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ABSTRACT The global concern with power quality is increasing due to the penetration of renewable energy
(RE) sources to cater the energy demands andmeet de-carbonization targets. Power quality (PQ) disturbances
are found to be more predominant with RE penetration due to the variable outputs and interfacing converters.
There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article
presents a critical review of techniques used for detection and classification PQ disturbances in the utility
grid with renewable energy penetration. The broad perspective of this review paper is to provide various
concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy
environment. More than 220 research publications have been critically reviewed, classified and listed for
quick reference of the engineers, scientists and academicians working in the power quality area.

INDEX TERMS Artificial intelligence, power quality disturbances, international standards of power quality
monitoring, signal processing, renewable energy sources, noise.

ABBREVIATIONS
ACO Ant colony optimization
ADC Analog to digital converter
AI Artificial intelligence
ANN Artificial neural network
BC Bayesian classifier
BCO Bee colony optimization
DAQ Data acquisition system
DAGSVM Directed acyclic graph SVM
DB4W Daubechies 4 wavelet
DRST Double resolution S-transform
DSP Digital signal processing
DT Decision tree
EC Energy content
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FAM Fuzzy associative memory
FANN Fuzzy-ARTMAP neural network
FC Fundamental component
FCM Fuzzy C-Means
FES Fuzzy expert system
FIR-DGT Finite Impulse Response Window
FPGA Field programmable gate array
FSCL Frequency sensitive competitive learning
FT Fourier transform
GA Genetic algorithm
GMOCUW Generalized morphological open-closing

and close-opening undecimated wavelet
GST Generalized S-transform
GT Gabor transform
HC Hybrid classifiers
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HHT Hilbert-huang transform
HOS Higher order statistics
HST Hyperbolic ST
IA Instantaneous amplitude
ICA Independent component analysis
KF Kalman filter
KMC Kurtosis of magnitude contour
KPC Kurtosis of phase contour
LSSVM Least square SVMs
LVQ Learning vector quantization
MGW Morphological gradient wavelet
MIST Modified incomplete ST
MM Mathematical morphology
MOT Miscellaneous optimization techniques
MPNN Modular probabilistic neural network
NFS Neuro fuzzy system
POI Point of interconnection
PSO Particle swarm optimization
PQDs Power quality disturbances
RES Renewable energy sources
RMS Root mean square
RTDS Real time digital simulation
SCICA Single channel ICA
SFS Sequential forward selection
SMC Skewness of magnitude contour
SOPC System on programmable chip
SP Signal processing
SPC Skewness of phase contour
SSD Sparse signal decomposition
ST Stockwell transform
STD Standard deviation
STFT Short time FT
SVM Support vector machine
THD Total harmonic distortion
TTT Time-time transform
T2FK-SVM Type-2 Fuzzy Kernel-SVM
WPE Wavelet packet entropy
WT Wavelet transform
ZC Zero crossings

NOMENCLATURE
α Scale parameter of the wavelet function
x̂k Current state estimate
ω(τ, d) Scaled replica of the fundamental mother

wavelet
τ Translation parameter of the wavelet function
f (n) One-dimension signal with domain D[f ] ⊂ E

F(s) Fourier transform for any function of f(x)
g(n) Structure element with domain D[g] ⊂ E

g(t) Window function
h Mother wavelet
Kk Kalman gain
S(τ, ω) Gabor transform signal
wj(t) Instantaneous angle frequency
WT (α, τ ) Wavelet function
X (t) Real part in HHT

I. INTRODUCTION

In recent years, the proliferation of the grid integrated renew-
able energy (RE) sources are increasing in the low and
medium voltage utility grids to meet the energy demand.
Renewable energy sources in the utility grid require power
electronic-based converters which not only provide interfac-
ing between these sources and utility grid but also allow
higher levels of penetration [1]. The higher level of RE pen-
etration largely affects the power quality (PQ). It may lead
to various PQ disturbances such as excess reactive power,
transients, power factor collapse, large current and voltage
fluctuations, sag, swell, notch, harmonics, and noise, etc.
[2]. These power quality disturbances are also generated in
the utility grid due to sudden load changes, switching of
lines, non-linear loads, faults, and strength of the ac grid.
Power quality disturbances (PQDs), as mentioned above, are
considered as the leading cause of deterioration of quality of
power. These, result in malfunctioning of digital equipment,
unwanted tripping of protective relays and circuit breakers,
damaging of computer and microprocessor-based sensitive
devices. Therefore, it is essential to diagnose these PQDs
according to international standards, and suitable preventive
techniques should be implemented. In this regard, detection
and classification of features are the essential tasks of PQ
monitoring systems in smart grid [3]. In a PQ monitoring
system, a set of features are optimized, and the best feature
for the detection and classification process is selected tomake
the analysis more effective. The most desired features in
smart grid monitoring and operation are fast response and
adaptation of detection and classification techniques with
the changes associated with renewable energy penetration,
noise and loads. Hence, the researchers are focused on the
advancement of signal processing based detection techniques
and artificial intelligence-based classification techniques for
smart utility grids, which promises an effective solution to the
monitoring of PQ challenges in the smart grid [4]. The meth-
ods resulted in fast and accurate detection and classification
of PQDs in the utility grid with RE penetration. The attrac-
tive features of these techniques are simple structure, fast
convergence, ease of calculation and minimum error. These
techniques have been successfully validated in the hardware,
real-time and online framework using hardware-based con-
trollers such as DSP, FPGA, etc. It also has been recognized
that the modern improvement in artificial intelligence-based
algorithms and Deep-learning based algorithms have added
to the extension of computer vision and image recognition
ideas. Image recognition is the process of recognizing and
detecting an object or a feature in a digital image or video.
This idea can be applied to various systems like automation,
monitoring, and defence surveillance. The literature on image
recognition establish that the feature extraction efficiency
has been enhanced significantly compared with the conven-
tionalmethods. Consequently, the study hasmade a beneficial
investigation for the application of image enhancement meth-
ods in PQD identification [5]. The real power quality signals
are converted into gray images, and three image enhancement
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techniques are employed, namely the gamma correction, edge
detection and peaks and valley detection. They are used for
several classes of disturbances to magnify the gray image
features, which is very helpful for PQ recognition [6]. On this
foundation, the disturbance features are separated, and the
original feature set is regained. The new scheme can remove
disturbance features altogether, and has more eminent signal
processing performance compared with conventional ST and
EMD methods [7]. Hence, these image recognition methods
have been observed as another possible solution for PQ mon-
itoring with RE integration. And it can also be a focused area
in upcoming days due to smooth visualization, novelty and
providing facilities with a technical computing environment
for data analysis.
There are few reviews available on power quality assess-

