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Abstract: Pancreatitis is a condition that causes inflammation in the pancreas, an organ located
behind the stomach. This condition often presents as neuropathic, inflammatory, and/or visceral pain.
Acute pancreatitis is typically characterized by sudden and severe abdominal pain, often in the upper
right part of the abdomen. The pain from pancreatitis can be caused by different mechanisms, such as
abnormal activation of pancreatic zymogens or NF-κB mediated inflammation in the pancreas. The
treatment of pancreatitis depends on its type, severity, and underlying cause. Hospitalization and
medications are typically necessary, while in others, surgery may be required. Proper management
of pancreatitis is essential, as it can help reduce the risk of complications and improve the patient’s
quality of life. The literature on pancreatitis pain management evaluates systematic approaches and
the effectiveness of various treatments, such as lidocaine, opioid agonists, ketamine, magnesium,
endoscopic methods, spinal cord stimulation, and other novel treatments present opportunities for
exploration in pancreatitis pain management.
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1. Introduction

Pancreatitis is a condition that involves inflammation of the pancreas, an organ located
posterior to the stomach. This condition can be acute or chronic, depending on the duration
of symptoms. Acute pancreatitis (AP) is characterized by a sudden onset of inflammation
and swelling in the pancreas. However, the most utilized classification systems for acute
pancreatitis do not provide information on pancreatitis etiology. The Atlanta classification is
a commonly used system for classifying acute pancreatitis, which was most recently revised
in 2011. Classification is based on the phase and severity of the disease and considers the
presence of complications and organ damage or failure. It includes categories such as early
or late phase, and mild, moderate, or severe severity [1].

The most common etiologies of pancreatitis are gallstones and alcohol use, the latter
of which accounts for 60–80% of all cases [2]. Other known causes include metabolic hyper-
triglyceridemia and hypercalcemia, drug-induced, autoimmune, endoscopic retrograde
cholangiopancreatography, and idiopathic causes. In remaining patients, physical exami-
nation, laboratory tests, imaging studies, and extensive history taking yields unexplained
etiology [3].

1.1. Epidemiology

The annual incidence of acute pancreatitis in the United States is 3 to 45 per
100,000 persons [4]. For chronic pancreatitis, annual incidence is 5 to 12 per 100,000 and
prevalence is 50 per 100,000 persons. Acute pancreatitis occurs equally among males and
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females and incidence increases with increasing age. Pancreatitis among males is more
likely to be from an alcohol etiology, whereas pancreatitis among females is more likely to
be related to gallstones, endoscopic retrograde cholangiopancreatography idiopathic, or
autoimmune causes [4]. Pancreatitis and pancreatic cancer are most common among those
who identify as Black compared to any other race/ethnicity group.

The incidence of acute pancreatitis in the United States has increased over recent years.
Acute pancreatitis is the most common gastrointestinal reason for hospital admission in the
United States and is associated with a 1% mortality in mild cases and up to 10–20% in severe
cases [4,5]. A recent systematic review on acute pancreatitis found a global increase in risk
factors for acute pancreatitis such as age, biliary disease, obesity, metabolic syndrome, and
alcohol use. Obesity is a risk factor for both increased incidence and increased severity
of acute pancreatitis. Increased rates of obesity promote the formation of gallstones and
result in elevated levels of triglycerides [6]. Obesity also increases the severity of acute
pancreatitis through a pro-inflammatory increase in unsaturated fatty acids which inhibit
mitochondrial complexes and result in necrosis [6].

1.2. Morphology

The pancreas is a gland located in the abdomen that has both exocrine and endocrine
functions and it produces hormones such as insulin, glucagon, somatostatin, and synthe-
sizes digestive enzymes. The pancreas is divided into four regions: head, neck, body, and
tail. The head is in the right upper abdominal quadrant, near the duodenum, while the tail
extends into the hilum of the spleen in the left upper quadrant. The pancreas exists mainly
in the retroperitoneal space, with the tail being intraperitoneal due to its location within
the splenorenal ligament [7].

The pancreas is surrounded by a thin layer of connective tissue that forms a seemingly
lobulated capsule around the gland and penetrates it as various septa. Each lobule is
composed of serous secretory units called acini, which form exocrine portions of the
pancreas and empty their secretions through pancreatic ducts. Each acinus is made up of
clusters of simple epithelial cells called pyramidal serous cells, which surround a central
duct lumen lined with low simple cuboidal epithelium [8]. As ducts increase in size, this
low cuboidal epithelium is replaced with stratified cuboidal epithelium [9].

1.3. Endocrine and Excocrine Function

The islets of Langerhans, which are responsible for endocrine functions of the pancreas,
are dispersed between acini. Islets are composed of three main cell types: alpha cells,
which secrete glucagon; beta cells, which secrete insulin; and delta cells, which secrete
somatostatin. Islet cells have a polygonal shape and are arranged in short, irregular cords
that are intertwined within a network of capillaries. Islets vary in size and are more
concentrated in the pancreatic tail. Other hormones such as VIP, pancreatic polypeptide,
motilin, serotonin, and substance P are also produced by cells in islets [10–12].

The main pancreatic exocrine secretions are drained through smaller ducts that begin
in the tail. These ducts merge into the main pancreatic duct, which runs along the posterior
surface of the body and neck. In the head, the main pancreatic duct is located left of the
common bile duct from the liver and gallbladder. These two ducts enter the duodenum
together at the hepatopancreatic ampulla of Vater, which is surrounded by the sphincter of
Oddi. Additional drainage of the pancreatic head is provided by the accessory pancreatic
duct, which opens into the duodenum at the minor papilla [13].

1.4. Vascularization and Lymphatics

The pancreas is supplied with blood from branches of the celiac trunk and superior
mesenteric artery. The majority is supplied by pancreatic branches of the splenic artery, a
branch of the celiac trunk. The head of the pancreas also receives blood from the superior
and inferior pancreaticoduodenal arteries, which are branches of the gastroduodenal artery
and the superior mesenteric artery, respectively. Venous drainage is performed by the
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hepatic portal system via the splenic vein and superior mesenteric vein. The head and
neck of the pancreas drain into the superior and inferior pancreaticoduodenal veins, which
partly drain into the portal vein and partly into the right gastroepiploic vein. Lymphatic
drainage follows pancreatic arteries, with the body and tail draining into retropancreatic
nodes and the head and neck draining into celiac and superior mesenteric nodes [14,15].

