sample proportion. d Molecular weight of predicted structures. e Bertz topological complexity

index21 of predicted structures. f Internal diversity of predicted structures, as quantified by median Tanimoto coefficient to all other predicted structures in

the set. g Similarity of predicted structures to known natural products, as quantified by the median Tanimoto coefficient to the set of known natural

products in the Natural Products Atlas. Box plots show median (horizontal line), interquartile range (hinges), and the smallest and largest values no more

than 1.5 times the interquartile range (whiskers) throughout. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19986-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6058 | https://doi.org/10.1038/s41467-020-19986-1 | www.nature.com/naturecommunications 5

http://prism.adapsyn.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Recently, we and others have shown that deep learning-based
methods can enable more flexible and accurate detection or
characterization of BGCs or individual biosynthetic
components27,28. However, at present these approaches still rely
on interfacing with rule-based systems such as that employed by
PRISM 4 to permit structure prediction27, or else are not capable
of generating predicted structures28. In the future, more sophis-
ticated machine-learning approaches might enable the end-to-
end prediction of encoded small molecules directly from primary
sequence. Finally, PRISM 4 was designed primarily for prokar-
yotic genome analysis and thus cannot identify BGCs families
thought to be specific to eukaryotes, and—like all tools for gen-
ome annotation—may produce incongruous results when applied
to fragmented or low-quality genome assemblies.

Methods
Overview of PRISM 4. PRISM 4 is a cloud-based, interactive web application, with
a back-end written in the Java programming language. The web application itself

consists of a VueJS front-end, paired with a Python API that distributes submis-
sions to background workers, and is available at http://prism.adapsyn.com. A
number of steps have been taken to ensure the high performance of the web
application, including horizontal distribution of individual PRISM runs over the
cloud, as well as optimization of key bottlenecks to reduce the runtime by
approximately an order of magnitude over PRISM 3 (ref. 29). Here, we provide a
brief overview of the PRISM workflow and the essential changes that distinguish
PRISM 4 from previous versions. In Supplementary Note 1, we provide a com-
prehensive description of the web server, including the user interface and output, a
complete description of the methodology underlying BGC detection and chemical
structure prediction, and the approaches taken to extend structure prediction to
additional BGC families or expand existing ones within PRISM 4. In brief, PRISM
4 takes as input a DNA sequence in FASTA or GenBank format, then queries open
reading frames (ORFs) identified therein against a library of 1772 HMMs, com-
plemented by collections of BLAST databases, conserved protein motifs, and
machine-learning classifiers, to identify enzymatic domains involved in secondary
metabolite biosynthesis and, in some cases, assign them to subtypes, infer their
substrates, or otherwise predict their activity. BGCs are identified using a rule-
based approach, generally requiring two or more biosynthetic domains to be found
in close genomic proximity to reduce the rate of FPs12.

The biosynthetic information identified from DNA sequence in this manner is
subsequently used to predict complete chemical structures for the encoded product

antibacterial antitumor

multiple

immunomodulatory none

antiviral

Complete genomes MAGs

antifungal

Fig. 4 Quantitative predicted structure-activity relationship (QPSAR) modeling reveals thousands of genomically encoded antibiotics. a Receiver

operating characteristic (ROC) curves for support vector machine (SVM) models trained on Pfam domains found within biosynthetic gene clusters or

chemical fingerprints of PRISM predicted structures. b Distribution of BGCs predicted to produce secondary metabolites with antibacterial, antitumor,

immunomodulatory, antifungal, antiviral, multiple, or no biological activities in a collection of 10,121 complete or metagenome-assembled prokaryotic

genomes, by biosynthetic family (left) or producing organism phylum (right), as classified in the Genome Taxonomy Database (GTDB)15. c, d Visualization

of predicted structure chemical space by uniform manifold approximation and projection (UMAP)25, colored by biological activity (c) or genome origin (d).

