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ABSTRACT
◥

Purpose: Emerging data suggest immune checkpoint inhibitors

have reduced efficacy in heavily pretreated triple-negative breast

cancers (TNBC), but underlying mechanisms are poorly under-

stood. To better understand the phenotypic evolution of TNBCs, we

studied the genomic and transcriptomic profiles of paired tumors

from patients with TNBC.

Experimental Design:We collected paired primary andmetastatic

TNBC specimens from 43 patients and performed targeted exome

sequencing and whole-transcriptome sequencing. From these efforts,

we ascertained somatic mutation profiles, tumor mutational burden

(TMB), TNBCmolecular subtypes, and immune-related gene expres-

sion patterns. Stromal tumor-infiltrating lymphocytes (stromal TIL),

recurrence-free survival, and overall survival were also analyzed.

Results: We observed a typical TNBC mutational landscape with

minimal shifts in copy number or TMB over time. However, there

were notable TNBC molecular subtype shifts, including increases in

the Lehmann/Pietenpol-defined basal-like 1 (BL1, 11.4%–22.6%) and

mesenchymal (M, 11.4%–22.6%) phenotypes, and a decrease in the

immunomodulatory phenotype (IM, 31.4%–3.2%). The Burstein-

defined basal-like immune-activated phenotype was also decreased

(BLIA, 42.2%–17.2%). Among downregulated genes frommetastases,

we saw enrichment of immune-related Kyoto Encyclopedia of Genes

andGenomes pathways and gene ontology (GO) terms, and decreased

expression of immunomodulatory gene signatures (P < 0.03) and

percent stromal TILs (P ¼ 0.03). There was no clear association

between stromal TILs and survival.

Conclusions: We observed few mutational shifts, but largely

consistent transcriptomic shifts in longitudinally paired TNBCs.

Transcriptomic and IHC analyses revealed significantly reduced

immune-activating gene expression signatures and TILs in recurrent

TNBCs. These data may explain the observed lack of efficacy of

immunotherapeutic agents in heavily pretreated TNBCs. Further

studies are ongoing to better understand these initial observations.

See related commentary by Savas and Loi, p. 526

Introduction
Triple-negative breast cancer (TNBC) represents approximately

15% of breast cancers and is characterized by the lack of expression

of estrogen receptor (ER), progesterone receptor (PR), and HER2 (1).

Despite recent FDA approval of atezolizumab for the first-line treat-

ment of TNBC (2), the current standard-of-care treatment for TNBC is

still cytotoxic chemotherapy, and the only FDA-approved targeted

therapies are the PARP inhibitors olaparib and talazoparib forBRCA1/

2-mutant TNBCs (3, 4). Regardless of early aggressive chemotherapy,

the lack of effective targeted therapies in the advanced setting lends an

overall poor prognosis for patients with TNBC (5).

TNBC is clinically aggressive, with a high degree of chromosomal

instability and extensive inter- and intratumoral heterogeneity (6, 7).

Differential gene expression profiling enables subclassification of

TNBCs into several molecular subtypes, the most commonly recog-

nized of which are the Lehmann–Pietenpol (8) and Burstein (9)

classification systems. In the former, TNBCs are molecularly grouped

into six subtypes: basal-like 1 (BL1), basal-like 2 (BL2), immunomod-

ulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL), and

luminal androgen receptor (LAR; ref. 8). In a recent update, these

subtypes have been revised and limited to four subtypes: BL1, BL2,

M, and LAR (10). Similarly, Burstein and colleagues described four

subtypes: LAR, mesenchymal (MES), basal-like/immune suppressed

(BLIS), and basal-like/immune-activated (BLIA; ref. 9). In addition

to tumor heterogeneity, acquired genetic subclones resulting

from chemotherapy selection pressure may lead to treatment

resistance (11–13).

With the development of large-scale molecular profiling tech-

nologies, understanding of the TNBC genomic landscape has

improved, but currently available datasets from Molecular Taxon-

omy of Breast Cancer International Consortium (14) and The

Cancer Genome Atlas (TCGA; ref. 15) are limited to primary,

treatment-na€�ve breast cancers only. In-depth molecular analyses

of metastatic TNBC compared with paired primary specimens are

required to inform molecular changes as a result of chemotherapy

selection pressure. Previous studies were limited by their sample

size, and the findings remain inconclusive (16).

Immune checkpoint inhibitors (ICI) have been under rigorous

investigation in multiple TNBC clinical studies (2, 17–21). Recent

results from IMpassion130 showed a promising response rate of 56%
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when atezolizumab was combined with nab-paclitaxel compared

with 45.9% in patients with TNBC treated first-line with nab-

paclitaxel alone (2). In the neoadjuvant ISPY-2 study, adding

pembrolizumab to a paclitaxel, adriamycin, and cyclophosphamide

regimen increased the complete pathologic response rate (pCR)

from approximately 20% to 62% (n ¼ 21; ref. 21). However, the

efficacy of ICIs varies significantly depending on the line of therapy.