2. Pathophysiology of Acute Pancreatitis Pain

Precise causes of acute pancreatitis are not fully understood. However, researchers
have identified acinar cells as primary drivers of pancreatic injury and have studied cellular
changes that occur during the progression of the disease. Two main pathophysiological
pathways have been identified in early pancreatitis, one involving abnormal activation of
pancreatic enzymes, and the other an inflammatory cascade mediated by NF-κB (Figure 1).
Destruction of the pancreas and systemic inflammation are the main characteristics of
pancreatitis. The main causes of destruction include premature activation of trypsinogen,
and an enzyme within acinar cells, instead of the duct lumen. This is typically triggered
by an increase in ductal pressure and problems with calcium homeostasis and pH. Many
toxins that cause pancreatitis lead to ATP depletion, which increases intra-acinar calcium
concentrations and stimulates the early activation of trypsinogen to trypsin, activating
other enzymes such as elastase and phospholipases.
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Figure 1. Two critical autonomous and parallel pathways in early pancreatitis [16].

2.1. Trypsin

Aberrant pancreatic enzyme activity has long been implicated in the pathogenesis of
pancreatic injury. Subsequent investigation has implicated trypsin, a product of pancreatic
acinar cells typically secreted into the pancreatic duct, in early pancreatic damage. Under
physiologic conditions, the proenzyme trypsinogen is maintained in the pancreatic milieu
and activated to trypsin only in the duodenum, where it serves as a key digestive protease.
Several regulatory mechanisms serve to prevent deleterious effects of premature activation.
Chiefly, geographic separation of trypsinogen from its primary activator restricts premature
activity. In non-diseased states, trypsinogen is activated by enterokinase, a specialized
serine protease restricted to the duodenal brush boarder [16]. Several mechanisms prevent
trypsinogen activation. Cysteine protease cathepsin L promotes degradation of intra-acinar
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trypsinogen while chymotrypsin C will inhibit aberrantly activated trypsin within the
parenchyma [16,17].

Activation of trypsin in early acute pancreatitis has been extensively studied in animal
models. Trypsin activity was found to rapidly increase after the administration of caerulein,
a common toxin used to replicate pancreatitis in mouse models [18]. Trypsin activity has
also been re-demonstrated in other models of pancreatic injury, e.g., in both iatrogenic-
induced injury and knockout models of inherited pancreatitis [19,20].

2.2. Calcium Signaling

Calcium signaling has been identified as a likely nidus for trypsin activation. Transient
spikes in intracellular calcium concentrations play a role in normal acinar function [21,22].
Cholecystokinin (CCK) is an important activator of acinar synthetic function. It acts by
binding to G-protein-coupled receptors, which initiate a cascade that leads to calcium
efflux from the endoplasmic reticulum to the cytoplasm [18,23]. In pathological states,
sustained global increases in intra-acinar cytoplasmic calcium are observed in early acute
pancreatitis. This becomes apparent in states of hypercalcemia, which is characterized by
high blood levels of calcium. Hypercalcemia can lead to formation of pancreatic calcium
deposits which can impair function and increase the risk of inflammation. Further, hyper-
calcemia can exacerbate inappropriate activation of digestive enzymes, causing damage
and leading to pancreatitis. Indeed, calcium blockade in mouse models has a protective
effect against acute pancreatitis. Endoplasmic reticulum surface ryanodine receptors (RyR)
and membrane-bound Store operated channels (SOC) are the two most common sources
of calcium influx [18,24]. Absence of RyRs and SOCs in separate mouse models have a
significant protective effect against acute acinar cell injury [22,25,26].

2.3. Calcineurin

Globally elevated levels of cytoplasmic calcium likely have a diverse range of effects.
However, calcineurin has been identified as mediator between calcium and premature
trypsin activation. Calcineurin is a calmodulin-activated phosphatase with a calcium-
dependent regulatory subunit that has catalytic effects in numerous cell types [27–29].
Within acinar cells, calcineurin overexpression has been shown to potentiate acute pan-
creatitis independent of calcium levels [27,29]. Calcineurin inhibition in mouse models
has a protective effect against zymogen activation and acute pancreatitis without affecting
calcium concentration [30]. Thus, calcineurin appears to play a role in the downstream of
calcium influx, but also in the upstream of trypsin activation in acute pancreatitis. Crucially,
calcineurin has been directly implicated in the propagation of ethanol and bile acid-induced
pancreatitis—two leading causes of acute disease [31].

2.4. Co-Localization and Autophagy

Abnormal organelle co-localization, including secretory vacuoles and lysosomes, has
been well documented in early acute pancreatitis following calcium influx [32–34]. The fu-
sion of vacuoles with lysosomes facilitates the activation of trypsinogen by lysozymes. The
lysosomal protease cathepsin B has been shown to play a role in the premature trypsinogen
activation and progression of acute pancreatitis [35,36]. Cathepsin B knockout models in
mice show reduced rates of acute pancreatitis in response to acinar injury, while inhibition
of cathepsin B results in decreased trypsinogen activation [27].

2.5. Inflammatory Pathway

Acinar cell injury initiates an inflammatory response, which runs in parallel to trypsino-
gen activation. Studies in trypsinogen knockout models show persistent inflammatory
damage, suggesting a secondary mediator of pancreatitis. NF-κB is currently the most
described inflammatory mediator active in early pancreatitis [37–40]. The NF-κB cascade is
initiated by calcium signaling, but it is also related to other, less described signals, including
protein kinase c [40,41]. This cascade runs in parallel, but independently from trypsinogen
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activation [42,43]. However, the exact mechanisms of NF-κB activation remain unclear, and
a variety of other potential mediators have been suggested. Despite this uncertainty, acinar
models where NF-κB is overexpressed demonstrate significant cellular inflammation that
is sufficient enough to induce systemic inflammation [18,44]. Ultimately, the activation of
acinar inflammatory cascades leads to oxidative stress and apoptosis [24].

2.6. Neuropathic Pain

Neuropathic pain in pancreatitis relates to several neuronal alterations in the setting
of acute inflammation. It is classically described as sharp, intense, and hot pain, and
several questionnaires have been designed to identify and direct treatment for patients
with prominent neuropathic pain [45–48]. Neuropathic pain is caused by damage to the
peripheral or central nervous system. This can result in the damage of nerve endings,
leading to the development of neuropathic pain states. In pancreatitis, neuropathic pain is
thought to play an important role in the development of pain. Damage to nerve endings
and the sensitization of these nerves via inflammation in acute pancreatitis may lead to the
development of neuropathic pain [45,49–54].

There are several mechanisms involved in the development of neuropathic pain. These
include peripheral and central sensitization. Peripheral sensitization occurs with changes
to the uninjured primary afferent nociceptor after nerve lesions. This results in sensitization
and ectopic spontaneous activity of primary afferent nociceptors. Some changes that may
be involved include the expression of voltage-gated sodium channels, transmembrane
proteins such as vanilloid receptors and temperature-sensitive excitatory ion channels, and
adrenoreceptors on uninjured primary afferent nerves [55,56].