ment and monitoring. Authors have thoroughly analyzed the
previously published review articles. Lieberman et al. [8]
emphasized on power quality disturbance classification and
presented the characteristics of PQ events. Saini and Kapoor
[9] showed a comprehensive study of SP techniques used for
PQmonitoring.Mahela et al. [10] presented various detection
and classification techniques and the effect of noise on PQ
events diagnosis. Avdakovic et al. [11] have emphasized on
feature extraction techniques and WT applications for the
analysis of the power system dynamic performance. Khokhar
et al. [12] presented state of the art on applications of DSP
based techniques and optimization techniques in the clas-
sification of PQDs. Augustine et al. [13] emphasized on
wavelet-based PQ detection techniques by simulating and
detecting the events with various types of wavelets. Best
wavelet selection for a particular type of event is explained
with comparisons. Shashank et al. [14] present an account
of major computational intelligence-based techniques for
addressing the problem of islanding in power grids with
renewable energy penetration. Also, a comprehensive review
of machine learning-based algorithms has been discussed in
[15] for addressing effective decision making and control
actions capabilities. Emerging PQ challenges due to renew-
able energy penetration with control algorithms have been
addressed in [16]. However, early monitoring of these PQ
challenges with RE sources paves a new future research path.
Investigation in the selection of generalized methodology
for detection and classification of single and multiple PQDs
with RE penetration is a significant focus area nowadays and
needs more considerable attention. The motivation of this
article is to present a comprehensive review of detection and
classification techniques for PQDs with RES in the utility
grid. The existing research on PQ detection and classification
would provide a strong foundation for addressing PQ chal-
lenges in the utility grid with RES. Therefore the research
articles based on experimental and simulation studies are
collected. This review provides an opportunity to faculty,
engineers, and utility/industrial personnel to know the latest
development, PQ diagnosis-related issues and to overcome
themwith possible areas of research through outcomes of this
review.

Over 220 publications [1]–[222] are critically reviewed in
this manuscript and it comprises six sections. Section 1 intro-
duces multiple aspects of power quality disturbances mon-
itoring under introduction. Section 2 covers the general
concept of power quality disturbances with RE penetration
and international guidelines to monitor these disturbances.
Section 3 described the methodology for PQ monitoring
with the integration of RE sources, its techniques for detec-
tion and classifications with considering the effect of noise.
Section 4 depicts the experimental system-based analysis of
multifarious SP based detection and AI-based classification
techniques with RE penetration and their technical descrip-
tions. Key findings and recommendations for future research
work are presented in Sections 5. Finally, the conclusion is
drawn in Section 6.

II. POWER QUALITY DISTURBANCES AND

INTERNATIONAL STANDARDS

Electric power quality (PQ) refers to the ability of smart
electrical equipment to consume the electric power being
supplied to it and maintain voltage within the acceptable
range. PQ disturbances and their international standards are
discussed in the following subsections.

A. POWER QUALITY DISTURBANCES

The PQ disturbances can be defined as any deviation in
voltage, current and frequency quantities from acceptable
range which may result in mal-operation and failure of smart
electric equipment. These cause sudden changes in the supply
voltage, connected loads and pure sinusoidal quantities [17].
The significant issues regarding primary effects on PQ during
power quality disturbances include voltage sag or voltage dip,
voltage swell, voltage spikes, voltage fluctuations, harmonics
distortion, voltage unbalance, over-voltage, under-voltage,
power frequency variations, very short and long interruptions.
Also, renewable energy integration into the utility grid would
further worsen the PQ because of the unpredictable nature
of the RE sources [18] and FACTS based inverters used for
their interfacing with the network. Hence, RE integration
performance is largely affected by [19]. The specific PQDs
associated with RES operating conditions like grid synchro-
nization, outages, islanding, variations of solar insolation
and wind speed variations are well researched in [20]–[23]
which have to be detected and classified accurately. These
are summarized as following:

1) GRID SYNCHRONIZATION OF RES

The grid synchronization of RES generates PQDs like volt-
age sag or voltage dips predominantly. During the grid syn-
chronization, a sudden decrease in voltage occurs termed as
voltage dips. The limiting dip value is less than 3%. It is
caused by the inrush current produced due to small inevitable
differences between the voltage of solar PV and grid in the
case of solar energy penetration. In the case of WE, the reac-
tive power drawn by DFIG causes voltage sags. In the case
of hybrid RES sources, voltage swell is followed by voltage
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sag. Also, voltage rise occurs at the point of interconnection
due to the tripping of loads, the phase angle φ and line
impedances X-R ratios. Flickers, impulsive transients, high
magnitude oscillatory transients, low magnitude harmonics
are also reported. The frequency deviation increases with the
penetration level of RES but is less for solar when compared
to WE source.

2) OUTAGE OF RES

The outage of RES is associated with voltage variations like
swell and sag. The Outage of solar RES does not produce a
flicker but has an impulsive transient and frequency variations
associated with it. Similar disturbances are found in the case
of wind and hybrid RES. The frequency drop is directly
proportional to the penetration level of RES. Thus, frequency
variations can be observed easily when a large outage occurs.
Also, the frequency variation is less for WE when compared
to solar RES. Low magnitude oscillatory transients are also
reported for all the types of RES.

3) ISLANDING OF RES

Islanding causes specific PQDs like voltage sags, swells and
low magnitude impulsive transients for solar RES, wind and
hybrid sources. Oscillatory transients PQ disturbances are
not reported significantly for islanding with RE sources, and
it requires more focus. This event is also associated with
a sudden increase in the frequency, unlike outage or grid
synchronization. The frequency jump is more in the case of
either solar or wind when compared to islanding of sources
simultaneously.

4) VARIATION OF SOLAR INSOLATION

Adecrease in solar insolation creates voltage sag. The voltage
fluctuations are also observed with variations in the voltage
magnitude. These also indicate the presence of low magni-
tude flicker in the voltage with lowmagnitude transients. Due
to sudden change in the solar insolation, frequency devia-
tions occur, current and voltage harmonics increase with an
increase in the penetration level of solar PV energy.

5) VARIATION OF WIND SPEED

Wind speed variations also cause voltage fluctuations which
in turn produced a low magnitude flicker. The transient mag-
nitude, frequency deviation, current and voltage harmonics
significantly increases, when WE penetration increases. The
voltage variations, ripples also indicate the presence of low
magnitude flicker in the voltage in the case of variation of
wind speed as well as solar irradiation changes.
These PQDs, and the sources of disturbances like the

operating conditions of RES along with power system faults
if not detected and mitigated quickly might cause the fail-
ure of the end-use equipment and also power system assets
[24]–[27]. Hence, IEEE has laid down the guidelines, which
is measured based on the above mentioned PQ distortions in
the utility grid with RE penetration [28]. These PQDsmajorly
influence the performance of the RE sources during grid

TABLE 1. Important international standard of PQ monitoring [32].

operating conditions causing voltage and frequency instabil-
ity at POI and hence, restrict the RE penetration level into the
utility grid. Therefore, researchers should reconsider or mod-
ify the PQD monitoring techniques in the presence of RE
sources. Presently, mathematical, simulation and hardware
languages such as C, matrix laboratory (MATLAB), electro-
magnetic transient design and control (EMTDC), Power sys-
tem computer-aided design (PSCAD), and very high speed
integrated circuit hardware description language (VHDL) are
generally employed for parametric synthesis based genera-
tion of PQ disturbances [29]–[31]. Hence, PQ recognition
with new PQmonitoring techniques is a significant focus area
for smart grids with RE penetration.