For example, single-agent checkpoint inhibition elicits a much

lower response rate (5%–6%) in the late-line setting compared with

response rates of 19% to 24% when administered as first-line

treatment (17–20). These emerging clinical data suggest checkpoint

inhibition is less effective in heavily pretreated TNBCs, but the

underlying mechanisms are not well understood. To investigate the

immuno-phenotypic evolution of TNBC, we studied the genomic

and transcriptomic profiles of tumors from patients undergoing

treatment for TNBC.

Materials and Methods
Patient selection, ethical approval, and consent to participate

Paired TNBC specimens were identified through a City of Hope

(COH) Institutional Review Board (IRB)–approved retrospective

protocol (IRB 07047) via the COH Biorepository from patients with

breast cancer treated at COH from 2002 to 2015. Eligible patients had

the following features: TNBC with recurrence; at least one tumor

biospecimen available from initial surgery or biopsy; at least one

specimen available from relapsed disease biopsy; and clinical outcomes

data. All collected samples were formalin-fixed paraffin-embedded

(FFPE).

Histologic assessments

Histopathology of specimens was obtained from original pathol-

ogy reports after being reviewed by two independent pathologists.

ER, PR, and HER2 status were determined using standard American

Society of Clinical Oncology/College of American Pathologists

guidelines. Immune cell subset profile changes were analyzed by

TIL quantification of hematoxylin and eosin–stained slides, accord-

ing to the International Immuno-Oncology Biomarker Working

Group on Breast Cancer Guidelines (22).

Clinicopathologic analysis

Patient characteristics were obtained via chart review. Demo-

graphic data including age, gender, date of birth, date of diagnosis,

date of relapse, and date of death (if applicable) were obtained.

Tumor characteristics including tumor size, histology type,

grade, lymph node involvement, and treatment variables including

chemotherapy were also obtained. Clinical outcomes including

overall survival (OS), relapse-free survival (RFS), survival after

relapse (SAR), and time between specimen collections (TBC) were

also calculated. OS was defined as the date of surgery to date of

death. RFS was defined as date of surgery to date of first relapse.

SAR was defined as the date of relapse to the date of death. TBC was

defined as the difference in time between the date of collection

of the first specimen of a pair and the second specimen of a pair.

Per physician decision, in the neoadjuvant or adjuvant setting

(termed “adjuvant/neoadjuvant” herein), patients received either

no chemotherapy or one of the following regimens: Adriamycin-

containing, platinum-containing, Adriamycinþplatinum, or tax-

ane-containing.

Targeted next-generation sequencing (FoundationOne)

Genomic alterations in FFPE specimens from primary and recur-

rent TNBCs were detected using the FoundationOne targeted next-

generation sequencing (NGS) panel at a Clinical Laboratory Improve-

ment Amendments–certified, College of American Pathologists-

accredited reference laboratory (Foundation Medicine, Inc.). Foun-

dationOne identifies base substitutions, insertions and deletions,

amplifications with copy number �6, and rearrangements. More

comprehensive details on the FoundationOne platform version,

sequencing, and mutation calling methodologies can be found in the

Supplementary Data.

Whole-transcriptome sequencing (RNA sequencing)

Sequencing libraries were generated using the Illumina TruSeq

RNA Access method, a hybridization-based protocol to enrich for

coding RNAs from total RNA sequencing (RNA-seq) libraries. The

method consists of twomajor steps: total RNA library preparation and

coding RNA library enrichment. First-strand cDNA synthesis is

primed from total RNA using random primers, followed by the

generation of second-strand cDNA with dUTP (in place of dTTP)

in the master mix. This facilitates the preservation of strand

information, as amplification in subsequent steps will stall when

it encounters Uracil in the nucleotide strand. Double-stranded

cDNA undergoes end-repair, A-tailing, and ligation of adapters

that include index sequences. The resulting molecules are amplified

via PCR, their yield and size distribution are determined using a

BioAnalyzer, and their concentrations are normalized in prepara-

tion for the enrichment step. Libraries are enriched for the

mRNA fraction by positive selection using a cocktail of biotinylated

oligos corresponding to coding regions of the genome. Targeted

library molecules are then captured through the hybridized bioti-

nylated oligo probe using streptavidin-conjugated beads. After two

rounds of hybridization/capture reactions, the enriched library

molecules are PCR amplified, quantified, then normalized and

pooled in preparation for sequencing. Please refer to the Supple-

ment for comprehensive details on the methodologies for whole-

transcriptome data processing and data normalization.

Gene expression and pathway analyses

Differential gene expression was evaluated by applying an empirical

Bayesian approach, using paired expression data from primary and

Translational Relevance

The molecular heterogeneity of triple-negative breast cancers

(TNBC) lends difficulty in identifying effective targeted therapies

against TNBC. Atezolizumab was recently approved for the treat-

ment of PD-L1–positive, unresectable locally advanced, or meta-

static TNBC in combinationwith protein-bound paclitaxel. Results

from recent clinical trials, however, suggest immune checkpoint

inhibitors have reduced efficacy in heavily pretreated, and pre-

sumably, more heterogeneous TNBCs. The work described herein

suggests that in the transition from primary to metastatic disease,

TNBCs treated with traditional chemotherapy regimens exhibit

decreased immune activity over time. This is illustrated by

decreased stromal tumor-infiltrating lymphocytes and decreased

expression of immune activity–related gene signatures in meta-

static TNBCs. These phenotypes may partially explain the limited

efficacy of immune checkpoint inhibitors in the metastatic setting

and highlight the importance of their use instead in the early

neoadjuvant setting.