e Enrichment or depletion of secondary metabolites by predicted biological activity in metagenome-assembled genomes (MAGs), relative to complete

bacterial genomes. Source data are provided as a Source Data file.
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(s) of each BGC. A key challenge in this process is to address cases where the
precise substrate of a reaction catalyzed by a given enzyme is not unambiguously
predictable from protein sequence alone. As an illustrative example, reactions
catalyzed by phosphotransferases or sulfotransferases can generally occur at any
free hydroxyl within a molecule. PRISM 4 takes a combinatorial, graph-based
approach to structure prediction, with the goal of enumerating all possible products
of the identified set of biosynthetic domains. Under this paradigm, the complete
biosynthetic pathway and its product are modeled as a series of transformations of
a chemical graph, which itself comprises a set of chemical subgraphs. These
subgraphs are inferred based on the enzymatic content of the BGC. Each subgraph
represents an individual residue, such as a nucleotide or proteinogenic amino acid,
or combination of residues with a fixed pattern of connectivity, such as ketide units
activated by adjacent modules in a polyketide synthase. The chemical graph is then
derivatized based on an in silico knowledgebase of 618 virtual tailoring reactions,
each of which links a single enzyme to the reaction it catalyzes. A tailoring reaction
involves a series of bond order changes (including bond addition or removal) and
atom removal, though never atom addition, to the chemical graph of a biosynthetic
intermediate. All 618 reactions are implemented as Java classes, rather than as
pattern-based transformations such as the SMIRKS notation, affording a great deal
of flexibility in reaction modeling. An example of the distinction between chemical
subgraphs and tailoring reactions is depicted in Supplementary Fig. 2, in which the
isonitrile geranyltranferase FamD2 activates geranyl pyrophosphate (a chemical
subgraph), then catalyzes geranylation of an indole ring (a tailoring reaction).
Finally, the complete set of potential biosynthetic pathways, or a large random
sample thereof, is inferred when any ambiguity is present in either the chemical
graphs or reactions associated with a given BGC. Modeling biosynthesis as a series
of tailoring reactions executed on a set of chemical subgraphs allows PRISM 4 to
faithfully represent complete biosynthetic pathways, as illustrated in
Supplementary Figs. 2 and 3 for two exemplary natural antibiotics. Finally, PRISM
generates rich interactive web pages as output, including HTML5-based graphics,
to assist the user in exploring the results.

Previous versions of PRISM introduced complete chemical structure prediction
for select classes of secondary metabolites, most notably nonribosomal peptides
and polyketides and RiPPs11,12,29,30. However, coverage of pharmaceutically and
industrially relevant secondary metabolite classes remained incomplete. We
undertook a comprehensive effort to develop genome-guided chemical structure
prediction functionality for all biosynthetic classes of bacterial natural antibiotics
that are currently in clinical use. We developed libraries of 145 HMMs and 133
virtual tailoring reactions to predict chemical structures for 21 subtypes of
nucleoside natural products; libraries of 40 HMMs and 28 virtual tailoring
reactions to predict structures for 11 subtypes of β-lactams, including both β-
lactam antibiotics and β-lactamase inhibitors; libraries of 39 HMMs and 39 virtual
tailoring reactions to predict lincosamide structures; and libraries of 12 HMMs and
11 virtual tailoring reactions to identify and predict isonitrile alkaloid structures. In
addition, we developed a library of 63 HMMs, and revised and extended our
previously described algorithm for deoxy sugar prediction31, in order to predict
aminoglycoside chemical structures. The complete sets of HMMs and virtual
tailoring reactions are enumerated in Supplementary Data 1, and further detail on
these additional classes is provided in Supplementary Note 1. Compared to PRISM
3, PRISM 4 includes a total of 1083 newly developed HMMs (an increase of 145%)
and 334 new reactions (an increase of 118%) that were not included in previous
versions (Supplementary Fig. 10).