B. INTERNATIONAL STANDARDS OF POWER QUALITY

International standards are essential to provide guidelines
for the manufacturers and PQ monitoring community. Power
quality standards laid by the Institute of Electrical and
Electronics Engineers (IEEE), International Electrotechnical
Commission (IEC) and European Committee for Electrotech-
nical Standardization (CENELEC) are globally acknowl-
edged and accepted. Global bodies have to continuously
coordinate with each other to standardize the PQ disturbances
[33], [34]. IEC 61000 and EN 50160 are the generally appli-
cable standards for PQ disturbances [32], [35]. However,
the new perspective of RE Grid Codes is discussed in [36].
These standards address various PQ disturbances and are
illustrated in Table 1.

III. POWER QUALITY MONITORING METHODOLOGY

The procedure involved in PQ monitoring with RE sources is
as illustrated in Fig. 1. Power quality disturbances are origi-
nated at the point of interconnection, where the conventional
generator and renewable energy sources are integrated with
distribution loads. Disturbance detection and classification
stages are the main components of PQ recognition methods,
and RE sources signals need to be considered for adopt-
ing changes associated with the output of RE sources. For
this regard, the power quality monitoring process involved
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different stages. In the pre-processing stage, PQ disturbances
are normalized and fed to the feature extraction stage. Here
the signal processing (SP) based techniques are used to
extract features to detect the disturbances, and a threshold is
set for accurate detection. These features are also used for the
optimization and optimized features will be selected for the
classification purpose. In the classification stage, AI-based
classifiers are used to classify the PQ disturbances by set-
ting an appropriate threshold. These classified disturbances
are later mitigated in the mitigation stage using distributed
flexible AC transmission system (DFACTS) devices [37].
Distributed FACTS devices play a significant role in the field
of PQ mitigation in real-time [38]. The PQ mitigation tech-
niques with RE penetration are a potential future academic
research area and need more attention [39].

A. SIGNAL PROCESSING BASED FEATURE EXTRACTION

TECHNIQUES

Power quality disturbances can be measured using deviations
in frequency, variations in grid voltage, transient, the occur-
rence of flickers, and harmonics, to name a few. The adoption
of the proper features of PQDs is crucial for the detection
process. These features may directly be extracted from the
initial measurement in any transformed domain or the param-
eters of signalmodels. The categorization of various detection
techniques is as illustrated in Fig. 2. This section covers the
new advancements concerning feature extraction techniques
in the subsequent subsections.

FIGURE 1. Procedure of power quality monitoring with RE sources.

1) FOURIER TRANSFORM BASED PQDs DETECTION

TECHNIQUE

Fourier Transform (FT) has proved itself as a magical math-
ematical tool that breaks a function or signal into an alternate
representation, characterized by sine and cosines [40]. This
is of great help for the power system engineers to solve
detection problems most efficiently. For any function f (x),
the Fourier Transform is denoted as F(s), where the outcome
of x and s is dimensionless. However, x is a measure of

time in the time-domain signal, and s corresponds to inverse
time or frequency in the frequency domain signal.

F(s) =
∫ ∞

−∞
f (x)e−2π isxdx (1)

f (x) =
∫ ∞

−∞
F(s)e2π isxds (2)

In both cases, i =
√
(−1). Researchers proposed different

ways of FT synthesis as well as online monitoring for better
feature extraction. This includes online [41], real-time [42]
and experimental [43] framework for the selection of small
window size with the help of FT to provide automated detec-
tion of PQDs. Characterization of oscillatory transients using
FT has been discussed in [44]. In [45], authors examined the
methods of PQ detection in the frequency domain, mainly the
FT, WT, HHT, S-transform with a micro-grid and universal
waveshape-based method [46] has been presented for the
better signal monitoring of PQDs. Feed-forward STFT has
been developed efficiently for detecting PQ events reported
in [47]. Also, fractional Fourier transform as a generalized
version of FT has been presented in [48]. The hybrid FT and
WT have also been used for detection as well as classification
of the PQDs.

2) KALMAN FILTER BASED PQDs DETECTION TECHNIQUE

GF Welch and G Bishop gave the modern definition of
Kalman Filter (KF) [49]. It is a set of scientific equations
that affords a practical computational means to determine the
state of a process, in a design that reduces the mean of the
squared error. In this filter, the information in the past states
is stored and used for calculating the subsequent states. The
current estimation is calculated based on the preceding state
information using the following equation.

x̂k = KkZk (1 − Kk )x̂(k−1) (3)

where, x̂k = current state estimate, K = discrete time inter-
vals, k = 1 can be taken as 1 ms & k = 2 as 2ms, Zk =
measurement value, Kk = kalman gain, x̂(k−1) = previous
state signal. Kalman gains (Kk ) is the unknown component of
the given equation. This gain is calculated based on the mea-
sured values, and the preceding estimated signal. Combined
KF and the fuzzy expert system has been proposed in [50]
for minimizing the issues of tuning and tracking of harmonic
fluctuations in the Kalman filter. Extended Kalman filtering
is a non-linear filtering algorithm which has been found to
be an efficient technique for the detection, localization, and
classification of PQDs in the utility grid [51]. Its complex
domain version named as an extended complex Kalman filter
is designed along with an estimator based on a feed-forward
NN structure to elaborate PQDs for accurate detection in [52].
Maiden application of a variant of KF algorithm known as
local ensemble transform-based KF for power system har-
monic estimation is presented in [53]. Detection of grid fun-
damental voltage and harmonic components using a modified
Kalman filter [54] for renewable energy penetration has been
presented in [55].
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FIGURE 2. Categorization of SP based detection techniques.

3) WAVELET TRANSFORM-BASED PQDs DETECTION

TECHNIQUE

Wavelet transform (WT) is similar to the Fourier transform
(FT) with a different merit function. The main difference is
that FT decomposes the signal into sine and cosine functions,
i.e., the function is localized in the Fourier space, whereasWT
uses functions that are localized in both the real and Fourier
space which can be expressed as,

WT (α, τ ) =
∫ ∞

−∞
h∗
α,τ (t)s(t)dt (4)

h∗
α,τ (t) = α−1/2h

(

t − τ

α

)

(5)

The wavelet function h∗
α,τ (t) and the signal s(t) is the inner

product of the complex conjugate and it is represented as
WT (α, τ ). The Wavelet function h∗

α,τ (t) is proportional to
the reciprocal of the frequency. Where, variable α, τ and
h are represented as scale parameter, translation parameter,
and mother wavelet respectively. In the wavelet network,
combined ability of WT, SVM for analyzing non-stationary
in [56] and for multiple signals in [57] have been presented
in a real-time environment. The other WT based detec-
tion techniques include, interpolated DFT [58], actual data
based noise-suppression method usingWT and un-decimated
WT [59], integrated rule-based approach of DWT-FFT [60],
DTCWT and sparse presentation classifier (SRC) [61], com-
bine wavelet packet and t-sallis entropy [62], empirical-WT
based time-frequency technique [63], rank wavelet support
vector machine (rank-WSVM) [64], wavelet packet decom-
position (WPD) [65], combination of WT and SVM [66],
WPE and MIST [67], hybridization of daubechies wavelets
db2 and db8 [68], multi-flicker source power network using
WT [69], variants of WT, namely the maximum overlapping
DWT and the second-generationWT [70], threshold selection
using WT [71], maximal overlap discrete wavelet transform

[72], DB4 wavelet [73], dual-tree complex wavelet-based
algorithm [74] and harmonic evolution [75]. Power quality
disturbances detection using DWT in the utility network
with wind energy penetration has been presented in [76].
Table 2 illustrated the performance analysis of the wavelet
family and provided a quick overview. The performance of
the wavelet family transforms for PQ detection has been
decided and implemented by the comparison of the multiple
attributes used by the researchers in current research [11].
These attributes of the wavelet family transform are bene-
ficial for knowing the performance level in the detection of
PQ disturbances. However, Daubechies is found best suitable
wavelet for detection of PQ disturbances due to its attracting
features like,

• The Daubechies wavelet has compact support and
orthogonal ability with coefficient scaling facility.
Hence it is found best for PQ disturbances feature anal-
ysis.