Central sensitization, on the other hand, occurs with change in the central nervous
system. This can result in the development of abnormal pain sensitivity and heightened
pain responses to normally non-painful stimuli. Factors that may contribute to central
sensitization include nerve growth factors, pro-inflammatory cytokines, and changes in
the expression of certain receptors and ion channels. Leukocytic invasion of myelin and
Schwann cells results in a pancreatic neuritis contributing to persistent pain [51]. Glial cell
proliferation in response to injury has also been correlated with increased pain [50,57,58].

2.7. Inflammatory Pain

Inflammatory pain is a type of nociceptive pain which is caused by tissue damage or
inflammation [59]. Inflammatory pain involves inflammatory mediators that activate and
sensitize nociceptors which then activate neurons to relay signals [59]. Pancreatic sensory
innervation is mostly sympathetic; cell bodies of pancreatic afferent nerves are located in
the dorsal root ganglion (DRG) at T5-L2 and are activated in AP [60]. When mechanical
or chemical stimuli destroy acinar cells, digestive enzymes and increased inflammatory
mediators are released in the vicinity [61]. These mediators include K+, H+, ATP, histamine,
substance P (SP), bradykinin, prostaglandins, and norepinephrine, all of which further
amplify the inflammatory response [61,62].

Along with histamine, the activation of mast cells causes the release of nerve growth
factor (NGF), promoting immune cell recruitment, sensitization of nociceptors, and plastic
changes in neurons that contribute to pain and inflammation [60,61,63]. Increased levels
of mast cells have been found in tissue specimens of patients with pancreatitis [64]. NGF
is also upregulated in pancreatitis, and it itself upregulates transient receptor potential
cation channel subfamily V, member 1 (TRPV1), SP and calcitonin gene-related peptide
(CGRP) [65]. TRPV1 is a nociceptive receptor implicated in pancreatitis that responds to
stimuli including inflammatory molecules, heat, and acidosis [65]. In animal models, a
lack of TRPA1/TRPV1 activity is associated with decreased fibrosis, inflammation, neural
hypertrophy, and sensitization to pain [65].

SP and CGRP are neuropeptides that are released from afferent nerve endings in neuro-
genic inflammation and are increased in AP; TRPV1 activation results in SP release [60,65–67].
SP works through the neurokinin-1 (NK1) receptor in acinar cells, leading to neurogenic
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inflammation and pain via increased pro-inflammatory mediators, nuclear factor kappa
B (NF-κB) activation, and necrosis in murine models of AP [62]. NF-κB induces the tran-
scription of more proinflammatory mediators that recruit leukocytes following acinar cell
injury [62]. In mice with cerulein-induced AP, the NF-κB pathway in the DRG was activated
by nitric oxide (NO), which was elevated in AP alongside the increased iNOS (nitric oxide
synthase) expression and promoted expression of pain factors [67]. Conversely, levels of
kappa opioid receptor (KOR) decreased [67]. Furthermore, a NO donor increased SP and
CGRP in the DRG and decreased the expression of Oprk1 (which encodes KOR), while
the opposite effects were observed with a NO scavenger [67]. iNOS/NO may be located
upstream of NF-κB, which may be upstream of the KOR [67].

The bradykinin receptor is involved in pain transmission and is mediated by kinins,
which are peptide hormones that affect the regulation of blood pressure, pain sensitization,
and cell growth [62,68]. Bradykinin and activated proteases are released following acinar
cell necrosis in AP, leading to a ‘necrotic amplification loop’ with neighboring stellate cells
through the activation of NO via Ca2+ signals [62]. Bradykinin may also activate the endings
of afferent neurons, resulting in SP and CGRP release and neurogenic inflammation [60].
The application of NGF, bradykinin, histamine, 5-HT, and CCK octapeptide to a rat pancreas
in electrophysiological studies has been shown to induce excitatory and inhibitory afferent
responses [60]. Galanin is another neuropeptide involved in AP and is associated with pain
through effects such as neuroinflammation, enhanced neutrophil function, and inhibition
of ductal HCO3- secretion [62]. Additionally, the inflammatory cytokine prostaglandin
E2 (PGE2) acts on stellate cells to regulate pancreatic fibrosis, and its involvement in
nociceptive signaling may contribute to severe pain in pancreatitis that does not correlate
with structural changes [65]. Finally, transforming the growth factor beta (TGFβ) causes
nociceptive sensitization and contributes to pain and inflammation in pancreatitis, possibly
by upregulating artemin in stellate cells [65].

2.8. Visceral Pain

Visceral pain also falls under nociceptive pain and is transmitted by afferent sympa-
thetic fibers and the vagus nerve [61]. Nociceptive fibers from primary afferent nociceptors
synapse with second order neurons at the dorsal horn, sending signals through ascending
pathways to thalamic, limbic, and cortical brain structures [61,65]. Specifically, pain is
transmitted to the thalamic ventral posterolateral (VPL), ventromedial, intralaminar central
lateral (CL), and parafascicular nuclei, as well as areas in the brainstem [69]. After pain
processing takes place, efferent impulses travel to the pancreatic structures and immune
cells to illicit a response [61]. Visceral pain is not well-localized and is felt as aching, burn-
ing, and cramping [61]. It may be referred to the body wall at the level of innervation of
the nociceptive stimulus [61]. In pancreatitis, these areas of referred pain become larger,
and each nerve fiber may correspond to multiple neighboring organs in addition to the
pancreas [65]. This overlap of sensory innervation makes it difficult to distinguish pain
associated with pancreatitis from other sources of abdominal pain [65]. Visceral hypersensi-
tivity and neural sensitization are now believed to contribute more to pancreatitis pain than
ductal obstruction, thus explaining why pain may not improve after surgery [70]. In speci-
mens from humans with pancreatitis, the increased expression of growth-associated protein
43 (GAP-43), NGF, its receptor TrkA, and brain-derived neurotrophic factor correlate well
with pain scores [64].

