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Abstract Flavonoids are one of the largest classes of

small molecular secondary metabolites produced in

different parts of the plant. They display a wide range

of pharmacological and beneficial health effects for

humans, which include, among others, antioxidative

activity, free radical scavenging capacity, coronary

heart disease prevention and antiatherosclerotic, hep-

atoprotective, anti-inflammatory, and anticancer

activities. Hence, flavonoids are gaining high attention

from the pharmaceutical and healthcare industries.

Notably, plants synthesize flavonoids in response to

microbial infection, and these compounds have been

found to be a potent antimicrobial agent against a wide

range of pathogenic microorganisms in vitro. Antimi-

crobial action of flavonoids results from their various

biological activities, which may not seem very specific

at first. There are, however, promising antibacterial

flavonoids that are able not only to selectively target

bacterial cells, but also to inhibit virulence factors, as

well as other forms of microbial threats, e.g. biofilm

formation. Moreover, some plant flavonoids manifest

ability to reverse the antibiotic resistance and enhance

action of the current antibiotic drugs. Hence, the

development and application of flavonoid-based drugs

could be a promising approach for antibiotic-resistant

infections. This review aims to improve our under-

standing of the biological and molecular roles of plant

flavonoids, focusing mostly on their antimicrobial

activities.
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Abbreviations

AHL N-acyl homo-serine lactones

AGs Aminoglycoside antibiotics

CFU Colony-forming units

EC Epicatechin

ECG Epicatechin gallate

EGCG Epigallocatechin gallate

EPI Efflux pump inhibitors

FAS-I Fatty acid synthase type I

FAS-II Fatty acid synthase type II

FICI Fractional inhibitory concentration index

MBC Minimum bactericidal concentration

MDR Multidrug resistant strains

MIC Minimum inhibitory concentration

MRSA Methicillin-resistant Staphylococcus aureus

MSSA Methicillin-sensitive Staphylococcus

aureus
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PMF Proton-motive force

ROS Reactive oxygen species

QS Quorum sensing

Introduction

Pathogenic microorganisms have been a danger to the

human race since its genesis, being a major cause of

human morbidity and mortality. Until the discovery of

the first true antibiotic—penicillin—in 1928 and sulfa

drugs in the 1930s, besides the toxic arsenic, the only

means of fighting infectious diseases were plant

extracts of different sorts, though their usage yielded

various results (Dar et al. 2016; Saleem et al. 2010; van

Miert 1994).

Although, for the last 60 years, antibiotics played a

major role in the treatment of infectious diseases

caused by bacteria and fungi, the occurrence of

dangerous and antibiotic-resistant bacteria have been

observed to increase in frequency over the past several

decades. Drug resistance can be executed by multiple

mechanisms; hence overcoming such problem is not

an easy task (Saleem et al. 2010). Reasons for the

emerging antibiotic resistance include the irresponsi-

ble, unfit or too common use of antibiotics in fields,

such as medicine, veterinary, and especially in agri-

culture (Pisteli and Giorgi 2012). Moreover, the

pipeline of new antimicrobial agents is running dry

since the 70 s, while the number of drug-resistant

bacteria has increased (Croft et al. 2007; Shah 2005),

leading some to claim that a post-antibiotic era is

eminent (Appelbaum 2012). Hence, there is a pressing

need for finding new antimicrobial drugs.

The use of plants as medicines has a long history in

the treatment of various diseases and to date,

* 100,000 plant species have been tested for their

medicinal use (Schmidt et al. 2012; Veeresham 2012).

In 2007 WHO estimated that 25% of available drugs

are derived from plants used in folk medicine (Cushnie

et al. 2008). Besides the long-established clinical use,

the plant-derived compounds display good tolerance

and acceptance among patients and seem like a

credible source of antimicrobial compounds. Among

109 new antibacterial drugs, approved in the period

1981–2006, 69% originated from natural products

(Newman 2008). One of the major groups of

phytochemicals that has been studied extensively for

their antimicrobial properties are flavonoids (Pisteli

and Giorgi 2012). Flavonoids, being mostly plants

pigments, belong to a wide class of chemical com-

pounds (over 6000 different hydroxylated polyphe-

nols) that carry out important functions in plants,

including attracting insects that pollinate, combating

environmental stresses such as microbial infection,

and regulating the cell growth (Falcone Ferreyra et al.

2012; Kumar and Pandey 2013). Fruits and vegeta-

bles are the main dietary sources of flavonoids for

humans.

The flavonoids are known for their antioxidant,

anti-inflammatory, antiallergic, anticancer, antiviral,

and antifungal properties (Harborne and Williams

2000; Havsteen 1983; Havsteen 2002). However,

since plants synthetize flavonoids in response to

microbial infection (Perumal Samy and Gopalakrish-

nakone 2010), there is a growing interest about the

antibacterial properties of flavonoids and their appli-

cation in the therapy for human diseases.

The therapeutic use of flavonoids is supported by

the successful use of preparations containing these

physiologically active constituents in folk medicine.

For example, Tagetes minuta containing querc-

etagetin-7-arabinzylgalactoside was widely used in

the Argentinean folk medicine for the treatment of

various infectious diseases (Tereschuk et al. 1997).

Flower extracts of Retama raetam (Forssk) contain-

ing, among others, licoflavone C and derrone dis-

played antibacterial activity against Gram-positive

and Gram-negative bacteria (Edziri et al. 2012; Hayet

et al. 2008). Tripleurospermum disciforme (known by

the common name Mayweed), used as a disinfectant

and in the treatment of some diseases in folk medicine

of Iran, contains abundance of flavonoids, including

apigenin, kaempferol, luteolin, quercetin, and their

respective glycosides (Tofighi et al. 2015).

In this review, we have summarized the general

information about flavonoid structure, basic proper-

ties, and their occurrence and discuss their scope of

antimicrobial activity as a possible replacement of

conventional antibiotics. Moreover, we have analyzed

the recently reported flavonoid compounds, which

display potent antimicrobial activities, and have

provided examples of flavonoids that manifest syner-

gistic and additive effects upon combining with other

antibiotic drugs.

123

242 Phytochem Rev (2019) 18:241–272



Flavonoids structure and nomenclature

Flavonoids are a class of natural phenolic compounds

that include a C6-C3-C6 carbon framework (phenyl

benzopyran). The basic flavonoid structure consists of

a 2-phenyl-benzo-c-pyrane nucleus comprising two

benzene Rings A and B linked through a heterocyclic

pyran or pyrone Ring C. Depending on the level of

unsaturation and oxidation, flavonoids can be grouped

into various subclasses, such as flavones (Fig. 1),

isoflavones (Fig. 2), flavonols (Fig. 3), flavanols

(otherwise known as catechins, Fig. 4), flavanones

(Fig. 5), flavanonols (Fig. 6), chalcones and dihy-

drochalcones (Fig. 7), aurones and anthocyanidins

(Fig. 8), and others that are not noted for their

antimicrobial activities (Falcone Ferreyra et al.

2012) and are not discussed in this paper.

It should not be disregarded, that huge structural

diversity and wide biological activity of flavonoids

comes from their frequent modifications (Chen et al.

2018). Flavonoid glycosides, as well as their preny-

lated, geranylated, methoxylated and hydroxylated

derivatives vary in structure and mode of antibacterial

action (Cushnie and Lamb 2011). The chemical

structures of flavonoids discussed here are presented

in Figs. 1, 2, 3, 4, 5, 7 and 8 (where these compounds

were grouped accordingly to their chemical classes).

Currently, three approaches are being used in

naming flavonoid compounds, which may cause some

confusion, considering the huge number of new

flavonoids being isolated. Themost common approach

is using the trivial name that relates to the subclass to

which the compound belongs to, or the plant from

which it was first extracted from. Another approach is

using the semi-systematic name, where the core of the

name comes from the subclass, for example,

3,5,7,30,40-pentahydroxyflavone. The third method is

naming the flavonoids by their systematic chemical

names, for example, 3,4-dihydro-2-phenyl-2H-1-ben-

zopyran (flavan). Although this method is overcom-

plicated in case of common flavonoids, it is the most

precise approach, and thus superior to other naming

approaches, especially when naming novel com-

pounds (Cushnie and Lamb 2005). One of the

recommendations for the flavonoid nomenclature

was prepared by the IUPAC (Rauter 2013). These

recommendations establish rules for the general

nomenclature of flavonoids, providing examples of

acceptable trivial names, and names derived from

trivial names, along with semi-systematic and fully

systematic names that follow the published IUPAC

recommendations (International Union of Pure and

Applied Chemistry 1993). However, in this paper, we

decided to use the most common approaches (trivial

and semi-systematic for well-known and novel

flavonoids, respectively), as we feel that they are

sufficient for the purposes of this review.

Physiological roles of plant flavonoids

Flavonoids are present in most of the plants, generally

in all of their organs. As the most abundant secondary

plant metabolites, their quantitative distribution varies

from organ to organ or even plant to plant, depending

on the environment. The composition of flavonoids

varies, depending on the plant’s water and nutrient

availability, intensity of sunlight, type of soil, and the

age of the plant (Havsteen 2002). Nevertheless, plants

of the same taxon tend to produce a similar set of

flavonoids, suggesting that genetic predispositions of

plants are dominant (Havsteen 2002; Nicotra et al.

2010).

Those compounds fulfill variety of functions in

plant organs. Anthocyanins along with other flavo-

noids color flowers and fruits, which attracts pollina-

tors and seed dispersers (reviewed in Narbona et al.

2014; Schiestl and Johnson 2013). In vegetative

organs, anthocyanins and other non-pigmented flavo-

noids, such as flavones and flavonols, may provide

some protective functions against many biotic and

abiotic stressors like herbivores, UV radiation, cold,

heat, drought, and salinity (Anderson et al. 2013;

Falcone Ferreyra et al. 2012; Hatier and Gould 2009).

Moreover, flavonoids take part in energy transfers,

regulation of photosynthesis and morphogenesis,

regulation of growth factors, and sex determination

(Harborne and Baxter 1999).

More importantly, there are reports suggesting that

flavonoids are important antimicrobials in plant life.