Hutchinson et al.
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metastatic samples for each patient. At the standard statistical thresh-

old (FDR-adjusted P value < 0.05), a total of 1,011 genes were

significantly differentially expressed. In addition, continuous Cox

proportional hazards regression models were fit to the data to inves-

tigate the impact of individual gene expression on OS, RFS, SAR, and

TBC. In aCox regression analysis, the effect of a predictor variable (e.g.,

the expression level of a gene) on the relative likelihood of an event

(e.g., death or relapse) occurring at any given point in time can be

expressed as theHR. TheHR value represents the predicted increase or

decrease in this likelihood for a unit increase in the predictor. Hence,

genes which are assigned HR values > 1 are associated with increased

hazard rates (i.e., shorter time to event when the gene is more highly

expressed), whereas those assigned HR values <1 are associated with

decreased hazard rates (i.e., longer time to event when the gene ismore

highly expressed). At an FDR-adjusted P value <0.05, few features had

significant HRs in the Cox regression analyses; therefore, a less

stringent threshold of raw (unadjusted) P value < 0.01 was used for

comparisons.

Significant genes (raw P value < 0.01) from each contrast were

analyzed for significant enrichment of Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathwaymembership and for GO terms across

all three gene ontologies using a hypergeometric test. The resulting P

valuewas then corrected for tests overmultiple KEGGpathways orGO

terms using the method of Benjamini and Hochberg (1995) to yield an

adjusted P value. Enrichment (P < 0.01) was assessed for up- and

downregulated genes separately.

Gene set enrichment analyses

For enrichment analyses, genes were ranked based on the P value

of differential expression. Specifically, log10(P value) was used to

rank genes, with negative/positive values used for downregulated/

upregulated genes, respectively. This ranked list was then used in

Gene Set Enrichment Analysis (GSEA), as implemented by

fgsea (23), to search for enrichment of KEGG pathway and GO

term membership (across all three gene ontologies). The resulting

P values were corrected for tests over multiple KEGG pathways or

GO terms using the method of Benjamini and Hochberg (1995) to

yield an adjusted P value.

Breast cancer molecular subtyping

The prediction of PAM50 subtype was based on a random-forest–

based classifier thatwas developed from theRNA-seqdata inTCGA(6)

and 50 genes from the public PAM50 signature (24–26). Ninety-four

randomly selected breast cancer samples from TCGA were used as an

independent testing set, and the remaining samples were used to train

the classifier. The Lehmann/Pietenpol classifier (8) was also trained by

RNA-seq data from TCGA with the subtype call from available

microarray data. The subtype call from microarray was treated as the

“true” label, and a nearest-centroid–based classifier was developed.

The classifier was then applied to the rest of TCGA samples without a

microarray-based subtype call, and the performance was evaluated

based on consensus clustering using all samples. The Burstein subtype

classifier (9) was first evaluated using TNBC samples fromTCGAwith

both available microarray and RNA-seq data. Nonnegative matrix

factorization (NMF), a commonly used group of multivariate analysis

algorithms used to cluster gene expression, was applied to both the

microarray and RNA-seq data to determine the gene and sample

groups. Due to the high concordance of subtype calls by the 80 genes in

the Burstein classifier across the microarray and RNA-seq data (93%),

we decided to directly use the 80 genes in the RNA-seq data without

further feature selection. The groups of 80 genes were then further

evaluated in an independent training set of 215 TNBC samples from

two historical clinical trials (NCT01375842 andNCT02162719), and a

random-forest–based classifier was trained with subtypes assigned by

NMF. The classifier was implemented with an estimated “out-of-bag”

error rate of 10%. The classifier was subsequently tested in an

independent cohort of 51 TNBC samples from a third historical

clinical trial (NCT02322814), and the NMF sample cluster result was

ultimately considered as the label to evaluate performance.

Immune gene signature scoring

The immune gene signatures (gene lists) profiled in this study can be

found in Supplementary Table S1. The composite score for the

immune-activating genes (n ¼ 7) from Denkert and colleagues (27)

was defined as the median log10(CPM) expression of the indicated

genes. FromAyers and colleagues (28), two gene expression signatures

(lists) were analyzed: an 18-gene T-cell–inflamed signature and a 28-

gene IFNg signature. As a result of RNA-seq data processing and

normalization procedures, the genes HLA-DRA and HLA-E were

missing from the data and could not be analyzed in these two

signatures. As such, scores for these two signatures were calculated

based on the median log10(CPM) expression of the remaining genes in

each signature. The score for the Th1 response–activating gene

signature (29–31) was calculated as themedian log10(CPM) expression

of the genes contained in the signature.

xCell immune cell subtype deconvolution analysis

The normalized RNA-seq dataset was used to estimate cell

subtypes using xCell (32) as implemented in the immunedeconv

R package (33). Cell subtype proportions for each sample were

summarized across the primary and metastatic samples and

depicted as percentages in the heatmaps. Differences in proportions

between the primary and metastatic groups were tested using a

Wilcoxon signed rank test for each cell subtype, with P values

adjusted for multiple test inflation using Benjamini–Hochberg

correction (Supplementary Table S2).