Visceral hypersensitivity in pancreatitis has been demonstrated in rat models, which
show an increased activity in dorsal root ganglia and a relatively depolarized resting state,
as well as an increased expression of TRPV1 compared to controls [64,71,72]. TRPV1 and
TRPV4 antagonists have been shown to decrease visceral pain responses in rat models of
pancreatitis [64,73]. Furthermore, decreased glutamatergic synaptic strength in the mid-
brain ventrolateral periaqueductal gray (vlPAG), indicated by a reduced AMPA/NMDA
ratio, has been found in rats with dibutyltin dichloride (DBTC)-induced visceral pancreatic
pain [74]. The vlPAG is responsible for antinociception via descending pain inhibition, so de-
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creased synaptic transmission in this region results in a decreased inhibition of descending
pain and thus abdominal hypersensitivity, which is alleviated by intra-vlPAG microinjec-
tion of AMPA [74]. Activated microglia, which release pro-inflammatory cytokines and
chemokines resulting in altered neuronal activation and central sensitization, were found
in the CL thalamus and other pain-responsive brain regions of mice with caerulein-induced
recurrent AP [69]. KOR may also play a role in visceral pain processing, indicated by
an increased response to visceral chemical pain found in KOR-deficient mice [67,75]. In
a study that was previously discussed under the inflammatory pain section, mice with
AP had a decreased KOR expression, suggesting that KOR is involved in AP-associated
visceral pain [67]. Trypsin may also contribute to pancreatic hypersensitivity via the ac-
tivation of protease-activated receptor-2 (PAR-2) on peripheral sensory neurons [64,76].
The infusion of trypsin at sub-inflammatory concentrations and PAR-2-specific activating
peptide (AcPep) into rat pancreatic ducts produced similar behavioral pain responses.
The demonstration of pharmacological desensitization provided further evidence of a
shared mechanism of PAR-2-mediated nociceptive effects by trypsin and AcPep [76]. The
same study found that 98% of the pancreas-specific DRG neurons expressing TRPV-1-IR
(a marker for nociceptive neurons) also expressed the PAR-2 receptor, suggesting that the
most visceral afferent nociceptive nerve fibers express PAR-2 [76].

2.9. Gut Flora Dysbiosis

The human gastrointestinal tract is home to a vast community of microorganisms,
which play a crucial role in the health of the human host and also contribute to numerous
disease processes. It is estimated that over 1014 microorganisms reside within the human
gastrointestinal tract [77]. Some authors have referred to the human microbiome as a
hidden “metabolic organ”, due to its integral role in host metabolism, physiology, nutrition,
and immune function [78]. The role of the gut microbiome has been implicated in a
variety of disease processes, including inflammatory bowel disease [79], irritable bowel
syndrome [80], colon cancer [81], Alzheimer’s Disease [82], asthma [83], obesity [84], and
autoimmune disorders [85,86].

Over the past two decades, a myriad of research efforts have gone into investigating
the relationships between human microbiomes and the pathogenesis of acute pancreatitis
(Table 1). As the intestinal mucosal barrier is impaired in more severe forms of AP, an
opportunity arises for bacterial translocation via hematogenous, lymphatic, and reflux [87].
Bacterial translocation results in a SIRS response and can compound inflammatory re-
sponses seen in AP and result in secondary infection [88]. The human microbiome has
been implicated in underlying mechanisms leading to mucosal injury and bacterial translo-
cation in AP. Major end metabolic products of gut microbiota are short-chain fatty acids
(SCFA) [89] with acetate, propionate, and butyrate being the most abundant SCFA pro-
duced [90]. SCFA are the main source of energy for intestinal epithelial cells and they
play a crucial role in maintaining the integrity of the intestinal mucosal barrier [91]. SCFA
also reduce the pH of the intestinal tract, creating an environment more conducive to
commensal bacteria growth and inhibiting the growth of pathogenic species, including
Escherichia coli and Shigella [92]. In humans, acetate and propionate are largely produced
by Bacteroidetes species, while Firmicutes species are the main contributors of butyrate [93].
Zhu et al. demonstrated in rat models that decreased Firmicutes (and therefore butyrate
production) was associated with an increased inflammatory response and progression to
necrotizing pancreatitis in AP [94]. Compared with healthy volunteers, patients with AP
were more likely to have gut dysbiosis, with higher populations of Enterobacteriaceae and
Enterococcus and lower Bifidobacteria [95]. Additionally, gut dysbiosis has been shown to
correlate with the severity of AP, as those with more severe forms of AP were shown to
have a reduction in commensal bacteria including Bacteroides, Alloprevotella, and Blautia
compared to more mild forms of AP [96].
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Table 1. Pancreatitis flair pathophysiology.

Pancreatitis Flair Pathophysiology

Trypsin Rapidly increasing trypsin, a product of pancreatic acinar cells typically secreted into the
pancreatic duct, induces early pancreatic damage [18]

Calcium Signaling Endoplasmic reticulum surface ryanodine receptors (RyR) and membrane-bound
Store-operated channels (SOC) increase acinar cytoplasmic calcium [22,25,26]

Calcineurin Calcineurin plays a role downstream of calcium influx and upstream of trypsin activation in
acute pancreatitis [27–29]

Colocalazation and Autophagy Vacuole fusion with lysosomes activates trypsinogen—protease cathepsin B has been shown to
play a role in premature trypsinogen activation [35,36]

Inflammatory Pathway NF-κB cascade is initiated by calcium signaling and leads to increasing oxidative stress and
apoptosis [37–40]

Neuropathic Pain Dilation of intraparenchymal nerves with background fibrosis suggests that increased axonal
diameter is likely responsible for initiating neuropathy [49–54]

Inflaammatory Pain
Stimuli destroy acinar cells and digestive enzymes and inflammatory mediators are released in
the vicinity including K+, H+, ATP, histamine, substance P (SP), bradykinin, prostaglandins and
norepinephrine [60,61,63]

Visceral Pain Increased activity of dorsal root ganglia and relatively depolarized resting state and increased
expression of TRPV1 [64,71,72]

Gut Flora Dysbiosis Patients with AP are more likely to have gut dysbiosis, with higher populations of
Enterobacteriaceae and Enterococcus and lower Bifidobacteria [95]

The use of probiotics in the treatment of AP has been controversial. Previous animal
studies have suggested that probiotics may reduce intestinal mucosal barrier injury and
prevent bacterial translocation and secondary infections [97,98]. However, the PROPATRIA
trial (probiotic prophylaxis in patients with predicted severe acute pancreatitis), published
in 2008, demonstrated a significantly higher mortality rate in patients receiving probiotics
(16% vs. 6%) [99]. More recent trials have not shown any negative consequences associated
with the use of probiotics [100,101]. A 2015 Cochrane review concluded that further studies
are needed to assess the safety and efficacy of probiotic use in AP [102].

3. Initial Treatment

Acute pancreatitis requires proper care and management. Nutrition, intravenous
fluids, and immediate pain medication are acutely essential for proper treatment. Upon
admission to the hospital, treatment should be tailored to the severity of the disease. It is
recommended to have a low index of suspicion for 3D abdominal imaging to avoid missing
complications that may lead to further compromise. If necessary, referral to specialist or
tertiary services may be needed for complex pancreatic disease. To prevent recurrence and
properly address the aftermath, continued care is necessary.

3.1. Nutrition

Acute pancreatitis causes a hypermetabolic state, which is characterized by an increase
in lipolysis, protein breakdown, insulin resistance, and weight loss. These effects are more
extreme in severe cases of the disease, and they can be exacerbated by poor nutrition and
infection [103]. Early oral refeeding is typically recommended as soon as it is tolerated. If
this is not possible, liquid food supplements or enteral tube feeding should be given within
a day or two of admission [104].

