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Kisspeptin has recently emerged as a key regulator of the mammalian reproductive axis. It is known that kisspeptin, acting cen-
trally via the kisspeptin receptor, stimulates secretion of gonadotrophin releasing hormone (GnRH). Loss of kisspeptin signaling 
causes hypogonadotrophic hypogonadism in humans and other mammals. Kisspeptin interacts with other neuropeptides such as 
neurokinin B and dynorphin, to regulate GnRH pulse generation. In addition, a growing body of evidence suggests that kisspeptin 
signaling be regulated by nutritional status and stress. Kisspeptin may also represent a novel potential therapeutic target in the 
treatment of fertility disorders. Early human studies suggest that peripheral exogenous kisspeptin administration stimulates go-
nadotrophin release in healthy adults and in patients with certain forms of infertility. This review aims to concisely summarize 
what is known about kisspeptin as a regulator of reproductive function, and provide an update on recent advances within this 
field.
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INTRODUCTION

Eleven years ago inactivating mutations in the gene encoding 
kisspeptin and its receptor were first observed to cause infer-
tility. Research has since focused on delineating the exact role 
and mechanisms underlying the role of kisspeptin in reproduc-
tion. It is now widely accepted that kisspeptin, acting via the 
kisspeptin receptor, is a critical regulator of the reproductive 
axis by stimulating hypothalamic gonadotrophin releasing 
hormone (GnRH) release. In recent years, two other neuropep-
tides (neurokinin B [NKB] and dynorphin [DYN]) have 
shared the spotlight with kisspeptin as key hypothalamic regu-
lators of reproductive function, and are thought to be co-se-

creted with kisspeptin to regulate GnRH secretion. More re-
cently, studies have suggested that kisspeptin may also have 
direct gonadal effects and interact with metabolic pathways. 
Aided by increasing numbers of studies in humans, we are 
also beginning to define a potential therapeutic role for kiss-
peptin in treating certain forms of infertility. This review aims 
to summarize what is known about kisspeptin as a regulator of 
reproduction and provide an update on recent advances within 
this field.
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DISCOVERY OF KISSPEPTIN

Kisspeptin was first discovered in 1996 as a metastasis inhibi-
tor in melanoma cell lines [1]. Kisspeptin is actually a family 
of peptides derived from the KISS1/kiss1 gene with structural 
similarity, forming from differential proteolysis of a common 
precursor, prepro-kisspeptin. Kisspeptin peptides are classified 
as an RF amide peptide family i.e., neuroactive peptides with 
characteristic Arg-Phe-NH2 motif [2]. The most abundant kis-
speptin in the human circulation is kisspeptin-54, which can 
be further cleaved to 14, 13, and 10 amino acid peptides [3].

THE KISSPEPTIN RECEPTOR

The kisspeptin receptor was discovered 4 years later than kiss-
peptin, and was originally known as GPR54 [4]. It is a mem-
ber of the rhodopsin family of G-protein-coupled receptors 
and is structurally similar to the galanin receptor [2,3,5]. When 
kisspeptin binds the receptor, phospholipase C is activated 
which recruits secondary intracellular messengers, inositol tri-
phosphate and diacylglycerol, which in turn mediate intracel-
lular calcium release and protein kinase C activation [6-8]. A 
recent study showed that the intracellular calcium release is 
biphasic, the first phase being rapid with the second phase be-
ing slower. The slower phase is maintained by internalization 
and recycling of the receptor to prevent desensitization [9].

ANATOMICAL DISTRIBUTION OF 
KISSPEPTIN 

Kisspeptin expression was first demonstrated in high levels in 
the placenta [5,6], and has subsequently been observed in the 
testis, ovary, pancreas, and small intestine [5,10]. Central ex-
pression of kisspeptin and its receptor have been demonstrated 
in two major neuronal populations within the hypothalamus of 
rodents: in the arcuate nucleus (ARC) and the anteroventral 
periventricular nucleus (AVPV) [11]. In humans and primates, 
kisspeptin mRNA is predominantly expressed within the in-
fundibular nucleus (equivalent of the ARC in this order of 
mammals) [12].

SEXUAL DIMORPHISM OF KISSPEPTIN 
NEURONAL DISTRIBUTION

In rodents, the kisspeptin neurons of the AVPV appear to be 
sexually dimorphic, with many more neurons in females than 

in males [13,14]. More recent evidence also supports the pos-
sibility of sexually dimorphic kisspeptin neuron populations in 
the rostral periventricular area of the third ventricle (RP3V) 
and infundibulum of humans [15,16]. It has previously been 
observed that the increase in kisspeptin expression within the 
RP3V during pubertal development is dependant upon estradi-
ol in female mice [17,18]. Furthermore, Clarkson et al. [19] 
recently observed that, in male mice, gonadectomy at postna-
tal day 20 resulted in a reduced number of kisspeptin immuno-
reactive (IR) neurons within the RP3V, which was restored by 
administration of both estradiol and testosterone.