We also extended structure prediction functionality for existing biosynthetic
families within PRISM. RiPP structure prediction was augmented by the addition
of three additional families, and refinement of some existing HMMs or reactions
on the basis of updates to the current understanding of RiPP biosynthesis. More
significantly, we undertook a systematic effort to expand structure prediction for
canonical thiotemplated (nonribosomal peptide and polyketide) BGC products.
First, we identified specific chemotypes that were poorly predicted within PRISM,
such as pyrrolobenzodiazepines, tetrahydroisoquinolines, or lipocyclocarbamates.
Second, we identified unusual monomers that were not accounted for in PRISM,
such as homotyrosine, tambroline, or aziridine-containing amino acids. Finally, we
incorporated limited structure prediction functionality for two additional minor
classes of secondary metabolites (phenazines and isopropylstilbenes), and
expanded the scope of BGC detection to include bacteriocins and nonribosomal
peptide synthetase (NRPS)-independent siderophores. Complete details of the
updates to PRISM functionality are provided in Supplementary Note 1. In total,
PRISM 4 can predict complete chemical structures for 17 biosynthetic families and
identify BGCs for a further 11 (Supplementary Table 1).

Validation of PRISM 4 structure predictions. In order to validate PRISM
4 structure predictions, we undertook the curation of a comprehensive ‘gold
standard’ database of 1281 prokaryotic BGCs, linked to known secondary meta-
bolites with unambiguously assigned chemical structures. We compiled BGCs from
a number of existing databases, including MIBiG32, ClusterMine36033, DoBIS-
CUIT34, and NRPS-PKS35. These were complemented by extensive manual
searching of the NCBI database to retrieve known BGCs observed to be absent
from any of these resources, as well as from our own in-house database. We further
created a series of PubMed alerts, using a number of terms related to secondary

metabolite biosynthesis, and manually reviewed articles on a weekly basis to
identify newly published BGCs.

During the course of investigation, we noticed that many of the chemical
structures associated with known BGCs in public databases contained errors. These
ranged from minor issues likely introduced by cheminformatics software (e.g.,
representation of amide bonds by their imidic acid tautomers36) to more major
structural issues (e.g., structural errors affecting large moieties of the product, or
even entirely incorrect products associated with a BGC). Further, a large number of
known BGCs did not have an associated chemical structure. We therefore took a
systematic review of all chemical structures in order to ensure the accuracy of our
‘gold standard’ dataset. Each structure associated with a gold standard BGC was
subject to two independent rounds of manual review by natural products chemists,
with any remaining discrepancies resolved by consensus.

A parallel review of the BGC nucleotide sequences was performed and a
number of issues were identified, consisting primarily of cases where contigs larger
than the BGC itself were deposited in public databases by the original authors.
However, we also identified cases where incomplete BGCs had been deposited, as
well as BGCs that spanned more than one contig in originally deposited assemblies.
The nucleotide sequences of these BGCs were corrected using publicly available
genome assemblies when possible, and omitted from the final dataset otherwise. As
a final step, we used a combination of nucleotide BLAST and manual review to
assign the taxonomy of the producing organism for each BGC, and removed a
small number of remaining BGCs from eukaryotic organisms.

In total, this process led to the curation of a dataset of 1281 BGCs associated
with 1,434 molecules. 125 BGCs were associated with more than one molecule. To
quantitatively assess the accuracy of PRISM 4 chemical structure predictions with
reference to these known products, we calculated the Tanimoto coefficient (Tc)
between the chemical fingerprints for each pair of true and predicted structures13.
The ECFP6 chemical fingerprint37, with a length of 1024 bits, was employed on the
basis of its excellent performance in comparisons of simulated natural products38