This may not be necessary in mild cases of acute pancreatitis. The nasogastric route
is easier to use than the nasojejunal route, but some patients may require the latter if they
are unable to tolerate the former due to delayed gastric emptying. Compared to parenteral
nutrition, oral or enteral feeding is associated with lower pro-inflammatory responses and a
reduced likelihood of bacterial translocation across the gastrointestinal permeability barrier.
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However, enteral tube feeding is limited in patients who are hemodynamically unstable,
have gastrointestinal intolerance, or require frequent interruptions for investigations or
interventions [105]. This can lead to delays in providing nutritional support.

Attempts to maximize enteral nutrition should be avoided in patients who are not
volume-replete, as this can increase the risk of gut injury through non-occlusive mesenteric
ischemia. Inadequate nutrition has led to the use of combined enteral and parenteral
nutrition, with the latter being started before, during, or after enteral intake is considered
insufficient [106,107].

3.2. Intravenous Fluids

In acute pancreatitis, the immediate administration of intravenous fluids is crucial for
correcting volume loss and tissue hypoperfusion, which can help counteract pancreatic
and systemic microcirculatory impairment caused by various inflammatory processes [108].
Early intravenous fluid resuscitation within 24 h of disease onset can lead to lower rates of
persistent systemic inflammatory response syndrome and organ failure. It is recommended
that fluids are administered at a rate of 5–10 mL/kg/h [109]. The goals of fluid resuscitation
are to decrease and/or maintain the heart rate at less than 120 beats per minute, measure
urine output through a catheter at more than 0.5 mL/kg/h, and if non-invasive continuous
arterial pressure measurement is available, maintain a mean arterial pressure of 65–85 mm
Hg with a hematocrit of 35–44% [109].

In critically ill patients, invasive monitoring may include determination of stroke
volume variation and intrathoracic blood volume. In mild and moderately severe cases,
organ dysfunction is likely to resolve with intravenous fluid resuscitation. However, in
severe disease, there is a significant risk of excessive intravenous fluid therapy. Fluid
overload in the critical care setting is associated with an increased risk of death due to the
negative effects on all major organ systems [110]. It is important to assess the patient’s
responsiveness to continually higher fluid rates, when necessary, but not when there is a
risk of overload. Caution is necessary as clinical assessment has its limitations, and passive
leg raising followed by the measurement of cardiac parameters may be an effective method
for assessment, but this requires further confirmation [111].

3.3. Pain Management

There are many options for managing the pain caused by acute pancreatitis, but the cur-
rent opinion within gastroenterology follows four principles outlined by Pandanaboyana
et al. [112]:

1. Tailor treatment to the individual as one size will not fit all;
2. Assess pain intensity and pancreatitis severity to select analgesics;
3. Step-down approach required for prompt pain relief;
4. Use opioid-sparing strategies wherever possible.

Abdominal pain is a common symptom of acute pancreatitis and is usually treated
with strong opioid medication to reduce the need for other types of pain relief. This can
be supported by using pain management strategies, such as pain ladders, for those with
less severe pain. Non-steroidal anti-inflammatory drugs (NSAIDs) may be used as an
alternative for mild cases, but they can cause kidney damage in more severe disease [113].

Some evidence suggests that opioids can increase pressure in the bile duct, but studies
have shown that they are as effective and safe as other options in treating acute pancreati-
tis [114,115]. Providing early oral nutrition that does not worsen abdominal pain may help
reduce pain intensity and duration, as well as the need for pain medication and the risk of
food intolerance. In more severe cases, recurring or worsening pain when eating may delay
the return to a normal diet. The intensity and duration of pain are generally proportional
to the severity of the disease and the total amount of opioid medication used. Continuous
intravenous opioid infusions may be used for persistent, severe pain, but the benefits of
patient-controlled versus nurse-controlled administration are unclear [116].
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Epidural anesthesia has not been found to be significantly better than other options
in small trials, but larger studies may determine if it provides additional benefits, such as
improved pancreatic blood flow [117]. Pain management should be part of a comprehensive
approach that addresses physical and psychological issues and involves patients in their
care. Opioids should not be used as a substitute for providing patients with information
about their illness, managing their expectations, and offering psychological support to
reduce anxiety, especially for younger patients [113,118].

4. Pharmacological Treatment

The pain associated with acute pancreatitis is caused by multiple mechanisms indicat-
ing a range of analgesics that may be effective in management. When selecting a treatment,
it is important to consider the potential for the development of chronic pain (Table 2).

4.1. Lidocaine

Systemic lidocaine has been shown to reduce pain in perioperative settings through
multiple meta-analyses [119–121], though the degree of efficacy still remains somewhat
in question due to variability and quality of previous studies [122]. The exact mechanism
of action behind lidocaine and other local anesthetic antinociceptive properties remain
partially unclear given their interactions with a large variety of ion channels as well
as intracellular second-messenger pathways. Traditionally, lidocaine’s antinociceptive
properties are believed to have resulted from a blockade of voltage-gated Na+ channels
(VGSC’s). VGSC’s have been repeatedly shown to play a crucial role in the development
of neuropathic and inflammatory pain signals; however, lidocaine’s effects on potassium
channels, calcium channels, Gaq-coupled receptors, NMDA receptors the glycinergic
system, and serotonin receptors cannot be ignored, and pain modulatory effects are likely
multimodal. Furthermore, lidocaine has also been shown to have anti-inflammatory
properties as well, decreasing leukocyte activation, adhesion, and migration, though these
mechanisms are incompletely understood [123]. Interestingly, multiple studies have also
demonstrated a dose-dependent relationship between lidocaine infusion and vascular
effects, with lower concentrations producing vasoconstriction and higher concentrations
producing vasodilation [124].

Currently, no studies have evaluated the efficacy of lidocaine infusion in relation to
pain associated with pancreatitis, though some studies have evaluated lidocaine’s use for
pancreatitis management. Pancreatitis is a common adverse effect of ERCP, with some
studies showing 5–10% of patients experiencing this result following the procedure [125].
Lidocaine has been shown to block intramural neural reflexes in the Sphincter of Oddi [126].
In a randomized control trial of 326 patients, topical lidocaine administered to duode-
nal papilla prior to cannulation vs. a control group found no significant reduction in
ERCP-related acute pancreatitis [127]. Another study looking at cerulein-induced acute
pancreatitis in rats sought to identify the efficacy of intra-arterial lidocaine infusion [128].
The pancreas is highly sensitive to ischemia, and pancreatitis leads to a decrease in per-
fusion as a result of multifactorial vessel injury, with increased vascular permeability,
edema, and vasoconstriction all playing a role in decreasing blood flow to the pancreatic
tissues [129]. The study attempted to assess if lidocaine-induced vasodilation, along with
anti-inflammatory properties, could potentially have a beneficial effect in pancreatitis man-
agement. Rats who received intra-arterial lidocaine demonstrated statistically significant
decreases in amylase and lipase serum concentrations, indicating a potential reduction in
pancreatitis severity in treatment groups [128]. While this study potentially indicates a new
avenue for pancreatitis management, human trials are required to determine efficacy.
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Table 2. Pancreatitis pain treatment [128–173].