KISSPEPTIN STIMULATES ENDOGENOUS 
GnRH TO ACTIVATE THE REPRODUCTIVE 
AXIS

Kisspeptin neurons exist in close apposition with GnRH neu-
rons in the hypothalamus of a range of species [13,20], and 
GnRH neurons express the kisspeptin receptor [21,22]. Kiss-
peptin stimulates GnRH neurons leading to GnRH release in 
both in vitro and in vivo studies [7,23,24], an effect which is in-
hibited by the administration of GnRH antagonists [25]. Fur-
thermore, kisspeptin administration both centrally and periph-
erally leads to an increase in circulating lutenizing hormone 
(LH) levels in both animal and human studies [11,26-28]. Ex-
pression of the kisspeptin receptor gene has been observed in 
both the ARC and AVPV. Kisspeptin neurons project to the cell 
bodies of GnRH neurons in the preoptic area, and to the medi-
an eminence, close to GnRH nerve endings [11,13,29]. Taken 
together, these data suggest that kisspeptin stimulates GnRH 
neurons in the hypothalamus to release GnRH into the hypo-
thalamic-pituitary portal circulation, causing the release of go-
nadotrophs from the anterior pituitary [30]. A recent study sug-
gests that ovariectomy may abolish the kisspeptin-induced 
GnRH release in pubertal monkeys, and estradiol replacement 
may result in partial recovery of kisspeptin-induced GnRH re-
lease [31]. These data suggest that kisspeptin requires estradiol 
to stimulate GnRH secretion.

KISSPEPTIN PLAYS A CRITICAL ROLE IN 
THE ONSET OF PUBERTY

In 2003 De Roux et al. [32] and Seminara et al. [33] discov-
ered a number of mutations in the kisspeptin receptor gene in 
humans with congenital hypogonadotropic hypogonadism 
(CHH). These landmark findings have paved the way for a 
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number of other studies examining mutations in the human 
kisspeptin receptor [34-39]. The CHH phenotype has also 
been observed in patients with heterozygous kisspeptin recep-
tor mutations [40], suggesting an integral role of kisspeptin in 
puberty. More recently, an inactivating mutation in the kiss-
peptin gene in humans with absent progression of puberty has 
also been reported [41].
 The use of knockout mouse models has allowed more in-
depth study into the exact mechanism and function of kisspeptin 
in sexual maturation. In 2003, Seminara et al. [33] first showed 
that kisspeptin receptor null mice displayed hypogonadotropic 
hypogonadism (HH), as suggested by low levels of circulating 
gonadotrophin hormones, with small testes in male mice and a 
delay in vaginal opening and an absence of follicular maturation 
in female mice. The administration of exogenous GnRH cor-
rected the HH phenotype, which is consistent with the view that 
kisspeptin acts by stimulating endogenous GnRH. A number of 
subsequent studies have provided similar findings [42-44]. 
 Kisspeptin expressing neurons in the AVPV of mice are 
only detectable from postnatal day 25, with peak adult levels 
being reached by the onset of puberty at day 31 [13]. Navarro 
et al. [45] administered central injections of kisspeptin to mice 
from postnatal day 26 to day 31, and observed precocious 
vaginal opening, increased uterine weight and raised plasma 
LH and estradiol levels relative to vehicle-treated controls, 
first implicating kisspeptin in the pathogenesis of precocious 
puberty. Four years later, Teles et al. [46] identified an activat-
ing autosomal dominant mutation in the kisspeptin receptor 
gene in a girl with precocious puberty. These studies paved the 
way for many others investigating the role of kisspeptin in the 
pathogenesis of precocious puberty.
 Polymorphisms in the kisspeptin receptor gene have been 
associated with congenital precocious puberty (CPP). Ko et al. 
[47] studied patients with CPP and found a polymorphism in 
the kisspeptin receptor gene occurring less frequently in CPP 
compared with controls. By contrast, Silveira et al. [48] identi-
fied two different mutations in patients with CPP, resulting in 
kisspeptin which was more resistant to degradation when 
compared to wild type. Plasma levels of kisspeptin have been 
observed to be higher in a cohort of Korean girls with CPP 
versus prepubertal age-matched controls [49]. Furthermore, 
plasma kisspeptin levels measured after 6 months of treatment 
for girls with CPP were significantly reduced when compared 
with pre-treatment levels [50]. 
 More recently, Rhie et al. [51] investigated sequence varia-
tions of the kisspeptin gene in a large Korean cohort with CPP. 

They found three different single-nucleotide polymorphisms 
which occurred at different rates between the CPP group ver-
sus control, including one which was suggested to provide a 
protective effect [51]. 