To arrest the spread of pathogens, plants possess an

innate immunity that involves different layers of

defense responses and some of these defenses include

biosynthesis of flavonoids (Piasecka et al. 2015). Beck

and Stengel (2016) found that flavonoids are mostly

concentrated along the vascular strands of leaves,

rather than being evenly distributed throughout the

leaf tissue. This is due to the need for the quick
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distribution of flavonoids via vascular strands, which

shows the important roles of flavonoids in physiolog-

ical regulation, chemical messaging, deterring of the

feeding, and possibly pathogen attack response. In

fact, flavonoids serve as phytoalexins categorized as

compounds that protect plants from different types of

Fig. 1 Chemical structures of flavones
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pathogens (Cowan 1999). For example, a flavanone

sakuranetin was found in abundance in rice, where it

combats various pathogens, both bacterial and fungal

(Cho and Lee 2015). Moreover, many classes of

flavonoids have been identified as allelochemicals that

inhibit the growth of microorganisms around the plant.

Examples of those include chalcones, dihydrochal-

cones, flavonols, flavanols, flavanones and isoflavo-

noids (Beck and Stengel 2016; Iwashina 2003).

Mechanisms of antimicrobial action by flavonoids

To date, many flavonoids were characterized by the

antibacterial activities against plant pathogens, which

could be effectively applied to fight human pathogens.

Moreover, the antibacterial activities of many plant-

derived flavonoids use different mechanisms than

those of conventional drugs, and thus could be of

importance in the enhancement of antibacterial ther-

apy (Pandey and Kumar 2013).

Membrane disruption

The bacterial plasma membrane is responsible for

osmoregulation, respiration and transport processes,

biosynthesis and cross-linking of peptidoglycan, as

well as biosynthesis of lipids. For performing all of

these functions, membrane integrity is a prerequisite,

and its disruption can directly or indirectly cause

metabolic dysfunction and finally lead to bacterial

death (Hartmann et al. 2010). To date, flavonoids,

especially catechins, have been widely studied for

their antimicrobial properties in both Gram-positive

and Gram-negative bacteria. The interactions of

flavonoids with lipid bilayers involve two mechanisms

(Tsuchiya 2015). The first is associated with the

partition of the more non-polar compounds in the

hydrophobic interior of the membrane, while the

second one includes the formation of hydrogen bonds

between the polar head groups of lipids and the more

hydrophilic flavonoids at the membrane interface.

Moreover, nonspecific interactions of flavonoids with

Fig. 2 Chemical structures of isoflavones
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phospholipids can induce structural changes in the

properties of the membrane (e.g., thickness and

fluctuations) and indirectly modulate the distribu-

tion/function of membrane proteins, as well as

influence pharmacological properties of flavonoids

themselves (Arora et al. 2000). However, the mech-

anism responsible for the flavonoid–membrane inter-

action has not yet been fully understood and the

Fig. 3 Chemical structures of flavonols
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literature so far remains controversial (Sanver et al.

2016).

Catechins (Fig. 4) are often linked to the antimi-

crobial effects and related to the interactions with the

cell membrane. Contrasting to the protective effects of

flavonoids on membranes, catechins were shown to

rupture the bacterial membrane by binding to the lipid

bilayer and by inactivating or inhibiting the synthesis

of intracellular and extracellular enzymes (Reygaert

2014). Moreover, recent studies employing cell mod-

els have highlighted the pro-oxidative activity of

several polyphenols already known as antioxidants,

Fig. 4 Chemical structures of
flavanols (catechins)
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namely epicatechin (EC, compound 39), epigallocat-

echin gallate (EGCG, compound 42) and a flavonol

quercetin (32) (Bouayed and Bohn 2010). Fathima and

Rao (2016) reported that the mode of action of killing

bacteria by catechins was found to be an oxidative

burst by the generation of reactive oxygen species

(ROS) that cause alteration in the membrane perme-

ability and membrane damage. It should be noted

however, that oxidative bursts occur only at high

EGCG concentrations. Liposome studies also showed

Fig. 5 Chemical structures of flavanones
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membrane disruption by this compound (Sirk et al.

2009). Interestingly, liposomes containing high

amounts of negatively charged lipids, were less

susceptible to catechin damage, just as catechins have

less effect on Gram-negative bacteria due to nega-

tively charged LPS of the outer bacterial membrane

(Ikigai et al. 1993). It correlates well with studies

reporting lower antibacterial activities of catechins

against Gram-negative bacteria versus Gram-positive

bacteria (Cushnie et al. 2008). Cushnie et al. (2008)

reported that membrane disruption by catechins

causes potassium leakage in methicillin-resistant Sta-

phylococcus aureus (MRSA) strain, which is the first

indication of a membrane damage in microorganisms

(Lambert and Hammond 1973). They have also

noticed that more lipophilic, acylated to 3-O-oc-

tanoyl-epicatechin (43) yields better results in antibac-

terial studies, than unmodified epicatechin (39). The

increased activities are the result of enhanced mem-

brane affinity of their long acyl chains (Matsumoto

et al. 2012).

Other flavonoids are also often reported to possess

membrane-disrupting activities. Sato et al. (1997)

reported that 2,4,60-trihydroxy-30-methylchalcone

(62) leads Streptococcus mutans to leak intracellular

substances such as protein and ions. Mirzoeva et al.

(1997) noticed that quercetin (32) from propolis

causes a decrease of proton-motive force in S. aureus

and suggested that increased membrane permeability

contributes to the synergistic activity of propolis with

antibiotics, such as tetracycline and ampicillin (Ste-

panovic et al. 2003). Furthermore, Ollila et al. (2002)

showed that flavones acacetin (9) and apigenin (10), as

well as flavonols morin (26) and rhamnetin (37),

caused destabilization of the membrane structure by

disordering and disorientation of the membrane lipids

Fig. 6 Chemical structures of flavanonols
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and induced leakage from the vesicle. Tsuchiya and

Iinuma (2000) reported that flavanones naringenin

(51) and sophoraflavanone G (56) have antibacterial

activity against MRSA. They have also noticed that

the antibacterial effect of these flavonoids is caused by

reducing the fluidity in hydrophilic and hydrophobic

regions of the both inner and outer cellular membrane.

Sanver et al. (2016) showed that flavonols quercetin

(32), rutin (quercetin-3-O-rhamnoglucoside, com-

pound 35) and tiliroside (38) decreased the bilayer

thickness, furthermore rutin disrupted the lipid mono-

layer structure. Synthetic lipophilic 3-arylidenefla-

vanones (substituted with various phenolic compound

at the C-3 position of C Ring) were found to be highly

active against S. aureus, Staphylococcus epidermidis,

and Enterococcus faecalis due to flavonoid-initiated

bacterial cell aggregation that influences the integrity

of membranes and causes biofilm disturbance

(Budzynska et al. 2011).

Concluding, differences in the number and distri-

bution of hydroxyl groups, the polymerization degree,

as well as the presence of a methoxy groups in the C

ring, can influence the type of interactions that occur

between different flavonoids and lipid bilayers (Oteiza

et al. 2005). Moreover, flavonoids lacking hydroxyl

groups on their B Rings are more active against

Fig. 7 Chemical structures of chalcones. It should be noted that
positions of substituents in semi-systematic names may differ
compared to original reports due to variations in numeration of
the positions of the rings in chalcone structures. We adjusted the

nomenclature of chalcones in this paper, according to the most
common numeration approach (Boumendjel 2003). The chem-
ical structures are consistent with the original reports
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microbial membranes than those with the –OH groups

(Chabot et al. 1992). This is due to negative correlation

between the relative hydrophobicity of flavonoids and

the number of hydroxyl group present. Furthermore,

other authors suggest that lipophilic flavonoids which

are highly hydroxylated can be more disruptive for

membrane structure (Matijašević et al. 2016; Mishra

et al. 2009; Sato et al. 1996). It is worth noting that

bacterial membrane damage by catechins and other

flavonoids may also result in an inability of the

bacteria to secrete toxins (Lee et al. 2011; Shah et al.

2008).

Biofilm formation

Bacterial biofilm-based infections constitute a signif-

icant amount of all microbial and chronic infections in

animals and humans, as well as in food spoilage

(Abdullahi et al. 2016; Jamal et al. 2018). One of the

crucial features of bacteria growing as biofilms is that

they become from 10 to 1000 times more resistant to

antimicrobial agents when compared to their plank-

tonic cells (Kon and Rai 2016). The current medicinal

approaches to eradicate biofilm bacteria using sys-

temic antibiotic treatments are very limited. However,

antibiofilm phytochemical compounds were shown to

influence the bacterial biofilm establishment and

growth as well as the related bacterial adhesion,

motility, and quorum sensing (QS). Furthermore,

these compounds are believed to have a lower

probability of bacterial resistance occurrence (Borges

et al. 2013).

Although the initiation of biofilm formation has

been thought to be due to random attachment of single

cells to a surface, which is followed by cells dividing

and developing into mature, three-dimensional bio-

films (Costerton et al. 1995). However, Kragh et al.

(2016) have showed that multi cellular bacteria

composites perform better than single cells during

the biofilm development. Interestingly, there are

reports of flavonoids supporting bacterial aggregation.

Stapleton et al. (2004) observed pseudo multicellular

aggregates of S. aureus after incubation with EGCG

(42) and 3-O-octanoyl-epicatechin (43). Flavonols

have also been reported to cause aggregations of

bacterial cells, particularly galangin (25) (Cushnie

et al. 2007). It should be noted however, that growth of

the bacteria was inhibited after aggregation. Presum-

ably, flavonoids cause bacterial aggregation by their

partial lysis, which leads to membrane fusion, and

consequently reduces the active nutrient uptake via a

smaller membrane area, thus it cannot be stated that

flavonoids support biofilm formation. On the contrary,

multiple research teams reported that flavonoids in

fact inhibit biofilms. For example, Awolola et al.

(2014) showed a significant antibiofilm activity of

isovitexin (apigenin-6-C-glycoside 14), EC (39) and

5,7,40-trihydroxyflavanol (44) against S. aureusATCC

29213. Similarly, El-Adawi (2012) observed a

55–66% decrease in S. mutans biofilm formation upon

exposure to 2–15% EC. However, Nyila et al. (2012)

observed that EC from Acacia karroo did not reduce

Listeria monocytogenes biofilms.