Trials Evaluating Pancreatitis Pain Pharmalogical Treatment

Lidocaine Animal studies indicate intra-arterial significantly decreases amylase and lipase serum
concentrations. RCT show topical administration was comparative to controls [128]

Hydromorphone/Opioid Agonists RCT’s demonstrate no difference in pancreatitis complications or adverse events between
opioid and non-opioid analgesics [114,145,146]

Ketamine Case studies demonstrate success in the treatment of pancreatic pain in both quick and
long-lasting analgesia. RCT’s are ongoing [155]

Magnesium There is currently one clinical trial investigating magnesium sulfate’s effects on
preventing post-ERCP pancreatitis [173]

While few studies have looked at lidocaine for the management of pain in pancre-
atitis, other studies have sought to identify the utility of other local anesthetics in acute
pancreatitis. Jakobs et al. looked at procaine infusion compared to buprenorphine in the
management of patients with acute pancreatitis, with the buprenorphine group reporting
decreased pain levels and requiring less additional analgesics [130]. A 2004 randomized
control trial of 107 patients also evaluated procaine efficacy in acute pancreatitis, and it
demonstrated larger pain scores and larger requirements of additional analgesics in patients
treated with procaine vs. pentazocine [131]. Conversely, Layer et al. did show some utility
of procaine in pancreatitis management when compared with a placebo, with statistically
significant reductions in VAS scores (and the use of additional analgesics) showing a greater
proportion of patients achieving adequate analgesia [132]. However, a meta-analysis from
Thavanesan et al. looking at multiple modes of analgesic management in acute pancreatitis
showed local anesthetics to have the least efficacy in the reduction of pain scores when
compared to other treatment modalities [115]. More information is needed on whether
systemic local anesthetic usage could potentially have some purpose as part of a multi-drug
approach to pain management, but current evidence seems to suggest little benefit as a
primary pain-controlling agent.

Local anesthetics have also been explored for nerve blocks in pancreatitis management.
Epidural anesthesia has shown a significant effect in the reduction of pain scores and the
reduction of mortality in acute pancreatitis. This effect is multifactorial, and likely related
to the anti-inflammatory effects of locally acting anesthetics along with sympathetic nerve
blockade, which is achieved with epidural anesthesia. This sympathetic blockade allows for
the redistribution of splanchnic blood flow and thus increases perfusion of pancreatic areas
which have been subject to ischemia [118,133]. The transversus abdominus plane (TAP)
block has also been used in acute pancreatitis pain management. Landy et al. reported a case
of opioid-resistant acute pancreatitis with successful pain management achieved through
bilateral TAP blocks [134]. Smith et al. also reported numerous cases where the TAP block
served benefit in the management of pain associated with pancreatitis [135]. Interestingly,
the TAP block itself is typically associated with a higher degree of somatic analgesia, and
significant visceral coverage would be unexpected [136]. More recently, Abdelghafour
et al. utilized an erector spinae plane (ESP) block to achieve adequate analgesia in a patient
with pancreatitis [137]. Given the somatic, as well as visceral and sympathetic coverage
demonstrated in ESP blocks, blocks targeted in lower thoracic vertebrae could be expected
to have potentially beneficial effects in the pain management of acute pancreatitis. Given
the relative ease of performance and safety of ESP blocks compared to epidural blocks,
ESPs could potentially be of significant use for pancreatitis-related pain management in the
future, particularly in opioid-tolerant patients [138].

4.2. Hydromorphone/Opioid Agonists

Patients with acute pancreatitis are often presented with severe upper abdominal pain
that may radiate to the back [139]. As such, pain management is a critical component in
treating acute pancreatitis. Opioids have been shown to be effective and well-tolerated in
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treating pancreatitis-related pain [114]. Opioid receptors are expressed in central and pe-
ripheral neurons and modulate pain primarily through three G protein-coupled receptors:
mu, delta, and kappa [140]. Mu receptors influence reward, euphoria, sedation, and respi-
ratory drive [141]. Common opioids in clinical practice (morphine, codeine, methadone,
fentanyl) are mu receptor agonists. Hydromorphone, a semi-synthetic opioid agonist and
hydrogenated ketone of morphine, is also used in treating pancreatitis pain [142]. Hydro-
morphone has been shown to exhibit a stronger mu receptor binding affinity compared
to hydrocodone [143]. Buprenorphine, a partial agonist and partial antagonist at the mu-
opioid receptor with a comparatively long duration of effect, has been shown to have
analgesic properties, though studies demonstrating its use in pancreatitis are relatively
scarce up until this point [144]. In practice, opioids for pancreatitis-associated pain are
administered orally or intravenously as either a bolus or infusion.

Interestingly, studies have found opioid and non-opioid analgesics have similar
effectiveness regarding pain control, adverse effects, and risk of pancreatitis complica-
tions [114,145,146]. As mentioned in a previous section, a systematic review of five ran-
domized controlled trials including 227 patients found that opioids may decrease the
need for supplementary analgesia, but there was no difference in pancreatitis compli-
cations or adverse events between the opioid and non-opioid analgesics groups [114].
The opioid analgesics analyzed in the systematic review were intravenous and intra-
muscular buprenorphine, intramuscular pethidine, intravenous pentazocine, transder-
mal fentanyl, and subcutaneous morphine, and the non-opioid analgesics analyzed were
procaine and metamizole [114]. Two additional randomized controlled studies (RTCs)
compared pain relief and adverse effects following tramadol versus non-steroidal anti-
inflammatory/acetaminophen administration for acute pancreatitis [145,146]. In their
study on 90 patients with non-traumatic pancreatitis, Gülen et al. found that mean pain
scores between the tramadol, paracetamol, and dexketoprofen groups were similar 30 min
after initial administration [145]. A separate RCT on 46 patients compared tramadol and
diclofenac and found no significant difference in pain one hour after administration, the
number of patients requiring supplemental analgesia, and the number of painful days
between the two groups [146]. Pancreatitis-related complications (acute lung injury, pleural
effusion, ascites) were lower in the diclofenac group; however, the result was not statisti-
cally significant. A prospective randomized trial of 40 patients examining buprenorphine
vs. procaine for pain management in pancreatitis showed that buprenorphine resulted in a
significant reduction of both VAS scores and the need for rescue analgesia with minimal
variation in side effects [130]. Blamey et al. examined pain-free periods in 32 patients being
treated with either buprenorphine or pethidine, with no statistically significant difference
being found [147].