• It has been recognized that, during RE penetration into
the utility grid, frequency issues significantly occurred
andDaubechies wavelet can provide balanced frequency
responses during PQDs detection.

• Daubechies wavelets utilise overlapping windows,
so the high-frequency coefficient spectrum indicates all
high-frequency variations. Consequently, Daubechies
wavelets are beneficial in compression and noise elimi-
nation of PQDs.

• This overlap enables the Daubechies D4 algorithm to
pick up the desired feature compared to other conven-
tional wavelet algorithms.

4) STOCKWELL TRANSFORM BASED PQDs DETECTION

TECHNIQUE

Stockwell transform (ST) is an extended idea of the contin-
uous wavelet transform (CWT). In other words,a modified
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TABLE 2. Performance evolution of wavelet family [11].

wavelet transform is known as S–transform and used as a
time-frequency spectral localization method. The CWT (τ, d)
is a scaled replica of the fundamental mother wavelet, and it
is defined as,

CWT (τ, d) =
∫ ∞

−∞
h(t)ω(t − τ, d)dt (6)

The dilation d determines the width of the wavelet ω(τ, d)
and therefore controls the resolution. The key features of
this unique transform are the frequency-dependent resolution
of the time-frequency space with absolutely referenced local
phase information [77]. The ST is expressed as,

ST (t, f ) =
∫ ∞

−∞
h(t)

( |f |√
2π

)

e

(

−(τ−t)2f 2
2

)

e−j2π ftdt (7)

g(t) =
(

1

σ
√
2π

)

e

(

−t2
2σ2

)

(8)

σ (f ) =
(

1

|f |

)

(9)

where, h(t), g(t) and σ (f) are the signal, scalable window and
control parameters of the Gaussian window respectively. ST
offers superior frequency solution for lower frequency and
for higher frequency better time-frequency solution. This is
found as a best detection technique in a noisy environment
[78]. The other S-transform reported in the literature includes,
discrete orthogonal S-transform [79], hybrid S-transform
[80], generalized hyperbolic ST [81], Modified ST with
random forest tree [82], ST and DT [83], Multi-resolution S
transform (MST) [84], discrete ST [85], ST-extreme learning
machine (ELM) [86], rule-based ST [87] and experimental
validation of non-stationary signal parameters under the spec-
trum leakage using nonergodic S-transform (NEST) [88].
Recognition and assessment of various factors associated
with wind turbines [89] and hybrid Solar Photo-Voltaic
(SPV), Fuel Cell (FC), and Wind Energy (WE) penetration
have been presented in [90]. Also, power quality moni-
toring in distribution networks with WE penetration using
S-transform has been presented in [20].

5) HILBERT–HUANG TRANSFORM-BASED PQDs DETECTION

TECHNIQUE

Hilbert–Huang transform (HHT) is one of the best SP
based techniques for time-domain analysis of non-linear and

non-stationary PQD signals. HHT obtains instantaneous fre-
quency data by decomposing a signal into intrinsic mode
functions (IMF). It has found an effective technique and can
extract the IMF components of a signal. Then Hilbert trans-
form has been applied on IMF to obtain the instantaneous
frequency and amplitude with the many applications. The
original data can be expressed using the Hilbert spectrum
analysis. It is used to compute the instantaneous frequency
of the signal and represented as the real part in the following
form,

X (t) = Real

n
∑

j=1

aj(t)e
i
∫

wj(t)dt (10)

where wj(t) denotes the instantaneous angle frequency.
For better performance in power quality application, many
researchers presented different HT based detection tech-
niques in simulation aswell as hardware framework formulti-
ple PQDs in the utility grid. This includes, an improved HHT
[91] for analysis of time-varying waveform, combination
of EMD and HT form HHT [92], smart sensor based on
HHT [93], symbolic aggregate approximation (SAX) [94],
ensemble empirical mode decomposition (EEMD) [95], HT
and fuzzy based intelligent classifier [96], HHT for composite
power quality events [97]. Automatic PQ events recognition
using HHT and improved HHT have been presented in [98]–
[100]. An islanding event has been accurately detected using
HHT with wind energy [101] and PQ disturbances detected
in the presence of distributed generation [102].

6) GABOR TRANSFORM BASED PQDs DETECTION

TECHNIQUE

Dennis Gabor proposed a special case of STFT, formulates
into the Gabor transform (GT). This transform is beneficial
as the phase content of the local divisions and sinusoidal
frequency of a signal. It can also be determined with its
change over time. GT signal S(τ, ω) is expressed as,

S(τ, ω) =
∫ ∞

−∞
f (t)g(t − τ )e−jωtdt (11)

where, the amount of the time shift is represented by τ and
window function represented by g(t). The center µt and
radius 1t are individually calculated as follows,

µ(t) =
∫ ∞
−∞ t × |g(t)|2dt
∫ ∞
−∞ |g(t)|2dt

(12)

1(t) =

√

√

√

√

∫ ∞
−∞(t − µt )2 × |g(t)|2dt

∫ ∞
−∞ |g(t)|2dt

(13)

The width of the window function is equal to 21t and
interval range span from µt − 1t to µt + 1t . Size and
location of the window function and the harmonic trends
of f (t) can closely be observed in [103]. Gabor Wigner
transforms (GWT) based on fractional Fourier transform has
been proposed in [104]. This algorithm can improve the time-
frequency investigation problem in the presence of low signal
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to noise ratio. Gabor transforms integrated by a PNN model
to implement a pattern recognition system and illustrated
attractive features like multi-resolution and multi-orientation
[105]. Also, the real-time feasibility of GT has been inves-
tigated by developing a laboratory-based hardware system
[106]. In this system, nine types of different PQDs have
been successfully detected and evaluated for illustrating the
performance efficacy of the algorithm.