Quorum sensing, in particular, autoinducer-2-me-

diated cell–cell signaling, was proposed as a signifi-

cant regulatory factor for the biofilm production in

Escherichia coli, Vibrio spp., and Salmonella typhi-

murium (Vikram et al. 2010). Interestingly, citrus

flavonoids, such as apigenin (10), kaempferol (28),

quercetin (32) and naringenin (51) are effective

antagonists of cell–cell signaling (Vikram et al.

2010). Furthermore, quercetin (assigned with

antileishmanial and antibacterial activities (Gatto

et al. 2002; Prasad et al. 2014)) was shown to inhibit

enteroaggregative E. coli EAEC 042 biofilm (Barboza

et al. 2016). Quercetin inhibited alginate production in

a concentration-dependent manner, resulting in the

declination in the adherence during biofilm formation.

Moreover, this flavonoid inhibited N-acyl homoserine

lactones (AHL)-mediated QS. Most notably, quercetin

upregulates the expression of several iron siderophore

proteins limiting the amount of Fe3? that is required

for the biofilm formation of Pseudomonas aeruginosa

Fig. 8 Chemical structures of other flavonoids mentioned in
this paper
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(Ouyang et al. 2016; Symeonidis andMarangos 2012).

Kaempferol (28), epicatechin gallate (ECG, com-

pound 40) and EGCG (42) were reported to mediate

the displacement of AHL molecules from LuxR-type

transcriptional activator protein (Roy et al. 2017),

while chrysin (12), phloretin (68) and naringenin (51)

inhibited QS synthase/receptor pairs, LasI/R, and

RhlI/R (Paczkowski et al. 2017). Cranberry A-type

proanthocyanidins (Fig. 8) are also found to be anti-

adhesion agents against the Gram-negative bacterium

P. aeruginosa (Ulrey et al. 2014). Ulrey et al. (2014)

suggested that the mechanism of A-type proantho-

cyanidins against the biofilm formation results from

their chelating properties.

Hydrophilic flavonoids can interact at the mem-

brane surface and provide protective actions against

different deleterious agents and biofilm formation

(Oteiza et al. 2005). However, Lee et al. (2011)

showed that biofilm reduction by flavonoids does not

result from their antioxidant properties alone. They

demonstrated that flavones, such as 6-aminoflavone

(1), 6-hydroxyflavone (2), apigenin, chrysin (12), as

well as isoflavones daidzein (21) and genistein (22),

and a dihydrochalcone phloretin (68) had inhibitory

effects on E. coli O157:H7 biofilm formation,

although antioxidant compounds (vitamin C and

vitamin E) did not show such effect. Furthermore,

phloretin (a natural, nontoxic apple flavonoid) caused

the most significant reduction of enterohemor-

rhagic E. coli O157:H7 biofilms without affecting

the growth of planktonic cells. Similar effect was

showed for the auronol called derriobtusone A (74)

that inhibited the biofilm formation in E. coli, although

the planktonic growth of E. coli was only weakly

inhibited (Vasconcelos et al. 2014). Notably, phloretin

(68) showed a dose-dependent inhibition of biofilm

and did not harm commensal E. coli K-12 and

nonpathogenic E. coli ATCC 4157 biofilm (Lee

et al. 2011). This is an important feature of phloretin,

since antibiofilm agent should be able to selectively

inhibit the pathogenic strains without wiping out the

commensal microflora.

Fimbriae, including curli and pili, are important

factors for the biofilm formation (Rendón et al. 2007).

Phloretin (68) reduced fimbriae formation in E. coli

O157:H7, due to repression of the expression of the

curli genes (csgA and csgB) (Lee et al. 2011). This

study also reported that phloretin repressed the

expression of two toxin genes (hemolysin hlyE and

Shiga toxin 2 stx2). However, phloretin was also

shown to induce stress resistance genes, such as

marRAB and hcsBA genes (Lee et al. 2011). Thus,

phloretin could positively influence the antibiotic

resistance as well.

Efflux-pump inhibitors (EPI) are aimed not only to

block the efflux pumps, but also the biofilm formation

(Sana et al. 2015). Pinostrobin (a dietary flavanone

discovered in the wood of pine, Pinus strobus,

compound 53) enhanced membrane permeability in

both Gram-positive and Gram-negative bacteria (E.

faecalis, S. aureus, E. coli and P. aeruginosa), which

correlated well with its effect on EPI and antibiofilm

formation in Gram-negative bacteria (Christena et al.

2015). Christena et al. (2015) suggested that pinos-

trobin exerts its antibiofilm effect by the mechanism

that is unrelated to its EPI effect and may not involve

the repression of curli genes. This is in contrast to the

report of pinostrobin EPI effect in S. typhimurium

(Baugh et al. 2012). Tea EGCG (42) provides another

example of effective antimicrobial agent against both

the planktonic and biofilm forms of E. faecalis. Tea

EGCG inhibits not only the bacterial growth, but also

suppresses the expression of specific genes related to

biofilm formation (Lee and Tan 2015). A number of

prenylated flavonoids isolated from Epimedium spe-

cies inhibited Porphyromonas gingivalis biofilm for-

mation, however, the antibiofilm mechanism of those

flavonoids remains unknown (Kariu et al. 2016;

Olczak et al. 2005).

Inhibition of cell envelope synthesis

Bacterial-type II fatty acid synthase (FAS-II) differs in

many ways from the mammalian one (FAS-I), which

makes it excellent target for an antimicrobial agent.

Multiple inhibitors of the FAS-II components have

been reported to date and summarized below.

Quercetin (32), apigenin (10), and sakuranetin (54)

were shown to inhibit 3-hydroxyacyl-ACP dehydrase

from Helicobacter pylori (Zhang et al. 2008b).

Extensive research has been made on 3-ketoacyl-

ACP synthase from E. faecalis and 11 flavanones with

different configurations of hydroxyl groups have been

screened (Jeong et al. 2009). The best result was

obtained for the use of eriodictyol (49), naringenin

(51) and taxifolin (60). Parallel docking studies,

conducted by the same team, indicate that hydrogen

bonds between flavonoid hydroxyl groups at C-40 and
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C-50 of B ring and enzyme amino acid residues Arg38

and Phe308 were the key for their antibacterial activity

(Figs. 5, 6). Elmasri et al. (2017) reported 5,6,7,40,50-

pentahydroxyflavone (3) and 5-hydroxy-40,7-

dimethoxyflavone (5) to downregulate the malonyl

CoA-acyl carrier protein transacylase fabD (MCATs)

that regulates bacterial FAS-II. Thus, these two

flavones are considered to be the promising drugs for

blocking the bacterial growth. Furthermore, EGCG

(42) from green tea inhibited specific reductases

(FabG, FabI) in the bacterial FAS-II (Zhang and Rock

2004). FabG enzyme (beta-ketoacyl-[acyl carrier

protein] reductase) participates in the fatty acid

biosynthesis and is the only known isoenzyme to

catalyze the reduction of the bacterial membrane b-

keto groups (Li et al. 2006). Therefore, this enzyme is

an ideal target for the development of new antibiotics.

Inactivation of FabG probably occurs as a result of

EGCG-induced aggregation of this enzyme. Finally,

other enzymes involved in fatty acid biosynthesis,

such as 3-ketoacyl-ACP reductase and enoyl-ACP

reductase from many bacteria are inhibited by EGCG

as well (Li et al. 2006; Zhang et al. 2008a; Zhang and

Rock 2004).

Mycobacteria cause some of the most serious

diseases, which are notoriously difficult to treat (Chen

et al. 2010). The presence of mycolic acids is one of

the most distinctive and essential survival features of

the mycobacterial cell wall. Those bacteria possess

two types of fatty acid synthases, a mammalian-type

FAS-I, and a bacterial-type FAS-II, both of which are

important for the biosynthesis of mycolic acid. A

number of flavonols have been shown to inhibit FAS-I,

including: quercetin (32), kaempferol (28), fisetin

(24), morin (26) andmyricetin (27), as well as flavones

baicalein (11) and luteolin (15), and EGCG (42) (Li

and Tian 2004). Moreover, some of these flavonoids

possessed activity against FAS-II components as well,

including enoyl-ACP-reductase, b-ketoacyl-ACP

reductase, and b-hydroxyacyl-ACP dehydratases

(Brown et al. 2007). Furthermore, Brown et al.

(2007) reported that chalcones 4,20,40-trihydroxychal-

cone (61), butein (64), isoliquirtigenin (65), and a

flavonol fisetin (24) possess inhibitory activity against

FAS-II from Mycobacterium bovis BCG.

Peptidoglycan is an essential component of the

bacterial cell wall, and the inhibition of its synthesis is

a common mechanism of action of conventional

antimicrobial drugs and flavonoids. Baicalein (flavone

from Scutellaria baicalensis, 11) supported induced

by EGCG (42) peptidoglycan damage (Fujita et al.

2005). Flavonols galangin (25), kaempferide (30), and

kaempferide-3-O-glucoside (31) showed not only

activity against amoxicillin-resistant E. coli, but also

the ability to reverse the resistance via inhibition of

peptidoglycan and ribosome synthesis (Eumkeb et al.

2012). Another study on the mechanism of action of

catechins showed that they interfere with the biosyn-

thesis of the bacterial cell wall by binding with the

peptidoglycan layer. Cell wall synthesis was also

inhibited by a synergistic effect of EGCG (42) and

DL-cycloserine (an inhibitor unrelated to penicillin-

binding protein) (Zhao et al. 2001). Furthermore, since

both EGCG and b-lactams (benzylpenicillin, oxacil-

lin, methicillin, ampicillin, and cephalexin) directly or

indirectly target peptidoglycan (Zhao et al. 2001),

EGCG synergizes the activity of b-lactams. Kinetic

studies on D-alanine-D-alanine ligase, responsible for

the production of the terminal dipeptide of peptido-

glycan precursor UDPMurNAc-pentapeptide, showed

that quercetin (32) and apigenin (10) inhibit this

enzyme (Wu et al. 2008). These two flavonoids bind to

the active center of D-alanine-D-alanine ligase (Singh

et al. 2013; Wu et al. 2008). However, quercetin had

poorer activity compared to apigenin, which is

attributed to its additional -OH groups that enforce

its affinity to the enzyme (Figs. 1, 3). In the contrast,

sakuranetin (54), a flavonoid similar to apigenin (it has

7-methoxy instead of 7-hydroxy group, and no double

bond on C ring, Figs. 1, 5), has no inhibitory effect

(Wu et al. 2008). Furthermore, the hydrophilic nature

of quercetin limits its penetration into the bacterial

cell.