4.3. Ketamine

Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist.
NMDA receptors are excitatory inotropic glutamate receptors found in both the central and
peripheral nervous system, and are involved in pain signal amplification, development
of central sensitization, and opioid tolerance [148]. Ketamine has been shown to exert its
anti-hyperalgesic effect by returning the NMDA receptor to its resting state condition and
reducing or reversing opioid tolerance [149,150]. Ketamine exists in two stereoisomeric
forms, with the S-isomeric form having four times more affinity for NMDA receptors than
the R-isomeric form [151].

NMDA receptor antagonism is responsible for the analgesic effects of ketamine, but
interactions with opioid receptors are thought to also play a partial role. Ketamine has been
shown to utilize mu, delta, sigma, and kappa opioid receptors [151–153] and interact with
nicotinic and muscarinic acetylcholine receptors, monoaminergic receptors, and voltage-
sensitive sodium channels [154]. More recently, studies have suggested that ketamine may
play a role in modulating pain transmission through limiting activation of astrocytes and
microglia [154].
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Ketamine use for pain management in pancreatitis has been explored in several
studies. A single center study, by Sheehy et al., investigating the use of subanesthetic
ketamine for pain management found that ketamine was effective in reducing pain scores
in patients with inflammatory diseases, such as pancreatitis [155]. Subanesthetic doses are
often adjuvants to opioid therapy in patients with acute and chronic pain demonstrating
improved pain scores and decreased opioid intake [156]. Additional data suggest that
subanesthetic ketamine for pain management is both feasible and safe in regular care units,
and that it benefits children, adolescents, and young adults with both acute and chronic
pain [155]. Furthermore, it was found that ketamine infusions in patients with pancreatitis
are more often associated with over a 20% reduction in pain scores compared to other
types of pain [155]. Bouwense et al. found in a blinded crossover trial that, in patients
with pancreatitis, S-ketamine infusions were associated with an increase in pain pressure
thresholds [157]. However, the effects were short-lasting and there was no significant effect
on VAS scores [157]. A randomized, double-blinded, placebo-controlled clinical trial—titled
the RESET Trial—investigating the analgesic and anti-hyperalgesia effects of S-ketamine is
currently ongoing [149].

Presently, there are few case reports detailing ketamine use in pancreatitis pain man-
agement. Mannion and O’Brien report a case of a patient with severe pain secondary to
alcoholic pancreatitis where the subcutaneous infusion of ketamine was found to be an
effective and well-tolerated means of pain control [158]. In a case report of a teenager with
severe pain secondary to necrotizing pancreatitis, Mulder et al. found that the initiation of
ketamine as adjunctive pain management led to a rapid reduction in pain scores by day five
of infusion [159]. In another case report of a patient with severe post-ERCP pain secondary
to acute pancreatitis, Agerwala et al. found that the initiation of ketamine infusion was
effective in producing quick and long-lasting analgesia [160].

The American Society of Regional Anesthesia and Pain Medicine (ASRA) values the
use of ketamine because it reduces opioid tolerance and hyperalgesia, reduces opioid
requirements, and has the capacity to help manage nociceptive and neuropathic pain.
ASRA formulated guidelines for ketamine use, concluding that limited evidence of the
benefits of IV made ketamine the essential analgesic for acute or periprocedural pain.
However, moderate evidence supports the benefit of ketamine as an addition to opioid
based IV treatment for acute and postoperative pain management [156,161]. One advantage
ketamine has over opioids for chronic pain is preventing/reversing opioid hyperalgesia
and tolerance [162]. The phenomenon of opioid-induced hyperalgesia caused by opioid
exposure leads to nociceptive sensitization and a paradoxical response where patients on
opioids may become more sensitive to painful stimuli [163]. Another advantage of ketamine
over opioid administration is decreased tolerance and tachyphylaxis risk [164,165] and
unique pain control [166].

However, ketamine is not without adverse effects, the most common of which are nau-
sea, vomiting, dizziness, drowsiness, diplopia, dysphoria, and confusion [150]. Ketamine
use can cause cardiopulmonary effects, such as arrythmias, bradycardia, hypotension,
apnea, and respiratory depression [150].

4.4. Magnesium

Magnesium is the fourth most abundant cation in the body and it has been linked to
over 300 enzymatic reactions modulating energy metabolism and protein and nucleic acid
synthesis [167,168]. The current literature suggests that magnesium levels can be decreased
in patients with acute pancreatitis; however, exact mechanisms have not been fully eluci-
dated [169,170]. Magnesium has been shown to be a vasodilator, a cytoprotective agent,
anticoagulant, and antioxidant [169]. Data on the effects of magnesium supplementation in
patients with acute pancreatitis are currently limited. Studies on animal models have sug-
gested that, as a calcium antagonist in the pancreas, magnesium may be able to counteract
the calcium-induced protease activation and necrosis in acute pancreatitis [171,172]. There
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is currently one clinical trial in progress investigating the effect of magnesium sulfate in
preventing post-ERCP pancreatitis [173].

5. Opioid Use in Patients with Pancreatitis

With an increased focus on pain management in the early 2000s, opioid prescribing,
use, and misuse experienced a sharp uptick [174]. Though the integration of pain as the
fifth vital sign solidified the importance of pain assessment, reliance on opioid usage led
to an emergence of the pervasive opioid epidemic. In two decades, there was a 200%
increase in opioid-related deaths [174]. Physicians have since been keenly aware of the
need to monitor and decrease opioid prescriptions when appropriate. Providers used state
prescription drug monitoring programs (PDMPs) more than 910 million times in 2020,
markedly increased from previous years [175]. In the last decade, there has been a 44.4%
decrease in opioid prescriptions nationwide, with a 6.9% decrease from 2019–2020 (AMA).
Despite a downward trend, more than 191 million prescriptions were given to patients in
2017 alone, with increasing rates for subsequent years [176].

Non-opioid therapy is generally preferred for first-line treatment in acute and chronic
pain. Per the 2016 CDC guidelines, opioids should be prescribed at the lowest effective
dosage, with an assessment of the risks and benefits if increasing the dosage to over
50 morphine mg equivalents or more per day is required [177]. Multimodal and multidis-
ciplinary therapies are regarded as the most effective choice to reduce pain and improve
function rather than use of single modalities [177]. Opioids are often used to alleviate
acute pancreatitis pain, despite a lack of analgesic guidance from the American College of
Gastroenterology, American Gastroenterological Association, and the American Pancre-
atic Association. A review of five randomized control trials found a decreased need for
supplementary analgesia in patients receiving opioids, without a difference in the risk of
pancreatitis complications or serious clinically adverse events between opioids and other
analgesia options [114]. Though studies have not found a difference between the endpoints
for opioid and non-opioid analgesics, there remains a clinical preference for opioids over
other modalities. In a cohort study of 4307 patients hospitalized for acute pancreatitis,
79.9% received initial treatment with opioids and 9.6% of those continued to receive opioids
90 to 180 days after discharge [178]. Identification of the population that goes on to become
prolonged opioid users after hospitalization is important for preventative and therapeutic
patient care, given the potential long-term repercussions.