Survival analysis

To investigate the relationship between tumor-infiltrating

lymphocytes (% stromal TIL) with survival (OS and RFS), Cox

proportional hazard models were fit separately for primary and

metastatic samples. Categorical classification of % stromal TILs

(<30% as “TIL-low” and �30% as “TIL-high”) was used as the

predictor variables in the survival analyses. HRs were generated as

in the above Materials and Methods section titled “Gene Expres-

sion and Pathway Analyses,” and survival curves were generated

using the Kaplan–Meier method.

Other statistical analyses

For all statistical analyses not listed in Materials and Methods

sections above, specific methods are delineated in the text and/or

figure legends.

Ethical approval and consent to participate

All procedures performed in studies involving human participants

were in accordance with the ethical standards of the institutional and/

or national research committee andwith the 1964HelsinkiDeclaration

and its later amendments or comparable ethical standards. All tumor

specimens were identified through a COH IRB-approved retrospective

protocol from patients consented to COH Biorepository Protocol IRB

07047. Informed consent was obtained from all of the participants of

this study.

Genomic Profiling Reveals Immune Shifts in Paired TNBCs
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Results
Summary of clinical characteristics

Patient characteristics including histopathology, clinical staging,

metastasis patterns, adjuvant/neoadjuvant chemotherapy, RFS, and

OS are summarized in Table 1. Paired TNBC specimens from a total

of 54 patients were analyzed, including 43 (79.6%) primary-

metastatic (PM) pairs and 11 (20.4%) metastatic-metastatic (MM)

pairs. Fifty-one (94.4%) patients had invasive ductal carcinoma, and

28 (51.9%) were stage II. Of the 43 paired PM samples, sites of

metastases studied were: breast (n ¼ 10, 23.3%); lymph node (n ¼ 7,

16.3%), brain (n ¼ 7, 16.3%), skin (n ¼ 6, 13.9%), bone (n ¼ 4,

9.3%), and other (n ¼ 9, 20.9%). All but 7 patients received a

chemotherapy-based treatment regimen. The most common regi-

men included adriamycin with (n ¼ 1, 1.9%) or without (n ¼ 33,

61.1%) a platinum agent. Twelve (22.2%) patients received a taxane-

based regimen. The majority (n ¼ 37, 68.5%) of patients in the

cohort recurred within 36 months (Table 1).

Genomic landscape of TNBC fromprimary tometastatic disease

Thirty-four PM TNBC pairs (68 specimens) were successfully

sequenced using the FoundationOne targeted NGS assay (Fig. 1;

Supplementary Fig. S1). The most commonly observed genomic

mutations were consistent with previously reported TNBC geno-

mics (15). Of 34 paired primary and metastatic specimens, respec-

tively, TP53 was mutated in 29 (85.3%) and 30 (88.2%) tumors;MYC

was mutated in 7 (20.6%) and 9 (26.5%); PIK3CA was mutated in 6

(17.6%) and 7 (20.6%); and PTEN alterations were observed in 6

(17.6%) and 6 (17.6%; Fig. 1A). Figure 1A only displays known

oncogenic variants, per Foundation Medicine, Inc., curation (see

Materials and Methods). As such, variants of unknown significance

(VUS, Supplementary Fig. S2A–S2C), inclusive of many BRCA1/2

variants, are not visible on the plot in Fig. 1A.BRCA1wasmutated in 2

(5.9%) and 2 (5.9%); BRCA2 was mutated in 6 (17.6%) and 6 (17.6%).

Of note, both the primary and metastatic specimens from 2 patients

exhibited amplifications of CCND1 and FGFs 3, 4, and 19, which is

typically observed in 30% to 40% of hormone receptor–positive breast

cancers (34, 35). The remaining observed mutations occurred spo-

radically throughout the cohort.

Although the individual frequency of shared and unique mutations

between PM TNBC pairs may have varied by patient (Fig. 1B and C),

overall 50% or more of mutations were shared between PM TNBC

pairs. Specifically, of mutations annotated to be of known/likely

oncogenic significance, 50% (n ¼ 123) were shared between pairs,

16.3% (n ¼ 40) were unique to primary TNBC specimens, and 33.7%

(n ¼ 83) were unique to metastatic triple-negative breast cancer

(mTNBC) specimens (Fig. 1B and C). When VUSs were considered,

56.8% of mutations (n ¼ 536) were shared, 12.1% (n ¼ 114) were

unique to primary specimens, and 31.1% (n ¼ 294) were unique to

metastatic specimens (Supplementary Fig. S2B and S2C). Overall, the

mutational differences appear largely sporadic and are not consistent

with a given gene or pathway (Supplementary Fig. S2D).

Similar to themutational landscape, very few copy-number changes

were observed in the transition from primary to metastatic disease

(Supplementary Fig. S2E). Finally, tumor mutational burden (TMB)

was less than 16mutations permegabase (mut/Mb; Fig. 1D, TMB > 16

in one primary tumor and one metastatic tumor from different pairs),

and no significant changes in TMB were observed between primary

and metastatic TNBC pairs.