Inhibition of nucleic acid synthesis

Flavonoids have been reported to be significant

topoisomerases inhibitors, which contributes to their

antimicrobial activity. For example, DNA gyrase is an

essential enzyme for the DNA replication and it is

exclusive to prokaryotes, which makes it an attractive

target for antibacterial drugs (Plaper et al. 2003).

Ohemeng et al. (1993) reported the inhibition of DNA

gyrase from E. coli by quercetin (32), apigenin (10),

and 3,6,7,30,40-pentahydroxyflavone (4). Moreover, in

silico analysis suggested that subunit B of DNA gyrase

from Mycobacterium smegmatis and M. tuberculosis

can be targeted by quercetin (Suriyanarayanan et al.
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2013). This report was confirmed, by the studies

conducted on different gyrase subunits that revealed

quercetin binding to the B subunit of gyrase and the

corresponding blockage of ATP binding pocket by the

formation of hydrogen bonds via 5, 7 and 30 –OH

groups to the amino acid residues of DNA gyrase

(Fig. 3) (Plaper et al. 2003). It is in correlation with the

studies that reported the blockage of ATP binding

pocket of D-alanine-D-alanine ligase by the same

flavonoids (Wu et al. 2008). Moreover, the related

flavonoids chrysin (12) and kaempferol (28) greatly

inhibited DNA gyrase from E. coli (nobiletin (16),

tangeritin (19) and myricetin (27) were less efficient

inhibitors) (Wu et al. 2013). Those studies showed that

flavonoid hydroxyl groups allow better association

with the gyrase compared to methoxy groups,

although an extra 50-OH in myricetin greatly

decreased its gyrase inhibition properties (Fig. 3)

(Wu et al. 2013). The second mechanism of DNA

gyrase inhibition was proposed by molecular docking

studies (Fang et al. 2016; Plaper et al. 2003), which

suggest that flavonoids inhibit the DNA supercoiling

by competitively interacting with the ATP binding site

of the DNA gyrase B subunit (GyrB). In this mech-

anism of action, flavonoids binding to DNA stabilizes

the DNA–gyrase complex that leads to DNA cleavage

induction (Plaper et al. 2003). Moreover, Fang et al.

(2016) reported 3-hydroxyl, 5-hydroxyl, 7-hydroxyl,

and 4-carbonyl groups to be crucially active sub-

stituents of flavonoids by interacting with key residues

of GyrB. This result is in accordance with previous

studies of Wu et al. (2013). Furthermore, Ulanowska

et al. (2006) showed that isoflavone genistein (22)

inhibits the growth of Vibrio harveyi (with interme-

diate effect on Bacillus subtilis and little effect on

E. coli) in a dose–response manner. They suggested

that the inhibition of growth of the bacteria species

results from genistein-mediated stabilization of the

topoisomerase II–DNA cleavage complex that leads to

the impairment of cell division and/or completion of

chromosome replication (Verdrengh et al. 2004).

Helicases are ubiquitous motor proteins that sepa-

rate and/or rearrange nucleic acid duplexes in reac-

tions fueled by adenosine triphosphate (ATP)

hydrolysis (Shadrick et al. 2013). Similarly to topoi-

somerases and gyrases, their function is essential for

DNA replication. Recent studies suggested these

proteins as molecular targets of flavonoids. Flavones

and flavonols, the groups of pharmacophores with

nucleic acid binding capacity, have been screened as

helicase inhibitors. A flavone luteolin (15) and its

structurally related flavonols, such as morin (26)

myricetin (27), were shown to inhibit the replicative

helicases like DnaB and RecBCD helicase/nuclease of

E. coli (Xu et al. 2001). Moreover, myricetin inhibited

Gram-negative bacterial growth and was proposed to

be a potent inhibitor of numerous DNA and RNA

polymerases, as well as viral reverse transcriptases

(along with baicalein (11)) (Ono et al. 1990) and

telomerases (Griep et al. 2007).

Dihydrofolate reductase (DHFR) is a common

target of many drugs, including antimicrobial agents.

The DHFR is an important enzyme of the folic acid

synthesis pathway, which provides precursor of

pyrimidines and purines (Bhosle and Chandra 2016).

EGCG (42) was reported to inhibit DHFRs from

Streptomonas maltophilia,Mycobacterium tuberculo-

sis, and E. coli (Navarro-Martinez et al. 2005; Raju

et al. 2015; Spina et al. 2008). Furthermore, EGCG

had synergistic effects with other inhibitors of folic

acid pathway, such as sulfamethoxazole and etham-

butol (Navarro-Martinez et al. 2005; Raju et al. 2015).

Flavonoid DNA intercalation, that inhibits bacterial

nucleic acid synthesis, was also proposed as a

mechanism underlying their antimicrobial properties.

Mori et al. (1987) noticed that the incubation with

EGCG (42), myricetin (27), and robinetin (17) resulted

in reduced DNA, RNA, and protein synthesis by

Proteus vulgaris and S. aureus. They proposed that

this process resulted from the intercalation of

flavonoids with nucleic acids, mediated by flavo-

noid-free hydroxyl group at C-3 of A ring and 30,40,50-

trihydroxyl motif at B ring (Figs. 1, 3, 4). However,

DHFR inhibition could explain the reduction of DNA

and RNA synthesis by EGCG, as well. Furthermore,

myricetin and robinetin, which share similar structure,

also seem to be the possible DHFR inhibitors. These

observations raise the question, ‘‘whether those com-

pounds only reduce nucleic acid synthesis via DNA

intercalation/DHFR inhibition or they have got mul-

tiple target sites?’’ Giving the low specificity of

EGCG, lowered DNA and RNA synthesis could result

from multiple enzyme inhibitions and proton-motive

force (PMF) disruption. Numerous studies reported on

flavonoid-mediated topoisomerase inhibition and

DNA intercalation in human cancer cells (reviewed

by Russo et al. (2012)), suggesting the universal

mechanisms of their action.
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Inhibition of electron transport chain and ATP

synthesis

The membrane potential, being the essential main

energy source for almost all chemical processes in

living systems, is the most important factor for the

survival and growth of bacterial cells. Notably, the

treatment of S. aureus with isobavachalcone (66) and

6-prenylapigenin (7) from Dorstenia species resulted

in bacterial membrane depolarization (Dzoyem et al.

2013). Furthermore, Haraguchi et al. (1998) reported

that licochalcones from Glycyrrhiza inflata inhibited

oxygen consumption in Micrococcus luteus cells, and

the site of inhibition was thought to be between CoQ

and cytochrome c in the bacterial electron transport

chain. Although licochalcones A, B, C, and D

(compounds 69–72) caused inhibition of NADH-

cytochrome c reductase activity in the membrane

fraction, while cytochrome c oxidase was not inhib-

ited. However, only licochalcones A and Cmanifested

antibacterial activities against Gram-positive bacteria

and it was attributed to the presence of lipophilic

prenyl moiety on the D ring of licochalcones A and C

(Fig. 7), which facilitates their infiltration into the

bacterial cell (Haraguchi et al. 1998).

Recently, it has been reported that flavonoids can

inhibit F1FO ATPase of E. coli (Chinnam et al. 2010).

ATP synthase is a highly conserved enzyme with two

sectors, F1 and FO. In E. coli, F1 is composed of

a3b3cdeab2c10, while FO consists of ab2c10. ATP

hydrolysis and synthesis occur on three catalytic sites

in the F1 sector, whereas proton movement occurs

through the membrane-embedded FO (Senior et al.

2002). A wide range of polyphenols has been shown to

bind at the distinct polyphenol binding site and inhibit

the ATP synthase. The polyphenol binding pocket lies

at the interface of a, b, and c-subunits of F1 sector.

Therefore, the proposed mode of flavonoid inhibitory

action was the binding at the polyphenol binding

pocket of ATP synthase and the blockage of clockwise

or anticlockwise rotation of the c-subunit (Gledhill

et al. 2007). Furthermore, the polyphenol binding

pocket residues are highly conserved among different

species including human, bovine, rat, and E. coli

(Walker et al. 2000) Thus, there is great chance that

other microorganisms may be susceptible to this type

of inhibition (Chinnam et al. 2010). The most effective

inhibitors of E. coli F1FO ATPase include baicalein

(11), morin (26), EC (39), as well as flavanonols

silibinin (58) and silymarin (59) (Chinnam et al.

2010). Furthermore, quercetin (32), quercetin-3-glu-

coside (isoquercetin, 33) and quercetin-3-O-rham-

noside (quercitrin, 34) are known to prevent the ATP

hydrolysis, although not the ATP synthesis (Chinnam

et al. 2010). EGCG (42) inhibited the acidogenic and

aciduric properties of S. mutans, probably by the

inhibition of the enzymatic activity of F1FO ATPase

(Xu et al. 2011, 2012). Ulrey et al. (2014) demon-

strated that the treatment of P. aeruginosawith A-type

proanthocyanidins (isolated from Cranberries, mono-

mer shown on Fig. 8—compound 73) downregulated

the proteins involved in ATP synthesis: a cytochrome

c (NP_251172), hypothetical protein (NP_251171); as

well as protein subunits of acetyl-CoA carboxylase

(NP_254123), fumarase (NP_253023), and aconitate

hydratase (NP_249485).

A decline in the overall bacterial metabolism can

lead to the indirect arrest of the biofilm formation, as

well. Notably, the 40,50,5-trihydroxy-6,7-dimethoxy-

flavone (8) (from Teucrium polium) was reported to

affect the F-type ATP synthase (atpD) and thus reduce

the ATP availability in S. aureus (Elmasri et al. 2017).