7) MATHEMATICAL MORPHOLOGY BASED PQDs

DETECTION TECHNIQUE

Mathematical Morphology (MM) was developed in 1964 by
the collaborative work of George Matheson and Jean Serra.
Presently, many researchers are focusing on the MM because
of less computational time and highest efficiency for detec-
tion. In this technique dilation and erosion has been consid-
ered for fundamental operator and operation is based on the
addition or subtraction to f (n) and g (n) in anM-lengthmobile
window. These operators are further utilized to extract the
desired features [107].

dilation : (f ⊕ g)(n) = maxf (n− m) + g(m) (14)

erosion (f ⊖ g)(n) = minf (n+ m) − g(m) (15)

where, the range for dilation is m = 0,M − 1, n = 0,N +
M − 2 and the range for erosion is m = 0, 1,M − 1, n =
0,N − M − 1, domain: D[f ] ⊂ E with one dimensional
signal is represented by f(n) and the domain: D[g] ⊂ E with
structure element is denoted by g(n). Any two combination
of fundamental operations can generate many operations,

Open operator(f ◦ g) = (f ⊖ g) ⊕ g (16)

Close operator(f • g) = (f ⊕ g) ⊖ g (17)

Open− close operator OC(f ) = f ◦ g • g (18)

Close− open operator CO(f ) = f • g ◦ g (19)

The open circle is represented by ◦ (opening) and close
circle is represented by • (closing). The opening of f by g is
obtained by the erosion of f by g, followed by dilation of the
resulting by g. Similarly, the closing of f by g is obtained by
the dilation of f by g, followed by the erosion of the resulting
structure by g. After calculating the fundamental operators
by MM, it was imported in the power system for extracting
desired features. Morphological gradient wavelet, MM, and
digital filtering with some basic terminology and mathemati-
cal description have been discussed in [108]. However, [109]–
[112] articles concluded that there are no clear guidelines for
selection of the structuring element for a specific application
for a specific field. An advanced MM technique for PQDs
detection has been introduced for less computational time
and better efficiency than other PQDs detection techniques
in [113]. In [114], authors presented great accuracy and fast
convergence for a wide range of different operational con-
ditions involving transitory events of frequency deviation,
amplitude variations, signal phase shifts, and stable power
swings. Whereas, a new morphological filter for DFIG wind

farm based microgrid has been proposed in [115]. Morpho-
logical pattern spectrum (MPS) and PNN is proposed in
[116]. In [117] authors proposed novel method morphology
singular entropy (MSE), which consists of three techniques,
i.e., MM, singular value decomposition (SVD) and entropy
theory. Monitoring of voltage variations using MM operation
in real time scenario as per the IEEE Std. 1159 has been
presented in [118], [119]. PQ disturbances detection in the
distribution grid with wind energy penetration using MM has
been presented in [120].

8) MISCELLANEOUS PQDs DETECTION TECHNIQUES

Apart from the algorithms discussed in the preceding section,
some new SP based techniques have performed a vital role
in PQDs detection in the last two decades. These includes,
advancedDSP techniques [121], [122], slant-transform (SLT)
[123], improved chirplet transform (ICT) [124], amplitude
and frequency demodulation (AFD) technique [125], higher-
order statistics (HOS) [126] and HOS with case-based rea-
soning [127], time–time transform (TTT) [128], principal
curves (PC) [129], DWT and IDWT [130], sequence com-
ponents of voltages are measured in presence of solar PV
using FFT [131], sparse signal decomposition on hybrid
dictionaries reduced [132], kernel extreme learning machine
technique [133], double resolution ST (DRST) [134], DWT,
multi-resolution analysis, and the concept of signal energy
[135], phase-locked loop (PLL) and symmetrical components
[136], Reduced sample Hilbert–Huang transform (RSHHT)
[137]. However, time-frequency based ST is found superior to
STFT and WT [138]. DWT and multiple signal classification
(MUSIC) combined to estimate frequency and amplitude in
the presence of solar PV energy [139]. Table 3 presents a per-
formance analysis of different signal processing techniques,
taking into consideration their efficiency of operation for PQ
detection in the real-time scenario. The performance of the
different signal processing techniques for PQ detection has
been decided and implemented by the comparison of the mul-
tiple properties of majorly implemented SP based transforms
used by the researchers in current research. These properties
of SP based STFT, WT, ST and modified ST are beneficial
for knowing the performance level in the detection of PQDs
and hardware design. However, ST and its modified versions
are found best suitable for detection of PQ disturbances.

B. ARTIFICIAL INTELLIGENCE-BASED PQDs

CLASSIFICATION TECHNIQUES

The categorization of AI-based classification techniques is
illustrated in Fig. 3. Artificial Intelligence-based classifica-
tion techniques are used for categorizing PQD signals in
two or more types according to their features. The essential
steps for strong disturbance characterization include defining
and extracting good-quality features. Disturbance characteri-
zation is still a focus research area for many researchers. This
section deals with the processes involved in the classifica-
tion of PQDs. This process includes two steps: the classifier
utilizes optimal feature extraction of the acquired signal by
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FIGURE 3. Categorization of AI based classification techniques.

TABLE 3. Performance analysis of different signal processing techniques.

optimization techniques, and these features for accurate clas-
sification. The classification process may change depending
on the type of algorithm and application. These steps are
highlighted in the following subsections.

1) OPTIMIZATION TECHNIQUES FOR OPTIMAL FEATURES

SELECTION

Features (SD, Min-max amplitude, harmonics, entropy, RMS
values, etc.) can lead to the optimization and identification
of the type of disturbances. The optimization techniques are
used to select the optimal features for accurate classification.
These include GA, PSO, ACO, and BCO, and they are best-
suited optimization techniques for PQDs classification in the
utility network. Figure 4 shows the general framework of
optimal feature selection for classification of PQDs. In this
framework, the collected PQDs information is directly fed
into the learning algorithm for the best feature selection for
the optimization. Further, optimized features help classifier
for classifications of the PQDs. Note: the selection of optimal

features and classification efficiency of PQDs may vary with
the type of algorithm.

a: GENETIC ALGORITHM-BASED OPTIMIZATION

TECHNIQUES

Genetic algorithm is a method of ‘‘reproduction’’ computer
programs, developed by Prof. John Holland in the 1960s.

FIGURE 4. General framework of optimal feature selection for
classification.
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This method is used as an optimization technique for search
problems and provides a good solution for power system
application. It is also used as a population-based optimization
approach and proved as a powerful tool for classifying the
PQDs in the dynamic environment of the power system [140].
The multiple combinations of this technique help to select the
best features for classification of power quality disturbances.
This includes GA with WT [141], extended GA with WT
[142] and GA with ST [143].

b: PARTICLE SWARM-BASED OPTIMIZATION TECHNIQUES

Particle swarm optimization technique is referred to as a
population-based stochastic optimization technique [144].
This technique is also used for online and offline monitor-
ing [145], [146] to extract the best subset of features using
extreme learning machine (ELM) [147] and obtaining tran-
sient events using ICA [148]. Various combinations of this
technique help to select the best features for classification of
the PQ disturbances. This includes, Micro-genetic algorithms
[149], statistical approach [150], and online sequential learn-
ing algorithm in [151]. The optimal feature selection using
DT in the presence of RE sources (SPV andWE) is presented
in [152].