Breast cancer molecular subtype shifts between primary and

metastatic disease

To understand the transcriptomic features of our TNBC cohort, we

performed whole-transcriptome sequencing (RNA-seq) on PM pairs

from 35 patients (70 specimens; Supplementary Fig. S1). Intrinsic

breast cancer subtype phenotyping by PAM50 analysis (36–38) con-

firmed that 88.9% of primary samples were basal-like and remained

basal-like (87.5%) through the transition to recurrent disease (Sup-

plementary Fig. S3).

Previousmicroarray andwhole-transcriptome breast cancer studies

have led to the generation of TNBC molecular subtype classifiers.

These include the six-subtype Lehmann/Pietenpol classifier (BL1, BL2,

IM, M, MSL, and LAR; ref. 8) and the four-subtype Burstein classifier

(LAR, MES, mesenchymal; BLIS, BLIA; ref. 9). Similar to the PAM50

analysis above, we used both the Lehmann/Pietenpol and Burstein

molecular subtype classification systems to characterize the tumors in

our dataset and to observe any shifts in these molecular phenotypes

from primary tometastatic disease (seeMaterials andMethods). From

the Lehmann/Pietenpol system, we observed an increase in tumors

defined as BL1 (11.4% to 22.6%), an increase in tumors defined as

mesenchymal (M, 11.4% to 19.4%), and a drastic decrease in tumors

defined as IM (31.4% to 3.2%) from primary to metastatic tumors

(Fig. 2A). Similarly, using the Burstein classification system, we

Table 1. Summary of patient characteristics.

Age (n ¼ 54) Years

Range 34–86

Median 51

Tumor histology (n ¼ 54) N (%)

Invasive ductal carcinoma 51 (94.4)

Invasive lobular carcinoma 2 (3.7)

Metaplastic 1 (1.9)

Clinical staging (n ¼ 54) N (%)

I 5 (9.3)

II 28 (51.9)

III 18 (33.3)

IV 3 (5.5)

Primary/metastatic pairs (n ¼ 43)a N (%)

Breast 10 (23.3)

Lymph node 7 (16.3)

Brain 7 (16.3)

Skin 6 (13.9)

Bone 4 (9.3)

Other sitesb 9 (20.9)

Adjuvant/neoadjuvant chemotherapy (n ¼ 54)c N (%)

Adriamycin-containing 33 (61.1)

Platinum-containing 1 (1.9%)

Adriamycin þ platinum 1 (1.9)

Taxane-containing 12 (22.2)

No chemotherapy 7 (12.9)

RFS (n ¼ 54) N (%)

<36 months 38 (70.4)

36–60 months 9 (16.7)

>60 months 7 (12.9)

OS (n ¼ 54) N (%)

<36 months 18 (33.3)

36–60 months 14 (25.9)

>60 months 13 (24.1)

Under active treatment 7 (13.0)

Lost to follow-up 2 (3.7)

aEleven paired samples were longitudinal metastatic pairs.
bOther sites included ovary (2), pleural effusion (2), liver (1), muscle mass (1),

adrenal gland (1), pericardium (1), and chest wall (1).
cChemotherapy regimen listed was administered either as neoadjuvant or

adjuvant treatment, per physician decision.

Hutchinson et al.
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observed a downward shift in tumors characterized as BLIA (42.2% to

17.2%), with a concomitant increase in those characterized as BLIS

(42.2% to 62.1%; Fig. 2B). Together, these data suggest that TNBCs

become less immunologically rich over time.

TILs and survival

A number of prior TNBC studies have shown that stromal TIL

levels exhibit a prognostic association with outcome in patients

receiving adjuvant or neoadjuvant chemotherapy (27, 36, 37, 39,

40). We observed a modest, yet statistically significant decrease in

the percentage of stromal TILs in primary versus recurrent speci-

mens (P ¼ 0.02, unpaired Mann–Whitney U test; Fig. 3A). Of 37

patients for which stromal TILs could be scored for both these

patients’ paired primary and metastatic specimens, 21 (56.8%)

patients’ tumor pairs displayed a decrease in stromal TILs in their

metastatic disease specimens; 8 (21.6%) patients’ tumor pairs dis-

played an increase in stromal TILs in metastatic disease; and 8

(21.6%) patients’ tumor pairs exhibited no change in stromal TILs

(Fig. 3B). Despite the PM pairs for which TILs either increased or

did not change, the paired statistical analysis still revealed a

statistically significant overall decrease in TILs in this population

(P ¼ 0.03, paired Student t test, Fig. 3B). No significant differences

were observed when TILs were further subanalyzed by line of

treatment (data not shown). These data are consistent with our

analysis of TNBC molecular subtypes, above.

Using a cutoff of < 30% stromal TILs for “TIL-low” and �30%

stromal TILs for “TIL-high” in this cohort (38), we analyzed TIL

levels in relation to OS and SAR. For OS analysis, TILs scored in

primary tumors were used; for SAR analysis, TILs scored in

recurrent tumors were used. In this dataset, no significant difference

in OS or SAR was observed at the defined 30% stromal TILs cut-off

point (Fig. 3C and D).