Antibacterial action of flavonoid-metal complexes

Havsteen (2002), in his voluminous paper on flavo-

noid properties, tried to explain the antibacterial

activities of flavonoids. Since many studies showed

the ability of flavonoids to chelate transitionmetal ions

(Karlı́čková et al. 2015; Li et al. 2015; Riha et al. 2014;

Samsonowicz et al. 2017), he pointed out that many

flavonoids could cause the inhibition of bacterial metal

enzymes. This mechanism of action is common for

many other antibacterial substances, including lacto-

ferrin from human milk.

Flavonoid chelation sites include two proximal

hydroxyl groups (o-dihydroxyl group in ring B or ring

A), the 3-hydroxy-4-keto group of the C ring or via the

5-hydroxy-4-keto position of the A and C rings.

Although the antibacterial activity of complexes

depends strongly on the metal ion, the preferred metal

binding site depends on the flavonoid, and on the pH

value (Kasprzak et al. 2015). Literature data suggested

that the flavonoids predominantly form complexes

with a metal in 1:2 ratio and that their binding

efficiency is also associated with the transition state of

metal ions (e.g., Fe2?[ Fe3?) (Ren et al. 2008). One

of the well-known flavonoid–metal complexes are the
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quercetin (32) complexes. Bravo and Anacona (2001)

demonstrated that Mn2?, Hg2?, Co2?, and Cd2?

complexes of quercetin show bactericidal effect

against S. aureus, Bacillus cereus, P. aeruginosa,

E. coli, and Klebsiella pneumoniae. Comparatively,

quercetin alone at the same concentration had no

activity. Similar reports are available for morin (26,

Mg2? and Ca2? complexes) against Micrococcus

flavus and S. aureus (Panhwar and Memon 2011)

and 40,7-dimethylapigenin (6, Cu2?, Ni2?, Co2?,

Zn2?, Fe3?, Cr3?, Cd2?, and Mn2?) against E. coli,

S. aureus, and P. vulgaris (Wang et al. 1992). Despite

these studies, the antibacterial mechanism of flavo-

noid–metal complexes have not been conclusively

established yet. For example, the La3? and Gd3? (their

metal–ligand ratio was 6:3, and 8:3, respectively)

complexes of morin (26) had lesser antibacterial

activity, when compared to their parent flavonoids

(Kopacz et al. 2005). Complexation with metal ions

causes changes in the flavonoid structure, in their

affinities to various intracellular targets, as well as in

their antioxidant and prooxidant properties. Hence, the

different antibacterial activities of the flavonoid–metal

ion complexes result from their interaction with

different targets than their parent flavonoids. By all

means, an antimicrobial resistance tometals (reviewed

by Hobman and Crossman (2015)) cannot be

excluded.

Inhibition of bacterial toxins

Important virulence factors, such as bacterial hyalur-

onidases (produced by both Gram-positive and Gram-

negative bacteria), directly interact with host tissues or

mask the bacterial surface from host0s defense mech-

anisms. In the bacterial pathogenesis, hyaluronidase-

mediated degradation of hyaluronan increases the

permeability of connective tissues and decreases the

viscosity of body fluids (Girish and Kemparaju 2007).

Notably, flavonols, such as myricetin (27) and

quercetin (32) have been identified as hyaluronic acid

lyase (Hyal B) inhibitors in Streptococcus agalactiae.

The inhibitory effect of the flavonoids increased with

the number of hydroxyl groups present in the

flavonoid structure (Hertel et al. 2006). However,

hyaluronate lyases from Streptomyces hyalurolyticus

(Hyal S), and Streptococcus equisimilis (Hyal C) were

only inhibited slightly (Hertel et al. 2006).

Flavonoids, especially catechins and proantho-

cyanidins (due to antioxidant properties), were pro-

posed to neutralize bacterial toxic factors originating

from Vibrio cholerae, S. aureus, Vibrio vulnificus,

Bacillus anthracis, and Clostridium botulinum

(Ahmed et al. 2016; Choi et al. 2007; Delehanty

et al. 2007). Similarly, genistein (22) inhibited the

exotoxin from S. aureus, while kaempferol (28),

kaempferol-3-O-rutinoside (29), and quercetin gly-

coside inhibited the neurotoxin from C. botulinum

(Sawamura et al. 2002). The a-hemolysin (Hla), a

member of bacterial pore-forming b-barrel toxins, is

one of the most important virulence factors produced

by S. aureus. Soromou et al. (2013) reported that

pinocembrin (52), a honey flavanone, reduced S.

aureus a-hemolysin production in a concentration-

dependent manner (pinocembrin reduces the tran-

scription level of Hla and d-haemolysin genes).

Pinocembrin have also been studied to evaluate its

mechanism of actions on the bacterial membranes of

Neisseria gonorrhoeae. Although the pinocembrin-

induced cell lysis has been observed in the study,

mechanisms of actions of this compound have not

been fully elucidated (Rasul et al. 2013; Ruddock et al.

2011). Sugita-Konishi et al. (1999) reported that

EGCG (42) and gallocatechin gallate (GCG, 41)

suppressed the release of verotoxin from enterohem-

orrhagic E. coli cells and concluded that green tea

catechins can be used to prevent the food poisoning

caused by E. coli.

In conclusion, flavonoids manifest many interesting

mechanisms of antibacterial action (Fig. 9). There are

however, antibacterial flavonoids with little known

mechanism, as well as the ones with multiple cellular

targets. Further investigation of action mechanisms

and structure–activity relationship could help us not

only to reveal novel antimicrobials, but also to find the

most target-specific ones, which in case of possible

therapeutic application of flavonoids, remains critical.

Flavonoids as antimicrobial potentiators

Mechanism of resistance to antibacterial agents

Pathogenic bacteria may gain the resistance to antibi-

otic drugs through different mechanisms, such as

prevention of interaction of the drug with the target,

efflux of the antibiotic from the cell, and direct
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destruction or modification of the drug compound

(Fig. 10). Moreover, bacteria can share the resistance

genes, for example, the gene of b-lactamase, an

enzyme hydrolyzing the amide bond in the b-lactam

ring through transformation (incorporation of naked

DNA), transduction (phage-mediated), and conjuga-

tion (Fig. 10). Gram-negative bacteria prefer b-lactam

ring hydrolysis, whereas resistance to in Gram-posi-

tive bacteria is mostly achieved by modifications of

the target site of antibiotics (Bush 2013; Bush and

Fisher 2011).

Another bacterial strategy to cope with the presence

of antibiotics is to produce enzymes that inactivate the

drug by adding specific chemical moieties to this

compound. In the case of Gram-negative bacteria, the

aminoglycoside group of antibiotics becomes ineffec-

tive due to the phosphorylation, adenylation, or

acetylation of the antibiotic molecule (Munita and

Arias 2016). The aminoglycoside-modifying enzymes

(AMEs) that covalently modify the hydroxyl or amino

groups of the aminoglycoside molecule become the

predominant mechanism of aminoglycoside resistance

worldwide (Ramirez and Tolmasky 2010). Further-

more, the chloramphenicol acetyltransferases chemi-

cally inactivate chloramphenicol in both Gram-

positive and Gram-negative bacteria (Schwarz et al.

2004).

Bacteria have also developed mechanisms that

decrease the antibiotic uptake by preventing the

antibiotic from reaching its intracellular or periplas-

mic target. Hydrophilic molecules such as b-lactam

antibiotics, tetracyclines, and some fluoroquinolones

are translocated through the membrane by water-filled

diffusion channels known as porins (i.e., OmpF,

OmpC, and PhoE) (Pages et al. 2008). Bacteria

decrease porin-mediated antibiotic uptake by either a

Fig. 9 Diagrammatic representation of action mechanism of
flavonoids. Flavonoids can kill or inhibit bacterial cells in
variety of ways, such as causing membrane disruption (1) and
inhibition of nucleic acid synthesis (2a—inhibition of dihydro-
folate reductase (DHFR), 2b—helicase inhibition, 2c—gy-
rase/topoisomerase inhibition), as well as inhibit bacterial
virulence, e.g. toxins (3) and quorum sensing, which impairs
their ability to form biofilms (4). Antimicrobial action can be
also executed through inhibition of cell envelope synthesis,

which involves inhibition fatty acid synthase (FAS—5) and
peptidoglycan synthesis (7a—inhibition of Ala–Ala dipeptide
synthesis, 7b—inhibition of peptidoglycan cross-linking).
Flavonoids can inhibit efflux pumps as well, which can lead to
reversing antimicrobial resistance (6). Moreover inhibition of
NADH-cytochrome c reductase activity in the bacterial
respiratory chain (8) and inhibition of ATP synthase (9) were
also reported
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shift in the type of porins expressed (Domenech-

Sanchez et al. 2003), or by changing the level of porin

expression, as well as by impairing the function of

these channels (Fernández and Hancock 2012). More-

over, the described changes in the membrane perme-

ability are often accompanied by an increased

expression of efflux pumps, in both Gram-negative

and Gram-positive bacteria. The efflux pumps may be

substrate-specific (tetracycline or macrolides, such as

erythromycin in pneumococci) or have broad substrate

specificity, which is common for multidrug resistance

bacteria (MDR) (Poole 2005). There are six major

families of efflux pumps: the ATP-binding cassette

(ABC) superfamily (Lubelski et al. 2007), the major

facilitator superfamily (MFS) (Pao et al. 1998), the

multidrug and toxic compound extrusion (MATE) (Lu

2016), the small multidrug resistance (SMR) family

(Bay et al. 2008) (a member of the much larger drug/

metabolite transporter family (DMT) (Piddock 2006)),

the resistance nodulation division (RND) superfamily

(Nikaido and Takatsuka 2009), and newly discovered

proteobacterial antimicrobial compound efflux pump

(PACE) (Hassan et al. 2013). These families differ in

terms of structural conformation, a range of substrates,

energy sources, and in the types of bacterial organisms

in which they are distributed (Soto 2013).