and chemical similarity search more generally39,40. We note that notwithstanding
the excellent performance of the ECFP6 fingerprint in these benchmarks, this
algorithm tends to produce ‘sparse’ fingerprints (that is, bit vectors in which most
bits are not set), and consequently will generally yield low Tcs for any comparison
of two structures that are not perfectly identical13. To contrast the observed Tcs
with random expectation, we therefore additionally calculated the Tc between
PRISM 4 predicted structures and true secondary metabolite structures from all of
the remaining, non-matching BGCs. For PRISM and NP.searcher, which can
generate more than one predicted structure for a given BGC, the median Tc was
compared; when a BGC was associated with more than one product, the median
over all pairwise comparisons was calculated. A maximum of 100 predicted
structures were considered for each BGC from PRISM and NP.searcher. We also
assessed the distribution of functional groups in true and predicted structures,
using the algorithm proposed by Ertl14 and implemented in the RDKit to identify
functional groups in an unbiased manner, without relying on a prespecified list of
manually curated functional groups. For this analysis, one predicted or true
structure was randomly selected for each BGC. NP.searcher10 source code was
obtained from the web server at http://dna.sherman.lsi.umich.edu/ and run with
the default mass window parameters (1–5,000 Da), and all of cyclization,
glycosylation, and dimerization enabled. antiSMASH 5.1.2 (ref. 7) was obtained
from Bioconda41, and run with default settings. Sites of variability or uncertainty,
denoted in SMILES output by antiSMASH as [Rn], where n is an integer, and in
SMILES output by NP.searcher as [X], were replaced with the wild card symbol [*]
in order to parse predicted structures with the RDKit. Statistical significance was
assessed using the Brunner–Munzel paired rank test42, a nonparametric test of the
difference in medians robust to differences in the shape of the distributions being
compared43, except in Fig. 2e, where the t-test was used instead because the
Brunner–Munzel test produces inflated p-values in comparisons involving fewer
than 10 observations44.

Analysis of secondary metabolism in 10,121 prokaryotic genomes. We used
PRISM 4 and antiSMASH 5 to predict the chemical structures of secondary
metabolites encoded within 3759 complete bacterial genomes and 6362
metagenome-assembled genomes (MAGs). All bacterial genomes with an assembly
level of ‘Complete’ were downloaded from NCBI Genome, and a set of dereplicated
genomes as determined by the Genome Taxonomy Database15 were retained to
mitigate the impact of highly similar genomes on our analysis. Similarly, a set of
7902 MAGs23 was obtained from NCBI BioProject (accession PRJNA348753) and
the subset of dereplicated genomes was retained. Detected BGCs were matched
between PRISM and antiSMASH if their nucleotide sequence overlapped over any
range. A small number of PRISM BGC types were mapped to more than one
antiSMASH BGC type, including aminoglycosides (‘amglyccycl’ and ‘oligo-
saccharide’), type I polyketides (‘t1pks’ and ‘transatpks’), and RiPPs (‘bottromycin’,
‘cyanobactin’, ‘glycocin’, ‘head_to_tail’, ‘LAP’, ‘lantipeptide’, ‘lassopeptide’, ‘linar-
idin’, ‘microviridin’, ‘proteusin’, ‘sactipeptide’, and ‘thiopeptide’). The “hybrid”
category encompassed all BGCs assigned any combination of two or more cluster
types, i.e., it was not limited to hybrid NRPS-PKS BGCs. The “other” category
encompassed aryl polyenes, bacteriocins, butyrolactones, ectoines, furans, homo-
serine lactones, ladderanes, melanins, N-acyl amino acids, NRPS-independent
siderophores, phenazines, phosphoglycolipids, resorcinols, stilbenes, terpenes, and
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type III polyketides. Producing organism taxonomy was based on genome phy-
logeny and retrieved from the Genome Taxonomy Database15.

Cheminformatic metrics, including molecular weight, number of hydrogen
bond donors and acceptors, octanol-water partition coefficients, and Bertz
topological complexity, were calculated in RDKit. Both platforms occasionally
generated very small, non-specific structure predictions (for example, a single
unspecified amino acid or a single malonyl unit) that did not provide actionable
information about the chemical structure of the encoded product; to remove these
from consideration, we applied a molecular weight filter to remove structures
under 100 Da output by either platform. To evaluate the internal structural
diversity of each set of predicted structures, we computed the distribution of
pairwise Tcs for each set45, taking the median pairwise Tc instead of the mean as a
summary statistic to ensure robustness against outliers. Structural similarity to
known natural products was assessed using the RDKit implementation of the
‘natural product-likeness’ score22, and by the median Tc between predicted
structures and the known secondary metabolite structures deposited in the NP
Atlas database46.