c: ANT AND BEE COLONY BASED OPTIMIZATION

TECHNIQUES

Day by day, the complexity of the system has been increas-
ing with RE penetration. Therefore more efficient opti-
mization techniques are required; researchers have started
switching to optimal optimization techniques like Ant, Bee,
and Hybrid optimization. These techniques have been used
as a population-based search method in [153], [154], which
mimics the food foraging behaviour of honey bee colonies
as the best optimization techniques. A set of software agents
provides the best solutions to a given optimization problem
based on comparative data for various optimization prob-
lems called artificial ant colony optimization. Artificial bee
colony optimization (ABCO) effectively addresses multiple
PQ problems [155]. Thus, it has been widely used for better
feature selection in power systems applications [156]. The
profound information about ACO and BCO for optimization
for feature selection has been presented in [157], [158]. Var-
ious combinations of this technique help for selecting the
best features for classification of power quality disturbances.
This includes, swarm intelligence technique [159], honey
bee swarms [160], bacteria foraging technique [161], honey
bee mating optimization SVM (HBMOSVM) [162] and
multi-objective optimization [163]. Among those techniques,
ABCO proved to solve real-world problems, so far. The
merits and demerits of various optimization techniques for
selection of best features for accurate classification are listed
in Table 4. The significant merit observed from Table 4 that
these techniques are suitable to solve computational problems
and provide multiple solutions by adapting various changes
associated with application-based problems. However, these
techniques require pre-knowledge or sample genetic data for

accurate optimization of PQ features. Also, the comparative
performance analysis of various optimization techniques is
listed in Table 5. A simple comparison is made between
the optimization techniques in terms of various attributes
used by the researchers in current research. These attributes
of optimization techniques are beneficial for knowing the
performance level in the optimization of features for accurate
classifications of PQDs. However, GA, ACO and BCO are
found to be population-based techniques and provide optimal
solutions. Also, PSO has been found to be an intelligence-
based technique and provide excellent ease of application.

2) CLASSIFIERS FOR CLASSIFICATION OF PQDs

Classifiers are used for classification of PQ disturbances.
These classifiers use a set of distinct features or parame-
ters to characterise each event, where these features must
be relevant to the object to be classified. Supervised and
unsupervised classification techniques are widely reported
for classification of PQ disturbances. Supervised learning
techniques depend on the pre-trained data set to learn how
to classify objects. However, there is no need for training
in unsupervised learning like K-means, optics, and hierar-
chical clustering, etc. Multifarious AI-based classification
techniques have been applied to classify PQ disturbances.
These techniques are explained in below subsections.

a: ARTIFICIAL NEURAL NETWORKS BASED PQDs

CLASSIFICATION

Neural Network is one of the essential nonlinear statistical
data modelling tools. It is a vital tool for the statistical-
based categorization of power system disturbances. Catego-
rization using neural networks is a good alternative when
enough data is available. Currently, research is emphasized
on the classification of PQ disturbances using ANN because
it can solve problems with multiple solutions. Higher-order
statistics [126] and Wavelet-based NN classifier in synthesis,
as well as real-time data-based analysis for PQDs classifica-
tion, has been presented in [164]. The co-variance analysis
of voltage waveform signature [165], modular neural net-
work (MNN) classifier with the noisy and non-noisy envi-
ronment [166], multi-layer perceptron network [167], back-
propagation based ANN [168], NN structure [169] and DT
hardware framework [170] have been reported for better
understanding of PQDs classification. Also, statistical and
AI techniques, such as ANN, fuzzy logic system, GA, and
SVM, have been used to classify the PQDs in the utility grid
[12]. Various PQDs caused by SPV penetration in utility grid
are discussed in [171] and classified usingMPNN, SVM, and
LSSVM classifier have been presented in [172].

b: SUPPORT VECTOR MACHINE-BASED PQDs

CLASSIFICATION

In the literature, the performance of the support vector
machine (SVM) based classifier scheme to classify PQ distur-
bances is found to be better than conventional classifiers. The
classification accuracy of SVM depends on the training data,
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TABLE 4. Merits and demerits of optimization techniques.

TABLE 5. Performance analysis of optimization techniques.

kernel parameters, and feature selection. Many researchers
preferred SVM because of its ability to solve pattern recog-
nition of classification problems. The ability of SVM using
linear, polynomial kernel functions is discussed in [173]. The
other SVM based classification techniques include, direct
acyclic graph SVM [174], support vector data description
(SVDD) [175], SVM and optimization using the advance
immune algorithm [176], least-square SVM based classifier
to estimate the significant contingencies in a standard IEEE-
39 bus system in [177]. An overview of the SVM technique
and its applicability in real-world engineering problems has
been presented in [178]. Multi-class SVM architecture has
been developed for identifying PQDs in the presence of solar-
PV [179].

c: FUZZY EXPERT SYSTEM BASED PQDs CLASSIFICATION

In the fuzzy classification technique, a sample can be a mem-
ber of many different classes with different values or degrees.
Generally, the membership values for a particular sample are
restricted such that the sum of all the membership values for a
specific sample is equal to 1. Knowledgebase requires exper-
tise in the choice of correct membership function and addi-
tion of new rules, if necessary, to analyse PQ disturbances.
Novel FCM clustering-based algorithm reduces classifica-
tion time and higher accuracy [180]. The other FES based
classification algorithms include fuzzy reasoning approach
[181], basic fuzzy logic [182], TS fuzzy logic [183], modified
fuzzy min-max clustering NN [184] and FES classifier for
PQ time series data mining using ST [185]. A linguistic
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pattern based on the fuzzy logic technique [186] is used for
feature optimization to enhance classification efficiency for
the fast recognition and classification of PQDs. Classification
of the PQDs with wind energy penetration in the utility grid
using fuzzy c-means clustering has been presented in [22].
Moreover, literature evident that hybrid FES (the combination
of FES with other classifiers) provided excellent results when
compared to the individual FES.

d: NEURO-FUZZY SYSTEM BASED PQDs CLASSIFICATION

A Neuro-fuzzy system (NFS) is a fuzzy system which deter-
mines the fuzzy sets and fuzzy rules by processing data
samples and employing a learning algorithm inspired by
neural network theory. Improved neuro-fuzzy likes ANFIS,
fuzzy rule net and GARIC, designed as unique multi-layer
feed-forward neural networks. In these NFS, activation func-
tions and weights are different from standard NN based
interface, and this network also provides information like
numeric, linguistic, logical, etc. In [187] authors proposed
3-D principal component analysis (PCA) along with NFS
based classifiers for automatic classification of the PQDs.
Designing of an advanced supervisory power system stability
controller (SPSSC) using NFS has been presented in [188].
ICA for classifying the single and multiple PQDs [189] and
classification of neuro-fuzzy systems based on their learning
algorithm, fuzzy method, and structure from 2000 to till date
has been explained in [190]. Also, the impact ofWind Energy
(WE) sources on PQDs classification in distributed genera-
tion supported networks using modified ADALINE and an
adaptive neuro-fuzzy information system has been presented
in [191].