The last common mechanism of antibiotic resis-

tance is interfering with an antibiotic target site either

by preventing the antibiotic to reach its binding site

(target protection) or by target site modification that

decreases an antibiotic binding affinity. Examples of

drugs affected by this mechanisms include tetracy-

cline [Tet(M) and Tet(O)], fluoroquinolones (Qnr),

and fusidic acid (FusB and FusC) resistance (Munita

and Arias 2016). Tet(O) and Tet(M) proteins interact

with the ribosome and dislodge the tetracycline from

its binding site in a GTP-dependent manner, restoring

the protein synthesis (Donhofer et al. 2012; Li et al.

2013). The quinolone resistance protein Qnr belongs

to the pentapeptide repeat protein family and it acts as

a DNA homologue competing for the DNA binding

site of the DNA gyrase and topoisomerase IV. The

reduction in the DNA gyrase–DNA interaction pre-

vents the quinolone molecule from forming the lethal

Fig. 10 Diagrammatic representation of mechanisms of antibi-
otic resistance. Antibiotic resistance can be executed in many
different ways, such as efflux of the antibiotics from the
bacterial cell (1); changing membrane potential, which prevents
antibiotic molecules from entering (2); bypassing target site of
the antibiotic through incorporation of changed precursor (3) or
changing target site by methylation of RNA, mutations, etc. (4).
Antibiotic action can also be abolished through degradation (5)

and chemical modification of antibiotic molecules (6). More-
over, Gram-negative bacteria are resistant to penicillin and other
hydrophilic antibiotics due to the low permeability of their outer
membrane, as well as low expression of porins (7). Furthermore,
bacteria can gain and exchange the resistance genes through
transduction (phage-mediated), conjugation (acquiring plasmid
DNA) and transformation (incorporation of naked DNA) (8)
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DNA–quinolone complex (Aldred et al. 2014). The

antibiotic target site changes may also result from

point mutations in the genes encoding these targets,

enzymatic alterations of the binding sites by methy-

lation, or by ‘‘replacement or bypass of the target site’’.

Classical examples of mutational resistance include

development of rifampin (RIF) resistance (Campbell

et al. 2001) and the resistance to oxazolidinones

(linezolid and tedizolid) (Chen et al. 2013). The

resistance to erythromycin is achieved through the

enzymatic modification of its target site by the

ribosome methylation, which is being catalyzed by

ribosomal methylases (encoded by the Erm genes)

(Leclercq and Courvalin 2002). The ‘‘replacement or

bypass of the target site’’ strategy is used by the

bacteria that are resistant to vancomycin. This antibi-

otic kills bacteria by preventing their cell wall

synthesis by binding to nascent peptidoglycan precur-

sors (D-Ala-D-Ala) and forming a cap that results in the

loss of cross-linking in the polypeptide chain (Gardete

and Tomasz 2014). The vancomycin-resistant bacteria

produce a different variant of the peptidoglycan

precursors (D-alanyl-D-serine or D-alanyl-D-lactate) or

completely destroy the ‘‘normal’’ D-Ala-D-Ala ending

precursors (Hiramatsu 2001; McGuinness et al. 2017).

Occasionally the resistance to antimicrobial agents

can be obtained via combined mechanisms. For

instance, gentamicin resistance, although it does not

rely on the antibiotic modification, it is executed thru

altering the membrane potential and efflux, as well as

16S rRNA methylation (Waglechner and Wright

2017).

Inhibition of bacterial efflux pumps

Bacterial drug efflux pumps can efflux a large number

of structurally unrelated drugs and have a significant

role in the development of antimicrobial resistance in

bacteria (Lubelski et al. 2007). Notably, Wang et al.

(2014) and Lechner et al. (2008b) showed that

biochanin A (20), along with its metabolite genistein

(22) are potentiators of the antibacterial activities of

norfloxacin and berberine in wild-type S. aureus and

M. smegmatis, respectively. However, the inhibitory

effect of those flavonoids on NorA MDR efflux pump

(MFS family) was said to be rather moderate. Mild

inhibitory effects were also reported for the sarothrin

(18) from Alkanna orientalis, which inhibited the

growth of M. smegmatis and S. aureus and possessed

NorA efflux pump inhibitory activity. Although the

sarothrin alone is a weak antimicrobial agent, it could

increase the activity of other antimicrobial compounds

by blocking the bacterial efflux pumps (Bame et al.

2013). Furthermore, Fujita et al. (2005) restored the

effectiveness of tetracycline against MRSA, by

baicalein (11)-mediated inhibition of tetracycline

efflux pump (Tet(K)). However, baicalein inhibited

the transport of tetracycline in E. coli KAM32, which

lacks the AcrAB pump. This latter observation

suggests that baicalein inhibits some other extrusion

pump(s) for tetracycline (Fujita et al. 2005). EGCG

(42) also inhibited Tet(K) pumps in staphylococci,

presumably by inhibiting the expression of Tet

proteins (Roccaro et al. 2004).

In contrast to Gram-positive bacteria, Gram-nega-

tive bacteria are resistant to wide range of antibiotics,

mainly due to the low permeability of their cell

membrane. The main mechanism attributed to their

resistance consists ofMexAB-OprM and AcrAB-TolC

efflux pumps as well as low porin expression (Brei-

denstein et al. 2011). Daidzein (21), an isoflavone,

showed a very slight modulatory effect on M. smeg-

matis as an efflux pump inhibitor (Lechner et al.

2008b). However, molecular docking calculations and

in vitro assays point it as an inhibitor of the MexAB-

OprM and AcrAB-TolC tripartite efflux pumps exist-

ing in P. aeruginosa and E. coli (Aparna et al. 2014).

Daidzein potentiated the efficacy of carbenicillin and

levofloxacin antibiotics against both E. coli and P.

aeruginosa. Furthermore, authors suggested that

daidzein possibly circumvents the efflux resistance

mechanism. The molecular dynamics studies per-

formed by Suriyanarayanan and Sarojini Santhosh

(2015) reported that quercetin (32) could bind to M.

tuberculosis Mmr and E. coli EmrE efflux pumps,

suggesting that it may downregulate the drug efflux

and thus play a role of non-antibiotic adjuvant. A study

by Dey et al. (2015) examined the antimicrobial

activity of EGCG (42) and quercetin against drug-

resistant M. tuberculosis and b-lactamase producing

K. pneumoniae and demonstrated the antimicrobial

effects of both flavonoids. The results of Kurinčič et al.

(2012) demonstrated that EGCG shows antibacterial

activity and enhances antibiotic effects against clinical

isolates of P. aeruginosa, and EGCG was proposed to

act as an inhibitor of the efflux pump MexAB-OprM

(Kurinčič et al. 2012). Similarly, EGCG, by impairing

CmeDEF drug efflux systems, partially reversed the
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drug resistance of Campylobacter spp, (Kurinčič et al.

2012). Moreover, Christena et al. (2015) showed the

role of efflux pumps in quorum sensing, cell-to-cell

signaling, and biofilm formation.

Altogether, these reports suggest that flavonoids act

rather as efflux pumps potentiators than inhibitors, and

the mechanistic relationship between efflux pumps

and biofilm formation requires further studies. The

need for further studies is highlighted by the fact that

efflux pumps make antibiotics ineffective, and the

combination therapy along with the existing flavonoid

inhibitors could solve this problem.

Antimicrobial action vs ROS production

It must be accepted that the mammalian innate

immune system has evolved with sophisticated mech-

anisms to recognize and kill bacteria. These processes

are mediated mainly by the phagocytosis mechanism,

by which macrophages and neutrophils engulf bacte-

rial cells to kill them by an ‘‘oxidative burst’’ produced

by the NADPH oxidase, a main source for the

generation of ROS in activated neutrophils and

macrophages (Nunes et al. 2013).

A lot of studies have showed that the bactericidal

antibiotics such as b-lactams, aminoglycosides, and

fluoroquinolones induced oxidative stress, regardless

of their specific targets, and participated in the ROS-

antibiotic bacteria killing [reviewed by Dwyer et al.

(2014) and Vatansever et al. (2013)]. On the other

hand, several other reports failed to show the link

between ROS and antibiotic-mediated killing [re-

viewed by Van Acker and Coenye (2017)]. These

inconsistent data may have resulted from the presence

of ROS, which are generated through the hyperacti-

vation of normal cell metabolism, as well as the related

difficulty or even the impossibility to completely

separate the effects of decreased ROS levels and ROS

production as a consequence of the action of antibi-

otics (Dwyer et al. 2014; Van Acker and Coenye

2017). Flavonoids are considered as efficient ROS

scavengers; however, the flavonoid concentration in

human plasma and most tissues is too low to effec-

tively reduce ROS (Brunetti et al. 2013). Furthermore,

flavonoid ROS scavenger usage should be carefully

considered, since low ROS concentrations are, on the

contrary, beneficial for bacteria and can induce

resistance. Thus, the function of flavonoids as an

antimicrobial potentiator should rather be associated

with the regulation of the activities of different

proteins and molecular processes, and there is need

for further studies, especially regarding their syner-

gistic action.

Combined action of flavonoids and antibiotics

As already mentioned above, one of the suggested

approaches for improving the antibiotic efficiency

against bacteria involves the use of flavonoids as

potentiators (Brynildsen et al. 2013). Moreover,

flavonoids are used by cells for their protection against

the harmful effects of ROS (Baldim et al. 2017;

Brunetti et al. 2013; Pietta 2000; Prochazkova et al.

2011). Notably, Brynildsen et al. (2013) proposed to

increase the antibiotic efficacy not by impairing the

organism’s ROS defense systems by adjuvants, such

as flavonoids, but by amplifying the endogenous ROS

production, which should compromise its ability to

cope with an oxidative attack from the antibiotic.

Kohanski et al. (2007) demonstrated that quinolones,

b-lactams, and aminoglycosides stimulated hydroxyl

radical formation via the Fenton reaction. Addition-

ally, both the iron chelator and the hydroxyl radical

quencher, which could be flavonoids, attenuate killing

by bactericidal drugs, which suggest that hydroxyl

radicals contribute to bactericidal antibiotic-mediated

cell death. Furthermore, uptake of aminoglycoside

antibiotics (AGs: gentamycin, amikacin, neomycin,

streptomycin, spectinomycin, and tobramycin) is

driven by the proton motive force (Taber et al.