Finally, although difficult to make any statistical inferences due to

subgrouping of an already limited sample size, we observed a correl-

ative trend of elevated stromal TILs with the IM, BLIA, and Basal-like

breast cancer molecular subtypes as defined by the Lehmann/
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Genomic landscape of PM TNBCs. FoundationOne targeted DNA sequencingwas successfully performed on 34 PM TNBC pairs.A, Themutational landscape of these

tumors was typical of TNBCs and similar between pairs. This figure displays data from patients who had a PM pair of specimens [i.e., no met-met (MM) specimens],

and only known or likely oncogenic variants are shown (VUSs are not included). (B) Number and (C) percent of known or likely oncogenic variants unique to primary

specimens, unique to metastatic specimens, or shared between pairs. D, Of the 34 PM TNBC pairs, 21 pairs yielded TMB results. With the exception of one primary

sample and onemetastatic sample (from different pairs), TMBwas low/intermediate (<16mutations permegabase) overall and relatively unchanged between TNBC

pairs.
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Pietenpol, Burstein, and PAM50 classifications, respectively (Supple-

mentary Fig. S3B–S3D).

Differential gene expression analysis

RNA-seq was successfully performed on 35 PM pairs of specimens

from the study cohort (Supplementary Fig. S1) upon which we

employed a series of downstream analyses to understand gene expres-

sion as it relates to disease state, survival, and adjuvant/neoadjuvant

therapy. First, comparing gene expression between primary and

metastatic disease, significantly up- and downregulated differentially

expressed genes were assessed for KEGG pathway (Fig. 4A and B;

Supplementary Fig. S4A and S4B) and GO term (Fig. 4C and D;

Supplementary Fig. S4C and S4D) enrichment. A clear enrichment of

immune-related KEGG pathways was found among genes that were

downregulated in metastatic samples compared with primary samples

(Fig. 4B; Supplementary Fig. S4B). These included cytokine–cytokine

receptor interactions, Th1 and Th2 cell differentiation, Th17 cell

differentiation, natural killer cell–mediated cytotoxicity, T- and B-

cell receptor signaling, and NFKB signaling. Interestingly, many of

these pathways were also enriched among genes lending to HR < 1 in

the Cox proportional hazards modeling for the OS, SAR, and TBC

comparisons for primary (but not for metastatic) samples (see Mate-

rials and Methods; Supplementary Fig. S4B). We observed similar

findings in the comparison between primary and metastatic samples

through a ranked GSEA (Supplementary Fig. S4E–S4H).

Next, gene expression was analyzed separately in primary and

metastatic samples using Cox proportional hazards regression model-

ing to understand whether expression of particular genes was asso-

ciated with impacts to response variables, including OS, RFS, SAR, and

TBC. A number of immune-related GO terms were enriched among

downregulated genes in metastatic compared with primary samples,

and among genes with HR < 1 in the OS, SAR, and TBC comparisons

(Fig. 4D; Supplementary Fig. S4D). These included T-cell aggregation,

B-cell receptor signaling, immune response activation, and the adap-

tive immune response. Together, these data indicate that genes

comprising these KEGG pathway and GO terms are expressed at

lower levels in metastatic versus primary TNBC samples, and

increased expression of these genes in primary samples is associated

with longer survival times. Other KEGG pathway and GO term

comparisons were less thematic when contextualized with our broader

data. Among upregulated genes, one KEGG pathway (spliceosome)

was commonly enriched in the following comparisons: gene expres-

sion in metastatic versus primary specimens, gene expression in

primary specimens versus RFS time, gene expression in metastatic

specimens versus RFS time, and gene expression in primary specimens

versus TBC (Fig. 4A; Supplementary Fig. S4A). Also among upregu-

lated genes, GO terms associated with cellular cross-talk including

cell–cell adhesion, extracellular exosomes, and extracellular organelles

were enriched in the following comparisons: gene expression in

metastatic versus primary specimens, gene expression in primary

specimens versus RFS time, and gene expression in primary specimens

versus TBC (Fig. 4C; Supplementary Fig. S4C).

Finally, to compare gene expression in patients as it relates to

adjuvant/neoadjuvant therapy received, we performed differential

gene expression in primary and metastatic samples comparing

between the following categories of adjuvant/neoadjuvant therapy:

adriamycin-containing (adriamycin cyclophosphamide, AC; cyclo-

phosphamide adriamycin 5-FU, CAF; docetaxel adriamycin

BL1
(4, 11.4%)

BL2
(3, 8.6%)

BL2
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BL1
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A B
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Figure 2.

Breast cancer molecular subtype shifts between primary and metastatic TNBC pairs. A, Classification of TNBC pairs into Lehmann/Pietenpol defined subtypes

revealed an increase in theBL1 phenotype (11.4% to 22.6%), an increase in themesenchymal phenotype (11.4% to 19.4%), anda significant decrease in the IMphenotype

(31.4% to 3.2%). UNS, unspecified. B, Burstein-defined classifications revealed a decrease in the BLIA phenotype (42.2% to 17.2%), a converse decrease in the BLIS

phenotype (42.2% to 62.1%), and an increase in the MES phenotype (0% to 6.9%). These analyses were performed on specimens from patients with PM pairs and of

those, specimens for which a breast cancer subtype score were able to be assigned. Please note percentages may not add exactly to 100% due to rounding.