TABLE 6. Performance analysis of AI based PQD classification techniques.

e: BAYESIAN CLASSIFIER BASED PQDs CLASSIFICATION

Bayesian networks are one of the most effective techniques to
solve a degree of uncertainty. Bayesian classifier (BC) uses a
general inference mechanism to collect and incorporate the
new information and evidence gathered in the study through
Bayes’ theorem. The Bayes theorem defines the conditional

probability (of x given y) as expressed below,

p

(

x

y

)

= P(x)P(y/x)

P(y)
(20)

where, x and y are events, P(x) and P(y) are the probabilities
of x and y, P(x/y) is the conditional probability of x given y
and P(y/x) is the conditional probability of y given x. In this
way, BC updates a set of event probabilities according to
the observed facts and the BC structure. In [192] authors
used wavelet to decompose disturbing signals and extracted
features related to the energy content of the scaled signal
concerning the error signal. The BC further utilises these
energy features for classification. For this accurate classi-
fication, PNN provides required sufficient training data for
convergence of BC [193]. The combination of BC and SVM
for hardware explanation of PQ disturbances is discussed in
[194]. Although the probability density function of single and
multiple PQ events must be identified in advance in Naive-
BC, it is beneficial for the identification of signal patterns
applied to classify different PQ disturbances in [195]. Appli-
cation of BC networks in renewable energy sources, such as
solar thermal, geothermal, hydroelectric energies, SPV, WE
and biomass is explained in [196].

f: MISCELLANEOUS PQDs CLASSIFICATION TECHNIQUES

Apart from the techniques discussed in the preceding section,
additional classification algorithms have performed an essen-
tial role in PQ monitoring. These algorithms are reviewed
under the miscellaneous category for their effectiveness in
power quality assessment. These includes, hardware and
software architecture of expert system [197], rule-based
model [198], improved generalized adaptive resonance the-
ory (IGART) [199], recurrence quantification analysis [200],
stochastic ordering theory with coded quickest classifica-
tion [201], variety of supervised NN with online learning
capabilities [202], attribute weighted artificial immune evo-
lutionary classifier (AWAIEC) [203], spectral kurtosis to
separate hybrid PQ disturbances [204], DT initialized fuzzy
C-means clustering system based on ST [205], variational
mode decomposition (VMD) [206], real-time calculation
of the spectral kurtosis [207], online PQDs detection and
classification using DWT, MM and SVD [208], curvelet
transform and deep learning [209], rule-based ST and ada-
boost with decision stump as weak classifier [87], random
forests based PQ assessment framework [82], deep learning-
based method and stacked auto-encoder, as a deep learning
framework [210], ICA with a sparse autoencoder (SAE) for
gaining automatically training features [211] and a new class-
specific weighted random vector functional link network
(CSWRVFLN) [137]. The performance analysis of different
AI techniques is listed in Table 6. The comparison of the
multiple attributes of significantly implemented AI-based
classification techniques used by the researchers in current
research. These attributes of ANN, SVM, NFS, FES, BC and
HC techniques are beneficial for knowing the performance
level of accurate classification of PQ disturbances. However,
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hybrid classifiers (HC) is found as the best suitable classifier
for accurate classification of PQ disturbances. Moreover,
the concrete performance of various hybridmachine learning-
AI models for classifying PQDs has been discussed in [212]
and performance comparisons are provided for the selec-
tion of classification algorithms for a specific application.
Besides, various merits and demerits of AI-based PQD clas-
sification techniques are listed in Table 7. It has been found
fromTable 7 that hybrid classifiers have higher learning capa-
bility with a stable solution with mixed PQ features in real-
time. However, hybrid classifiers suffer from the processing
speed due to the compatibility issue between two classifiers.

FIGURE 5. Generalized classification strategy with considering RE signals.

It has been observed from the literature survey that, RE
sources are integrated at the point of interconnection and due
to intermittent nature of output like continuous changes in
solar irradiance, temperate and wind speed, generates vari-
ous power quality disturbances. These disturbing signals are
extracted at POI and fed into the signal processing based

detection techniques. During the feature extraction process,
pre-processing like data normalization is done and features
extracted. Redundant features are removed, and the best fea-
tures are selected using optimization techniques. Obtained
optimized features are fed into the classifiers for accurate
classification, which is generally based on AI or ML-based
classification techniques. In this stage, collected data are
trained and tested through these classification algorithms.
Finally, obtained PQDs signals are represented in the mul-
tiple classes. These classes depend on the type of algorithm,
signals and application. The flowchart of the generalized clas-
sification strategywith consideringRE signals is as illustrated
in Fig. 5.

C. EFFECT OF NOISE ON DETECTION AND

CLASSIFICATION TECHNIQUES

Power quality monitoring involves the detection and classi-
fication of PQDs. Detection and classification of PQDs in a
utility grid with RE penetration itself is a challenging task,
and it becomes even more complicated when noise is present
in the signal. The detection and classification efficiency is
primarily affected by the noise, which affects the extraction
of essential features from the signal. Therefore, the detection
and classification capability of the system is interrupted. Very
few research works have been reported on the effect on the
performance of detection and classification techniques due
to noise present in the signal. Hence, there is a strong need
for advancement in these techniques for monitoring of PQDs
in the presence of noise.

Literature addressed research work on PQ disturbances
such as sag, swell, transient, flicker, harmonics, and combi-
nations of two or more. Different types of noisy conditions
are considered in [3], [7], [50], [80], [170], [183] whereas
[78], [132], [134], [205] consider PQ monitoring with and
without noise. Also, DSP and FPGA processors with data
acquisition equipment have been found capable of handling
the computational burden in both noisy and non-noisy con-
ditions of real-time operation [84], [169]. However, better
identification of PQDs has been found with convolutional
network structure in different noise levels [213]. Multi-fusion
convolutional neural network for complex PQDs in the noisy
environment has been presented in [214]. The comparative
performance of detection and classification techniques in the
noisy and non-noisy environment are illustrated in Table 8.
Multiple PQDs are selected for the comparison of different
detection and classification techniques based on the noise
to conclude the efficiency. It has been found that without
noise, maximum techniques have 100% accuracy. However,
20db noise has less efficiency compared to 30db noise, which
shows lesser the signal to noise ratio, lesser the efficiency,
hence performance of the techniques would be affected.

IV. EXPERIMENTAL SYSTEM BASED PQ ANALYSIS WITH

RE PENETRATION

RE penetration plays an important role to meet the scarcity
of power demand in the utility grid. The output of these
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TABLE 7. Merits and demerits of AI based PQD classification techniques.

TABLE 8. Comparative analysis of PQD detection and classification techniques in presence of noise.

TABLE 9. Performance analysis of PQD detection and classification techniques with RE penetration.

sources are unpredictable and intermittent, and this is one of
the primary causes of PQ disturbances. Hence, the reliability
and quality of power supply are largely affected. These PQ
disturbances need to be detected first and then classified using
signal processing and artificial intelligence-based techniques
and then experimentally validated, to show the viability in a
practical utility grid. A general experimental framework of
the PQ monitoring system with RE penetration is depicted
in Fig. 6. This experimental framework is realised from a
50Hz three-phase AC grid with RE sources (Wind and SPV)
supplying power to nonlinear/sensitive loads. Meanwhile,
PQ disturbances monitoring techniques are loaded on FPGA
based hardware board. The current and voltage signals are
sensed using hall-effect based sensors. Analog to digital con-
verters are used to convert sensed voltage and current signals
and then fed to algorithms. Digital storage oscilloscope is also
used to display the captured waveforms. The experimental
work reported in the literature on PQ monitoring has been
presented in [90], [106], [120], [139], [152], [172], [191].

A general software-based framework of the PQ moni-
toring system is depicted in Fig. 7. This system is cate-
gorized into two different platforms, FPGA based software
and computer-based software. FPGAbased software platform
includes input signal conversion, signal processing, inter-
facing with computers, memory organization and controlled
output. Computer-based software platform sub-classified into
real-time software andweb tools. The real-time software plat-
form provides disturbance alerts by checking the database.
However, the web tools platform provides graphical tools
for user processing [215]. The detection and classification
accuracy of PQDs with RE penetration obtained from the
experiment framework are illustrated in Table 9. The aim of
selecting the different RES based configuration is to show
the classification efficiency of various techniques. It has been
found that classification efficiency also depends on the RES
based configurations in a real-time scenario.