1987), which is abolished when ROS concentrations

are increased over wild-type levels (Ezraty et al. 2013;

Farha and Brown 2013). Flavonoids like other iron

chelators, protect against AGs by blocking AGs

uptake via the impairment of Fe-S cluster synthesis

resulting in the impendence of the PMF (Ezraty et al.

2013).

The most common mechanism of AG resistance is

the chemical modification by bacterial aminogly-

coside-modifying enzymes (AMEs), acetyltrans-

ferases (AACs), nucleotidyltranferases (ANTs), or

phosphotransferases (APHs) (Ramirez and Tolmasky

2010). Unfortunately, only few flavonoids were

reported as inhibitor of these enzymes. The quercetin

(32) was proposed as an APH inhibitor (Daigle et al.

1999; Shakya et al. 2011) and was shown to occupy the

ATP binding site and to interact with the enzyme

APH(200)-IVa through a series of hydrogen bonds.
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Moreover, apigenin (10) although did not affect

APH(200)-IVa, it was able to inhibit the closely related

enzyme APH(200)-IIa. Furthermore, metal cations

(Mg2?, Cr3?, Cr6?, Mn2?, Co2?, Ni2?, Cu2?, Zn2?,

Cd2?, and Au3?) have been demonstrated to inhibit

the AG acetyltransferase activity and to increase the

efficacy of AGs in resistant strains (Li et al. 2015)

Therefore, flavonoids as chelators could be used as a

potential inhibitors of AMEs. However, such flavo-

noid application requires future research.

It should be considered, that combined use of

antibiotics with flavonoids can lead to some negative

effects. For example, isoquercetin (33) showed antag-

onism with aminoglycoside antibiotics such as

neomycin, kanamycin, gentamicin, and amikacin

when tested with E. coli 27 strain. However, quercetin

did not affect the antibacterial activity of the amino-

glycoside antibiotics. Moreover, both isoquercetin and

quercetin (32) did not affect the action of aminogly-

cosides against a multiresistant strain of S. aureus

(Veras et al. 2011).

Testing antimicrobial activities and reasons

for discrepancies in results

Antimicrobial flavonoids are often described by the

minimum inhibitory concentration (MIC), which is

being their minimum concentration that causes visible

inhibition of bacterial growth. MIC assessment is

usually the first step of evaluation of new antimicro-

bials and it is determined in agar dilution or broth

dilution assays (O’Neill and Chopra 2004). Plant

extracts with MIC B 100 lg/mL and purified com-

pounds with MIC B 10 lg/mL are considered

promising (Rios and Recio 2005). However, MIC

parameter describes the bacteriostatic activity of the

given compound only, same as Kirby-Bauer’s agar

diffusion test, which is also commonly used in the

antimicrobial susceptibility testing (Ahmed et al.

2016; Awouafack et al. 2011; Tohma et al. 2016).

However, with the increasing number of immuno-

compromised patients, it is important to develop a

bactericidal drug, rather than just a bacteriostatic

(Corti et al. 2009). Bactericidal activity is determined

by the minimum bactericidal concentration (MBC) in

time-kill assays. MBC and MIC parameters comple-

ment each other and MBC below the four times MIC

value suggests the bactericidal action of a tested

compound (French 2006). However, bactericidal

studies depend on determining the Colony-Forming

Units (CFU) number, while some flavonoids have

been reported to induce the formation of multicellular

aggregates. Thus, decrease in CFU numbers may

result rather from the cell aggregation, than the

bactericidal action of a tested compound. Since

MBC studies of flavonoids are often unreliable, other

assays must be used to ensure the lack of cell

aggregation. Microscopic study-supported time-kill

assays suggested by Cushnie et al. (2007) can be a

solution to this problem.

Furthermore, many other factors may affect the

results of antimicrobial in vitro studies, either it is the

MIC, MBC studies or it is the Kirby-Bauer’s antibiotic

test. The most important variables include the sensi-

tivity of strains, antimicrobial potential of a studied

compound, the type of medium and the optical density

of the inoculum (CLSI 2017). Clinical and Laboratory

Standards Institute (CLSI) is one of the organizations

that standardized many of these variables (CLSI

2017). For example, Müller-Hinton broth/agar is

accepted as a standard growing medium for antimi-

crobial susceptibility testing, while the cell density of

the inoculum for broth microdilution assay is typically

at 5 9 105 (Wiegand et al. 2008). However, not all

research teams follow CLSI guidelines, or even any

guidelines at all. Moreover, there are limitations to

each antimicrobial assay, for example, a flavonoid

with poor agar diffusion abilities will yield weak

results in agar diffusion test, despite its possibly good

antimicrobial activity (Zheng et al. 1996). Further-

more, the solvent used for the preparation may

influence the extract contents and affect the antimi-

crobial activity. Crude methanolic plant extracts

typically have the highest concentration and highest

number of flavonoids, and thereby the strongest

antimicrobial activity (Dar et al. 2016). However,

sometimes the pure compounds are isolated, which are

usually hydrophobic and may precipitate in wrong

solvents, e.g., water (Lof et al. 2011). This will lead to

their reduced contact with the bacterial cells and thus

decreased activity. Notably, some flavonoids have

been known to form salts in alkaline solvents that can

also influence their biological activities (Cushnie et al.

2003). Dimethyl sulfoxide (DMSO) that is typically

used to dissolve isolated flavonoids offers good

polyphenol solubility; however, the DMSO may also
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affect results by interacting with bacterial membranes

(Mi et al. 2016).

The most potent antimicrobial flavonoids

In Table 1, we have summarized antimicrobial

flavonoids with the MIC value below 10 lg/mL. We

chose the MIC value as a determinant, because it is the

most commonly used characteristic of novel antimi-

crobials, including flavonoids. MBC values (if tested)

are also presented in the Table 1. Given the possibility

of cell aggregation during MBC studies, as well as

other potential reasons for results discrepancies, these

data must be interpreted with caution. In majority of

studies cited in Table 1, mechanisms of antibacterial

action of tested flavonoids have not been elucidated.

Mechanism of action and structure–activity relation-

ship studies are usually conducted by research teams

of different specialty, compared to those who report

novel antimicrobial agents. It is understandable, since

those areas of studies require different approach and

expertise. It does, however, create a knowledge gap,

where a lot of compounds are known for their

antimicrobial activity, but little detail is known about

mechanism of action of every one of them. Some of

the compounds present in the Table 1 had been studied

for their mechanism of action in different studies and

have been described above.

Examples of synergy and additive effect

between flavonoids and antibiotics

Recently, there has been a growing interest in

uncovering novel antibiotic adjuvants through sys-

tematic approaches. Notably, the ability of plant

metabolites to enhance the activity of antibiotics has

been widely reported (Sana et al. 2015). These

compounds that have potential activity against patho-

genic bacteria are variably been termed modulating,

resistance modifying, or reversal adjuvants. In this

review, we provide examples of synergy between

antibiotics and flavonoids. Most of the researchers

propose flavonoids to be resistance modifying agents

(RMAs). The mechanisms of RMA action may

include inhibition of efflux pumps or antibiotic-

degrading enzymes and membrane permeabilization

(Abreu et al. 2012). Interaction of two antimicrobial

compounds is typically described by the fractional

inhibitory concentration index (FICI) (Wang et al.

2014)

FICI ¼
MIC antibiotic aloneð Þ

MIC antibiotic combined with compoundð Þ

þ
MIC compound aloneð Þ

MIC compound combined with antibioticð Þ

Staphylococcus aureus with many resistant strains

is one of the most dangerous pathogens nowadays

(Lindsay 2013). Thus, there is an understandable

desire to find agents that would enhance the available

anti-staphylococcal drugs, and studies of most

research teams are focused on the synergy of

flavonoids and antibiotics against resistant S. aureus

strains. Reports of synergy and additive effects of

flavonoids and antibiotics are summarized in Table 2.

Although the involvement of flavonoids in the bacte-

rial growth control is extensively studied, their

complexation with antibiotics remains poorly

understood.

Concluding remarks

Recently, CDC estimated that one in five pathogens

from hospital-acquired infections represents mul-

tidrug-resistant strain (MDR) (Weiner et al. 2016),

while there is no progress in the development of new

classes of antibiotics. Hence, there is a serious need for

finding new antimicrobial agents or at least substances

that would enhance the effectiveness of current drugs

(Abreu et al. 2012). Notably, many flavonoids show

strong antimicrobial effects and/or synergy with

‘‘conventional’’ antibiotics. There are also reports of

flavonoids inhibiting bacterial virulence factors, such

as hemolysis activity of S. aureus (Qiu et al. 2010).

Importantly, most of the flavonoids are considered

nontoxic because of their ubiquity in all sorts of plant-

derived foods and beverages. Few toxicity studies

support that notion. Dzoyem et al. (2013) conducted

experiments on silkworm larvae, which supported low

or no toxicity of tested flavonoids. Single-dose toxicity

studies performed on lab rats also failed to determine

methanolic extract of flavonoids as toxic (Kuete et al.

2007). Moreover, Ames test showed no mutagenic

effect of the selected flavonoids (Bagla et al. 2014).

Daily intake of flavonoids is estimated at
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100–1000 mg/day, depending on the diet (Aherne and

O’Brien 2002). In general, no adverse effects have

been associated with high dietary intakes of flavonoids

from plant-based food. Flavonoid-rich foods and

beverages include tea, red wine, fruit skins, citrus

fruits, berry fruits, and honey (Kumar and Pandey

2013). Those foods are typically attributed to many

health benefits. The lack of toxicity and natural

occurrence makes flavonoids possibly good food

preservatives. They can be a viable candidate for

replacing synthetic preservatives that are disliked by

the consumers (Wu et al. 2013). The lack of adverse

effects may be explained by the relatively low

bioavailability and rapid metabolism that leads to

elimination of most of the flavonoids (Harwood et al.

2007; Ottaviani et al. 2015). To date, the importance of

the safe use of flavonoid supplements in pregnancy

and lactation has not been well established (Hendler

and Rorvik 2009; Mills et al. 2013). Moreover, the use

of green tea extracts was directly associated with

abnormally high levels of liver enzymes (Dostal et al.