Quantitative predicted structure-activity relationship modeling of encoded

secondary metabolites. To evaluate the possibility of computationally inferring
the likely activity of an encoded secondary metabolite based on its predicted
chemical structure in PRISM 4, we undertook an extensive literature review to
assign antibacterial, antitumor, immunomodulatory, antifungal, and/or antiviral
activities to the metabolites within our ‘gold standard’ set of BGCs. In total, 833 of
1281 BGC products were assigned to at least one of the five activity classes. SVMs
were trained in Python using the ‘scikit-learn’ package, using the hyperparameters
recommended by Olson et al.47. Classifiers trained on 1024-bit hashed ECFP6
chemical fingerprints of PRISM predicted structures were compared to classifiers
trained on counts of Pfam domains48, identified using Pfam version 31.0 and
HMMER version 3.1b2. When more than one structure was predicted for a given
BGC, the value of each bit was averaged over all predicted structures (thus, for
instance, if a given bit had a value of 1 in two of ten predicted structures for a given
cluster, the value of that feature was set to 0.2). Accuracy was assessed using tenfold
cross-validation. The statistical significance of classifier performance, as quantified
by the area under the ROC curve (AUC), was first evaluated relative to random
expectation using the Wilcoxon rank–sum test24. The AUC of classifiers trained on
PRISM predicted structures was subsequently compared to those trained on Pfam
domains using one-sided DeLong tests49, which were combined by meta-analysis
using Fisher’s method.

For QPSAR modeling of predicted structures encoded in the complete
collection of 10,121 bacterial genomes, a probability threshold corresponding to a
10% FDR was calculated from the ROC curves of each activity classifier based on
tenfold cross-validation. Classifiers were subsequently trained on the entire ‘gold
standard’ set and used to predict biological activity for genomically encoded BGC
products, averaging variable bits across predicted structures as above. Visualization
of the complete chemical space of predicted structures was accomplished using
UMAP25, using the implementation in the ‘uwot’ R package, and the first three
principal components of the chemical fingerprint matrix as input. The 10 nearest
neighbors were used for manifold approximation, with all other parameters set to
their default values. A single predicted chemical fingerprint was sampled at random
from each BGC in cases where more than one existed, and duplicate fingerprints
were removed. To mitigate overplotting, 50% of points in the UMAP manifold
were sampled at random for plotting.

Software. Statistical analyses were performed in R, using the ‘nparcomp’, ‘AUC’,
‘pROC’ and packages. Other aspects of data analysis were performed with the
‘jsonlite’, ‘magrittr’, ‘tidyverse’, and ‘uwot’ packages. Plotting was performed with
the ‘ggplot2’ and ‘patchwork’ packages. See the Life Sciences Reporting Summary
for further details.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The genomes analyzed in this study are publicly available from the NCBI Genome

database and the Sequence Read Archive (accession PRJNA348753). Predicted and true

chemical structures from the ‘gold standard’ set of 1,281 BGCs are provided in

Supplementary Data 2. Predicted chemical structures from the collection of 10,121

complete or metagenome-assembled prokaryotic genomes analyzed in this study are

provided in Supplementary Data 3. FASTA files for the ‘gold standard’ BGCs are

available via Zenodo (https://doi.org/10.5281/zenodo.3985982). PRISM output files, in

JSON format, for all of the genomes analyzed in this study are available via Zenodo

(https://doi.org/10.5281/zenodo.3985978). Source data are provided with this

paper. Source data are provided with this paper.

Code availability
Source code used to conduct the analyses described in the manuscript is available from

GitHub (https://github.com/Adapsyn/prism-4-paper).
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