Comparative analysis of experimental work done since the
last two decades with RE penetration is presented in Table 10.
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TABLE 10. Comparative analysis of experimental work done since last two decade.

FIGURE 6. General hardware structure of PQ monitoring with RE
penetration.

The tabled data explains the approach of many researchers
for detection and classification of PQ disturbances. For this
purpose, the table has been designed with grid-connected

FIGURE 7. General software based framework of PQ monitoring system
[215].

mode and grid-tied RE sources modewith real-time simulator
used in recent research. The tabled data is beneficial for
beginners and researchers for selecting various features for
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detection, optimization and classification even in the noisy
condition. Also, in the aforementioned comparative analysis,
synthesis results have been validated by experimental results,
which illustrates the practical effectiveness of the system.
It has been perceived from tabled data that research on PQ
monitoring with RE penetration in hardware environments
has been found very less and needs more attention to promote
green energy for the smart grid. Hence, this comprehensive
work aims to provide an experimental, online, or real-time
based performance analysis, merits and demerits of various
SP based AI techniques with RE penetration for benefiting
the beginners and engineers in the field of PQ disturbances
monitoring using research done in the last two decades.

TABLE 11. Performance evaluation of experiment based languages.

TABLE 12. DAQs used in last three decades.

A. TECHNICAL DESCRIPTION OF THE EXPERIMENTAL

FRAMEWORK WITH CONSIDERING PQ MONITORING

TECHNIQUES

The selection of equipment and programming language with
proper ratings is a difficult task for online simulation as well
as the experimental framework. The overall cost, complex-
ity, and compatibility with RE penetration also have some
limitations. In [218] total 5000 iterations have been taken
to check the accuracy and speed of the C, MATLAB and
VHDL language. VHDLwas found to be the fastest language
for execution within 0.000016 seconds with 98.19 % clas-
sification efficiency compared to MATLAB (71.4%) and C
(69.14%) language. Also, VHDL is an independent hardware

language and provides easy design implementation in a real-
time scenario. However, in the case of simulation studies
SP based techniques programmed in MATLAB language
have better classification accuracy with less computational
time compared to other software languages. All these algo-
rithms are also applicable for WE, SPV and hybrid energy
source based systems. The performance evaluation of real-
time and software-based languages with their processing time
is, as shown in Table 11. Also, data acquisition (DAQ) tech-
nologies are used for the recording of voltage and current
signals for hardware implementation. Three decades with
trends in DAQ systems are as presented in Table 12. The
intention of Table 12 is to provide an easy way for selecting
appropriate DAQ systems as per the present and future trends
of DAQ. It has been noted down that the selection of the DAQ
system may vary based on the different research application
of PQ monitoring. However, a detailed analysis of technical
descriptions of hardware used for PQ disturbance monitor-
ing algorithms is carried out based on a thorough study of
research articles cited in this article and provided in Table 13.
Tabled data explains the details of hardware/real-time system,
which include technical parameters, features used in various
PQ monitoring techniques even in noisy conditions for ben-
efiting the beginners and engineers for selecting specific PQ
detection and classification technique and other equipment
based on the hardware data used in previous researches.

V. KEY FINDINGS AND FUTURE RESEARCH WORK

Key findings of presented comprehensive review and future
research work are described in the following subsections.

A. KEY FINDINGS

The developed review reveals the following key findings:-

• This review provides a general overview of power qual-
ity monitoring and its standards in the area of RE pen-
etration into the utility grid, which is useful for grid
operators for continuous monitoring of voltage, current
and frequency levels.

• This review guides beginners in selecting various stages
involved for PQ analysis and monitoring methodology.

• Multifarious signal processing (SP) based signal extrac-
tion techniques have been discussed for detection of
PQ disturbances. The WT, ST, FT, HHT and MM are
commonly used SP based techniques for detection of
PQDs. It has been established that the adaptive signal
processing based techniques can be a potential choice
due to its superiority of fast and accurate detection in
the real-time scenario.

• This review helps for the selection of a suitable mother
wavelet function for detection of power quality distur-
banceswith thewavelet-based signal extraction features.
Daubechies db4 has been found most suitable wavelet
for PQDs detection.

• Various artificial intelligence (AI) based classification
techniques have been provided for categorizing PQD
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TABLE 13. Technical description of hardware frame work of PQ monitoring systems reported in last two decades.

signals in two or more different types according to their
features. The GA, PSO, ANN, SVM, FEA, NFS and
BC have been found to be commonly used classification
techniques. It has been established that the issue of the
number of decomposition levels required to keep away
the possible loss of some well-connected information
for classification of stationary and non-stationary signals
with RE penetration requires best optimization tech-
niques for fast and accurate classification. Thus, hybrid
combination based classification techniques have been
reported in this review.

• Noise present in the signal is one of the signif-
icant critical issues in the accurate feature detec-
tion and classification of PQDs. It is established
that SP and AI-based techniques can be a poten-
tial choice due to their superiority in a noisy
environment.

• Specific PQDs and their associated features during
grid operating conditions in the presence of RES
are reported for selecting suitable SP and AI-based
techniques.

• This review presents an experimental architecture for
RE penetration into the utility grid for power qual-
ity monitoring. Also, the technical description of the
hardware framework has been provided for selecting

the hardware language with suitable data acquisition
system.

B. FUTURE RESEARCH WORK

A broad scope for future research in the PQ monitoring with
RE penetration may include:

• The detection and classification of multiple PQDs with
various penetration levels of RES in a grid-tied mode
in the presence of noise need to be investigated for PQ
monitoring in smart grids.

• Variation of the strength of AC grid with RE penetration
is themajor source of PQ disturbances andmonitoring of
these disturbances using themachine, and deep learning-
based techniques can be a possible future research prob-
lem.

• Study to select a generalized methodology for detec-
tion and classification of single and multiple PQDs
with hybrid RE sources can also be a thrust area for
researchers.

• Themodern improvement in artificial intelligence-based
algorithms and Deep-learning based algorithms have
added to the extension of computer vision and image
recognition ideas. Hence, it could be a significant
focused area for power quality disturbances recognition.
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VI. CONCLUSION

A comprehensive the state-of-the-art for different detection
and classification techniques for the diagnosis of PQDs in the
utility grid with RE penetration is presented in this article.
The international research status with the details linked to
the working principle of various PQ monitoring techniques
(both in simulation and experimental studies) is presented
in detail. Performance, merits and demerits of these tech-
niques are summarised. The beginners in this area of research
would be able to select the method based on the system
requirements. Technical description of the hardware used for
experimental work is also provided because of benefiting
the designers and researchers in the field of PQ monitoring
in the utility grid with RE penetration. Learning outcomes
of this review and the possible scope of future work have
been highlighted. Authors hope that this review will pave
the way for new ideas on signal detection, optimization and
classification techniques in association with the RE sources
for the promotion of green and clean energy.
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