Analgesic effects of opioids come at a cost, and risks should be taken into consideration.
Opioids have the potential to cause tolerance, addiction, hyperalgesia, and withdrawal,
all of which are heavily intertwined and further precipitate each other’s actions. Effects
are further amplified when opioids are used chronically. In patients treated with chronic
opioid therapy for chronic non-cancer pain, aberrant drug-related behaviors are reported
in 20% of patients, with rates of development of opioid use disorder from 0–50% [179].

Opioid addiction is a chronic mental illness characterized by relapses and remissions,
and complicated by symptoms of tolerance and withdrawal. With a prolonged administra-
tion of opioids, there is decrease in drug potency and efficacy, as tolerance develops and
higher doses are needed. Tolerance is defined by The U.S. Food and Drug Administration
as a dose of 60 morphine milligram equivalents daily and is complicated by an increased
difficulty in the management of pain and an increase in mortality when patients abstain
from use and relapse [180]. Patients who develop tolerance and are hospitalized for acute
episodes of pain are more likely to have higher risk of mortality and comorbidities, longer
hospital stays, and readmit within 30 days [181]. Paradoxically, overuse or misuse of
opioids for pain modulation can cause opioid-induced hyperalgesia (OIH), defined as a
decreased pain threshold often resulting from dose escalation. Cohort studies in patients
with chronic pain regimens found direct correlations in both opioid dose and the duration
of treatment with pain intensity and unpleasantness scores [182].
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6. Novel Treatments

Due to the challenges of managing pain in pancreatitis, novel strategies continue to
emerge as treatment options. As the pathophysiology of pain in pancreatitis is multifacto-
rial, multiple methods have been used to address these factors.

6.1. Endoscopic Therapy

Ductal obstruction and hypertension may represent one aspect of pain in pancre-
atitis [70]. Endoscopic interventions aimed at relieving ductal hypertension, including
through stone removal, ductal stenting and dilatation, and sphincter manipulation have
all been investigated. Many of these interventions are achieved via endoscopic retrograde
cholangial-pancreatography (ERCP), and can also be combined with extracorporeal shock
wave lithotripsy (ESWL) for further management of pancreatic obstructions.

Advances in endoscopic technology have allowed for improved access into the pan-
creatic duct. Specifically, sphincterotomy can be used to introduce instruments into the
duct [183]. Afterwards, stent placement can be pursued to further alleviate ductal hyper-
tension [183]. In their long-term study on patients undergoing endoscopic sphincterotomy
and stenting, Delhaye et al. displayed clinical success, defined as reduced hospitalizations
for pain, in 66% of patients, with 30% of patients not requiring any further hospitaliza-
tions [184]. Dumonceau et al. demonstrated endoscopic decompression to reduce pain
in 73% of patients, with 54% of patients sustaining pain relief at 2-year follow-up [184].
Success rates for the endoscopic treatment of pancreatitis have been reported between 85
and 95% [185,186]. A more recent application in endoscopy has been the usage of endo-
scopic ultrasound (EUS). In select patients with a challenging anatomy or with trouble
accessing various ducts or papilla, EUS-guided drainage of the pancreatic duct can be
considered, as it has been proven to show a high technical success rate and reduction of
pain in smaller studies [187]. Cahen et al. evaluated endoscopic vs. surgical drainage of the
pancreatic duct, specifically focusing on the sustained pain relief after these procedures,
finding that surgical management offered more pain relief. As well as this, it required fewer
follow-up procedures [188]. This was further validated by Dite et al., who explored surgical
vs. various endoscopic procedures including sphincterotomy, stenting, and stone removal.
Their results supported surgical management by providing better pain outcomes compared
to endoscopic therapies [189]. However, endoscopic therapy, in contrast to surgery, can
be offered to patients with more comorbidities and for those who would typically not be
surgical candidates [190].

6.2. Pancreatic Enzyme Replacement Therapy

Pancreatic exocrine insufficiency is commonly seen in more than half of patients with
acute pancreatitis hospitalizations, but this frequency decreases during follow-up. However,
it does persist in a minority of patients, including over half of those with pancreatic
necrosis [191]. The pancreas typically secretes between 1 and 2 million units of lipase
per day, along with various proteases, carbohydrate hydrolases, lipid hydrolases, and
nucleases [192]. However, acute pancreatitis disrupts pancreatic secretion [191].

Pancreatic enzyme replacement therapy is likely to be helpful for patients with moder-
ately severe and severe acute pancreatitis who are receiving oral or enteral nutrition until
they have repeated normal levels of fecal elastase-1. This therapy is recommended for
such patients on a routine basis, and on a long-term basis for those with over half pancre-
atic necrosis. The presence of exocrine pancreatic insufficiency, indicated by steatorrhea,
warrants the use of pancreatic enzyme replacement therapy after acute pancreatitis of any
severity and should continue indefinitely if fecal elastase-1 remains below 100 µg/g [191].

This therapy does not need to be stopped for fecal elastase-1 testing. A standard
dose for adult patients using one of the licensed preparations (such as Creon, Nutrizyme,
Pancrease HL, or Pancrex V in the UK) is 50,000 units of lipase per meal, with half that
amount for a snack. This can be increased if steatorrhea has not sufficiently improved. The
total daily dose should be adjusted based on the patient’s oral or enteral intake, and in
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children, it should be based on a combination of body weight and intake. This is so that a
maximum daily dose of 10,000 IU/kg is not exceeded and to ensure satisfactory growth
and normal levels of fat-soluble vitamins [191].

7. Conclusions

The incidence of acute pancreatitis, a condition associated with severe morbidity,
healthcare burden, and costs, has risen notably in recent years. Given that biochemical and
pathophysiological mechanisms underlying acute pancreatitis are often multifactorial and
remain poorly understood, the management of associated pain remains difficult. Pharma-
cologically, there are a variety of systemic analgesics which were routinely used in this
space, although each offers a range of adverse effects, ranging from end-organ symptoms
to opioid dependence. To address these challenges, recent approaches to pain management
in pancreatitis have focused on targeting the pancreas itself using pharmacologic or proce-
dural methods. This review provides a comprehensive overview of the pathophysiology of
acute pancreatitis, as well as a discussion of both traditional and novel treatment options
for managing pain in pancreatitis patients. The benefits, drawbacks, and future directions
for research in this area are also explored to inform the development of improved pain
management strategies for pancreatitis patients.
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