Hutchinson et al.

Clin Cancer Res; 26(3) February 1, 2020 CLINICAL CANCER RESEARCH662

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/3

/6
5
7
/2

0
6
3
7
5
9
/6

5
7
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2



cyclophosphamide, TAC; or adriamycin cyclophosphamide paclitaxel,

AC-T), platinum-containing (carboplatin paclitaxel), adriamycin

and platinum-containing (adriamycin cyclophosphamide-carboplatin

paclitaxel), taxane-containing (docetaxel cyclophosphamide, TC), or

no adjuvant/neoadjuvant therapy. Gene expression in primary speci-

mens from patients who received Adriamycinþplatinum-containing

regimens versus those who received adriamycin-containing therapies

(without a platinum-based agent), taxane-containing therapies, or no

adjuvant/neoadjuvant therapy revealed the only notable significant

associations with specific KEGG pathways or GO terms. Specifically,

the KEGG pathway “microRNAs in cancer” was enriched among

upregulated genes as determined from primary specimens in the three

adjuvant/neoadjuvant regimen comparisons above (Supplementary

Fig. S4A). The GO terms extracellular exosome, extracellular organelles,

and vesicles were enriched among significantly downregulated genes in

these comparisons (Supplementary Fig. S4D). No notable associations

were observed in adjuvant/neoadjuvant therapy comparisons using gene

expression from metastatic samples.
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Figure 3.

TILs and survival. A, Histopathology-

derived percent stromal TILswere sig-

nificantly decreased in mTNBCs [P ¼

0.02, unpaired Mann–Whitney U

(MWU) test]. B, Plotting only paired

PM specimens longitudinally, whereas

TILs are overall significantly de-

creased (P ¼ 0.03, paired Student t

test), some primary-to-metastatic

pairs exhibited increases in stromal

TILs in metastatic disease. C, Higher

stromal TILs (�30%) were not asso-

ciated with improved OS when mea-

sured in primary specimens (P ¼ 0.2),

or (D) with the time from relapse to

death when measured in recurrent

specimens (P ¼ 0.74). See Materials

and Methods section for statistical

considerations.
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Immune phenotyping analysis of paired primary and mTNBCs

Considering the findings from the differential gene expression

analyses above revealed a strong association of significantly down-

regulated genes in mTNBCs with immune-related KEGG pathways

and GO terms, we further profiled the RNA-seq data from our cohort

of specimens against four published gene signatures (lists) associated

with immunologically active phenotypes: a 14-gene Th1 response–

activating score, an 18-gene T-cell inflamed score, a 28-gene IFNg

score, and a 7-gene immune-activating score (36–38, 40, 41). Refer to

the Materials and Methods for details on scoring and Supplementary

Table S1 for the genes that comprise each signature. Composite

intensity scores from three of the four gene signatures were signifi-

cantly downregulated in metastatic samples compared with primary

samples [Fig. 5A (heatmap) and 5B–E (boxplots)]. Not surprisingly,

we observed a concomitant trending decrease in the immune-related

gene signature scores by line of therapy (Supplementary Fig. S5A–

S5D) and positive correlation of each of these scores with percent

stromal TILs (Supplementary Fig. S6A–S6D).
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Figure 4.

KEGG pathway and GO term enrichment between primary and metastatic TNBC. KEGG pathway enrichment analysis associated with genes with (A) upregulated

expression or (B) downregulated expression in metastatic compared with primary TNBCs revealed a clear enrichment of immune-related KEGG pathways among

genes that were significantly downregulated in the metastatic samples. GO term enrichment analysis associated with genes with (C) upregulated expression or (D)

downregulated expression in metastatic versus primary TNBCs revealed enrichment of a number of immune-related GO terms among downregulated genes in

metastatic specimens. Bar plots herein display the pathway/term enrichment scores with P < 0.01. If more than 50 pathways/terms were significantly enriched, only

the top 50 pathways are displayed for visualization purposes.
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To further understand possible shifts in immune-related cell

subtypes, we estimated cell subtypes on paired primary and met-

astatic specimens for which RNA-seq was successful using the xCell

immune cell deconvolution analysis (see Materials and Methods).

The fraction of cell subtypes averaged across primary samples, and

the fraction of cell subtypes averaged across metastatic samples, is

summarized in Fig. 5F. Consistent with the immune-related gene

signature phenotyping, in the transition from primary to metastatic

disease, we observed significant decreases in the proportions of

B-cell, CD4þ naive T-cell, CD8þ T-cell, and cancer-associated

fibroblast subtypes. Conversely, we observed significant increases

in the proportions of endothelial cell, macrophage, and M1 mac-

rophage subtypes. A heatmap of the fraction of cell subtype for

individual samples can be found in Supplementary Fig. S5E, and

P values of the averaged fractions can be found in Supplementary

Table S2.
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Immunephenotypeprofiling between TNBCpairs.A,Heatmapof composite expression scores of immunomodulatory gene signatures betweenPMTNBCspecimens.