2015; Sarma et al. 2008). Obviously, further toxicity

studies are needed before releasing any food or

medicine containing high amounts of flavonoids.

Table 1 Strongest antimicrobial flavonoids reported in recent
years (EGCG—epigallocatechin gallate; MRSA—methicillin-
resistant Staphylococcus aureus; MSSA—methicillin-sensitive

S. aureus; NT—not tested; PPSA—penicillinase-producing S.

aureus; VISA—vancomycin-intermediate S. aureus; VRE—
vancomycin-resistant Enterococci)

Flavonoid MIC/MBC (lg/mL) Strain References

Flavone 1.95/3.9 P. vulgaris, P. mirabilis Basile et al. (2010)

Isolupalbigenin 1.56–3.13/6.25–25 MRSA Sato et al. (2006)

Galangin 0.89–14.16/

1.38–23.44

MSSA, MRSA,

Enterococcus spp.,

P. aeruginosa

Pepeljnjak and Kosalec (2004)

Rutin 8/16 K. pneumoniae Djouossi et al. (2015)

Rhamnoisorobin 1-2/NT S. aureus, P. aeruginosa,

S. typhi

Tatsimo et al. (2012)

2-hydroxylupinifolinol 2.3–4.7/NT MSSA, MRSA,

S. pyrogenes, B. cereus

Thongnest et al. (2013)

30-O-methyldiplacol 2–4/NT B. cereus, E. faecalis,

L. monocytogenes,

S. aureus, S. epidermidis

Smejkal et al. (2008)

2,8-diprenyleriodictyol 0.5–4/NT MSSA, MRSA Dzoyem et al. (2013)

Diplacone 2–16/4.9–39.2 MRSA Navratilova et al. (2016)

Hesperetin 4–32/NT S. aureus Lopes et al. (2017)

Naringenin C 2.8/NT M. tuberculosis Chen et al. (2010)

Pinocembrin 3.5/NT M. tuberculosis Chou et al. (2011)

Sepicanin A 2.9/2.9 MRSA Radwan et al. (2009)

Dihydrokaempferol 6.25/12.5–25 VRE, S. aureus Tajuddeen et al. (2014)

Bartericin A 0.31–0.61/NT C. freundii, S. dysenteriae,

B. cereus, S. aureus,

S. faecalis (among others)

Kuete et al. (2007)

Isobavachalcone 0.3–0.6/0.6–1.2 S. faecalis, S. aureus,

E. aerogenes, E. cloacae

(among others)

Mbaveng et al. (2008)

Panduratin A 1–2/4–8 E. faecalis, E. faecium Rukayadi et al. (2010)

Phloretin 1/NT S. aureus Lopes et al. (2017)

Licochalcone A 2-8/NT MSSA, MRSA Qiu et al. (2010)

123

Phytochem Rev (2019) 18:241–272 263



Furthermore, to increase the specificity and safety of

flavonoids more focus on their mechanisms of action

and a structure–activity relationship is required.

Considering the hydrophobic nature of flavonoids,

few questions are raised regarding their in vivo

activity, like ‘‘how to achieve and sustain their high

Table 2 Examples of synergy and additives effect between antibiotics and flavonoids (FICI—fractional inhibitory concentration
index; EGCG—epigallocatechin gallate; MSSA—methicillin-sensitive Staphylococcus aureus; MRSA—methicillin-resistant S.

aureus; PPSA—penicillinase-producing S. aureus, VISA—vancomycin-intermediate S. aureus)

Flavonoid Antibiotic FICIa Strain References

Flavone Vancomycin 0.096 VISA ATCC 700699 Bakar et al. (2012)

Oxacillin 0.126

Apigenin Ampicillin,
Ceftriaxone

0.18–0.47 MRSA strains Akilandeswari and Ruckmani
(2016)

Baicalein Tetracycline 0.06–0.12 MRSA strains Fujita et al. (2005)

Baicalein Penicillin 0.14–0.25 PPSA strains Qian et al. (2015)

Amoxicillin 0.14–0.38

Baicalein Cloxacillin \ 0.02 S. aureus DMST 20651 Eumkeb et al. (2010)

Diosmetin Streptomycin 0.39 S. aureus 1199B, RN4220 Wang et al. (2014)

Ciprofloxacin 0.09 S. aureus EMRSA-15

Luteolin Ampicillin,

Cephradine,

Ceftriaxone,

Imipenem,

Methicillin

0.82–0.9 MRSA ATCC 43300 Usman Amin et al. (2016)

Luteolin Ceftazidime 0.37 S. pyogenes DMST

30653 - 30655

Siriwong et al. (2015)

Genistein 0.27

Genistein Norfloxacin 0.38 S. aureus 1199B,
RN4220,

Wang et al. (2014)

Ciprofloxacin 0.09 S. aureus EMRSA-15

Galangin Cloxacillin \ 0.02 S. aureus DMST 20651 Eumkeb et al. (2010)

Morin Ampicillin 0.31 MRSA ATCC 3359 Mun et al. (2015)

0.75 MRSA DPS-1

Myricetin Isoniazid 0.2 M. smegmatis mc2155 Lechner et al. (2008a)

Galangin

Kaempferide

Kaempferide-3-O-
glucoside

Amoxicillin \ 0.09 E. coli (AREC) Eumkeb et al. (2012)

Quercetin Cloxacillin \ 0.02 S. aureus DMST 20651 Eumkeb et al. (2010)

Quercetin Ceftriaxone,

Imipenem,

Methicillin

0.66–0.84 MRSA ATCC 43300,

MRSA Clinical Isolates

Usman Amin et al. (2016)

Quercetin ? luteolin 0.45–0.65

Rutin ? morin 0.8–0.9

EGCG Tetracycline 0.375 MRSA6975, MRSA3202 Navratilova et al. (2016)

Oxacillin 0.5

Synthetic

3-arylideneflavanones

Vancomycin 0.97 E. faecium Budzynska et al. (2011)

Oxacillin 0.01–0.58 S. aureus A3

a‘Synergy’ was defined where the FICI was less than or equal to 0.5; whilst ‘additive’ effects were observed when the FICI was
greater than 0.5 and less than or equal to 1.0; greater than 1 and less than 2 as indifferent; Antagonistic effects were observed when
the FICI was greater than 2.0
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blood serum concentration?’’ Their structural modifi-

cations or use of drug carriers may be essential to

modulate their infiltration into the bloodstream. On the

other hand, getting to know flavonoid metabolism in

mammalian cells may be helpful in preventing their

rapid catabolism. Thus, determining if flavonoids are

effective antimicrobials at in vivo environment

remains crucial. Finally, flavonoids maintain their

biological activity, thanks to a finely regulated trans-

port and accumulation system that allow entrance into

different subcellular compartments. Nevertheless, a

comprehensive view of the phenomenon has not yet

been proposed and is still under investigation.
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Karlı́čková J, Macáková K, Řı́ha M, Pinheiro LMT, Filipský T,
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efflux pump inhibitors on erythromycin, ciprofloxacin, and
tetracycline resistance in Campylobacter spp. isolates.
Microb Drug Resist 18:492–501

Lambert PA, Hammond SM (1973) Potassium fluxes, first
indications of membrane damage in micro-organisms.
Biochem Biophys Res Commun 54:796–799

Lechner D, Gibbons S, Bucar F (2008a) Modulation of isoniazid
susceptibility by flavonoids inMycobacterium. Phytochem
Lett 1:71–75

Lechner D, Gibbons S, Bucar F (2008b) Plant phenolic com-
pounds as ethidium bromide efflux inhibitors in My-

cobacterium smegmatis. J Antimicrob Chemother
62:345–348

Leclercq R, Courvalin P (2002) Resistance to macrolides and
related antibiotics in Streptococcus pneumoniae. Antimi-
crob Agents Chemother 46:2727–2734

Lee P, Tan KS (2015) Effects of epigallocatechin gallate against
Enterococcus faecalis biofilm and virulence. Arch Oral
Biol 60:393–399

Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J
(2011) Apple flavonoid phloretin inhibits Escherichia coli

O157:H7 biofilm formation and ameliorates colon
inflammation in rats. Infect Immun 79:4819–4827

Li BH, Tian WX (2004) Inhibitory effects of flavonoids on
animal fatty acid synthase. J Biochem 135:85–91

Li B-H, Zhang R, Du Y-T, Sun Y-H, Tian W-X (2006) Inacti-
vation mechanism of the b-ketoacyl-[acyl carrier protein]
reductase of bacterial type-II fatty acid synthase by epi-
gallocatechin gallate. Biochem Cell Biol 84:755–762

Li W, Atkinson GC, Thakor NS, Allas U, Lu CC, Chan KY,
Tenson T, Schulten K, Wilson KS, Hauryliuk V, Frank J
(2013) Mechanism of tetracycline resistance by ribosomal
protection protein Tet(O). Nat Commun 4:1477

Li Y, Green KD, Johnson BR, Garneau-Tsodikova S (2015)
Inhibition of aminoglycoside acetyltransferase resistance
enzymes by metal salts. Antimicrob Agents Chemother
59:4148–4156

Lindsay JA (2013) Hospital-associated MRSA and antibiotic
resistance-what have we learned from genomics? Int J Med
Microbiol 303:318–323

Lof D, Schillen K, Nilsson L (2011) Flavonoids: precipitation
kinetics and interaction with surfactant micelles. J Food Sci
76:N35–N39

Lopes LAA, dos Santos Rodrigues JB, Magnani M, de Souza
EL, de Siqueira-Júnior JP (2017) Inhibitory effects of fla-
vonoids on biofilm formation by Staphylococcus aureus

123

268 Phytochem Rev (2019) 18:241–272



that overexpresses efflux protein genes. Microb Pathog
107:193–197

Lu M (2016) Structures of multidrug and toxic compound
extrusion transporters and their mechanistic implications.
Channels (Austin) 10:88–100

Lubelski J, Konings WN, Driessen AJ (2007) Distribution and
physiology of ABC-type transporters contributing to mul-
tidrug resistance in bacteria. Microbiol Mol Biol Rev
71:463–476
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