B–E,Boxplots of the same, to illustrate decreases in immunomodulatory gene signature scores between PMTNBC samples. Statistical analyses between primary and

metastatic specimenswere performed using theMann–WhitneyU test (unpaired), and P values < 0.05were considered significant. F, Cell subtype proportionswere

summarized across primary and metastatic samples and depicted as an average percentage in the heatmap. Differences in proportions between the primary and

metastatic groups were tested using a Wilcoxon signed rank test for each cell subtype, with P values adjusted for multiple test inflation using Benjamini–Hochberg

correction. P values are presented in Supplementary Table S2.
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Discussion
Molecular evolution of TNBC through chemotherapy selection

pressure and the impact of this evolution toward next therapeutic

steps are well recognized but poorly understood. In this study, we

described the molecular changes observed in the largest paired

primary-mTNBC cohort reported to date. We observed few muta-

tional shifts and overall low TMB suggesting that tumors from

patients treated with chemotherapies tend to maintain their geno-

mic profiles over the course of therapy. We did, however, observe

consistent transcriptomic shifts in longitudinally paired TNBCs.

Transcriptomic and IHC analyses revealed significantly reduced

expression of immune activity–associated gene expression signa-

tures and of TILs in recurrent TNBCs. These data support the

hypothesis that mTNBCs are less immunogenic compared with

primary TNBCs and explain the lack of efficacy of ICIs in heavily

pretreated patients in early clinical trials.

To better understand the molecular heterogeneity of TNBCs,

several molecular classifiers have been developed [i.e., Lehmann/

Pietenpol (8) and Burstein (9)]. Although helpful for our under-

standing of TNBC tumor biology, these molecular classifiers have

little impact in guiding clinical practice. Previous studies comparing

primary and metastatic breast cancers have provided variable

results (41). Some studies indicated concordant overall expression

patterns between primary breast cancers and their matched lymph

nodes (42–45). Other studies identified discordant overall gene

expression patterns between primary tumor and synchronous

metastases (46). Weigelt and colleagues studied seven cases of

primary breast cancer and asynchronous distant metastases and

showed that a 70-gene prognostic signature (Mammaprint) was

generally maintained in the switch from primary to metastasis

across most of the pairs (47). As we attempted herein, some studies

have used targeted NGS to address genomic concordance between

primary and metastatic disease. For example, and confirming our

findings, Meric-Bernstam and colleagues reported that 86.6% of the

somatic mutations and 62.3% of the copy-number variations were

concordant between primary tumors and recurrences (16). These

studies highlight the limitation of tumor biopsies in capturing the

heterogeneity of TNBC genomics and indicate the necessity of using

alternative approaches for a more comprehensive understanding of

the mutational spectrum of TNBCs (48). Furthermore, noncoding

RNAs and epigenetic modifications may also play an important role

in the metastatic process (42, 49, 50).

With recent FDA approval, ICI therapy is now a reality for

patients with TNBC. As such, defining the appropriate population

for such therapy is imperative. Atezolizumab increased PFS from

5.5 months to 7.2 months when added to a nab-paclitaxel as first-

line treatment of patients with PD-L1–positive mTNBC (2, 19). In

I-SPY2, more than 60% of patients with early-stage TNBC treated

with neoadjuvant ACT (adriamycin, cyclophosphamide and pac-

litaxel) þ pembrolizumab achieved a pCR, whereas patients who

received chemotherapy alone only achieved an approximately 20%

pCR rate (21). In heavily pretreated patients, however, response

rates to single-agent ICIs decrease significantly. In cohort A of

KEYNOTE-086 (PD-L1 agnostic cohort), 43.5% of patients with

� 3 lines of prior therapy achieved a response rate of 5.3% (18),

suggesting that PD-L1 positivity is less of a response predictor in

heavily pretreated patients. In contrast, in the PD-L1–positive

cohort B of KEYNOTE-086, an overall response rate of 23% was

observed in the first-line setting (17). Similarly, single-agent ate-

zolizumab elicited a response rate of 24% (5 of 21) in patients with

first-line mTNBC but only 5% (6 of 94) in patients with second-line

or greater disease (19). These clinical trial data demonstrate that

early intervention with immune checkpoint inhibition is associated

with enhanced efficacy. Our study confirmed that metastatic breast

cancers are immunologically more inert than their corresponding

primary tumor, which is consistent with a recently published study

by Szekely and colleagues (41). Our study provides a possible

mechanistic explanation for clinical observations and further

supports early incorporation of immune checkpoint blockade for

patients with TNBC in the adjuvant/neoadjuvant setting.

This study is limited by its sample size, retrospective nature, and

data in a cohort of patients not treated with immunotherapy. The

sample size also precludes the ability to perform a subset analysis of the

association of TIL levels and immune signature scores with sites of

metastasis. Furthermore, our study's observed longitudinal genomic

“similarities” could be a limitation of targeted exome sequencingwhich

is unable to capture the entirety of genomic changes and epigenomic

variations.
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