KISSPEPTIN AS A REGULATOR OF 
SEASONAL REPRODUCTION

Kisspeptin may also regulate seasonal reproduction in certain 
species. Increased hypothalamic kisspeptin expression has 
been reported in Syrian hamsters during long day conditions, 
associated with increased sexual activity [52]. Revel et al. [53] 
observed that administration of kisspeptin-10 to Syrian ham-
sters under photoinhibitory conditions restored testicular, and 
therefore reproductive, activity. Sheep are also known to be 
seasonal breeders, with increased reproductive activity during 
short days. Clarke et al. [54] observed increased ARC kiss-
peptin expression in ewes during short day conditions, but no 
change in kisspeptin expression levels in preoptic area. Con-
versely, during long day periods kisspeptin expression in the 
ARC of ewes is reduced [55]. Furthermore, kisspeptin admin-
istration in seasonally acyclic ewes induces ovulation [56]. 
More recently, it has been suggested that GnRH (and LH) re-
sponses to kisspeptin are greater in anestrus ewes compared 
with luteal phase ewes [57]. In addition, kisspeptin receptor 
expression on GnRH neurons was greater during the non-
breeding season compared with the breeding season. 
 A recent study examined expression of kisspeptin, together 
with NKB and DYN, in Syrian hamsters. They observed that 
all three neuropeptides were down-regulated in the ARC under 
a short photoperiod [58]. Piekarski et al. [59] compared the ef-
fects of long and short day conditions, and pinealectomy, on 
hypothalamic kisspeptin IR in Turkish hamsters. They found 
increased kisspeptin IR in the AVPV in hamsters exposed to 
long day conditions, versus short day and long day-pinealect-
omised hamsters, suggesting a close relationship with melato-
nin in the regulation of seasonal reproduction [59]. 

EMERGENCE OF THE KISSPEPTIN/
NEUROKININ B/DYNORPHIN NEURONAL 
CONCEPT

In more recent years, two other neuropeptides have come un-
der the spotlight for their role in regulating reproduction: NKB 
and DYN. NKB is known for its role in steroid feedback con-
trol of GnRH release. It was recently discovered that, like kis-
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speptin, mutations in the gene encoding NKB, tachykinin 3 
(TAC3), or its receptor (TACR3) leads to hypogonadism in 
humans [60,61]. DYN is an endogenous opioid peptide, which 
acts primarily through the κ-opioid receptor (KOR) [62]. DYN 
is known to regulate progesterone-mediated negative feedback 
on GnRH release [63]. In 2007, it was first discovered that 
these three neuropeptides are colocalised in hypothalamic 
neurons of the ARC in sheep [64]. Co-expression has also 
been demonstrated in rats [65], mice [66], goats [67], and hu-
mans [68,69]. Preservation of this subpopulation of neurons 
(subsequently named kisspeptin/neurokinin B/dynorphin 
[KNDy] neurons [70]) across several mammalian species sug-
gests an integrated regulatory effect on GnRH release.
 Numerous studies have provided anatomical evidence for a 
regulatory effect of KNDy neurons on GnRH release by dem-
onstrating projections to GnRH neurons [29,71,72]. However, 
the precise role and intricate interactions of these neuropeptides 
in the regulation of reproduction is the subject of on-going re-
search. It is known that kisspeptin stimulates LH release via 
GnRH neurons, whereas DYN inhibits GnRH pulse frequency 
[73]. Current models suggest that kisspeptin may trigger GnRH 
pulses, and DYN may terminate GnRH pulses [74]. Little ex-
pression of KOR is observed in GnRH neurons [75,76], it has 
therefore been proposed that DYN may act in an autocrine or 
paracine manner to negatively regulate KNDy neurons which 
express KOR [66]. The role of NKB in GnRH pulse regulation 
remains controversial. The first study investigating the effects 
of NKB on LH release found that NKB receptor agonism re-
sulted in suppression of LH release in ovariectomised, oestro-
gen replaced rats [77]. However, other animal studies suggest 
that NKB receptor agonism stimulates LH release [66,78-80]. 
Recent work by Jayasena et al. [81] observed that peripheral 
administration of NKB in healthy humans had no effect on go-
nadotrophin release. It has been proposed that the differential 
effects of NK3R agonism observed may arise due to differenc-
es in steroid hormone milieu during NKB administration. A re-
cent model, proposed by Grachev et al. [82] incorporates recent 
data regarding the effects of senktide (a NK3R agonist) in both 
ovariectomised and intact female rats. It suggests that in a hy-
poestrogenic environment, NKB acts via DYN/KOR signaling 
to suppress LH pulses [83,84], whereas in intact prepubertal 
rats, NKB upregulates kisspeptin-induced LH pulses [85] and 
increases LH levels in diestrous rats [83].
 Recent work by Young et al. [86] found that continuous kis-
speptin infusion restored pulsatile LH secretion in humans with 
NKB or NK3R inactivating mutations causing infertility, pro-

viding strong evidence to suggest that NKB acts through kiss-
peptin to modulate downstream effects on GnRH secretion. 
 Some studies, however, have challenged the concept that a 
single population of neurons coexpress kisspeptin, NKB and 
DYN. Hrabovszky et al. [87] recently suggested that, in young 
human males, there is relatively little co-expression of DYN 
in neurons expressing kisspeptin and NKB. In addition, True 
et al. [88] did not observe co-expression of the three neuro-
peptides in rats.

KISSPEPTIN REGULATES GONADAL 
STEROID FEEDBACK TO THE 
HYPOTHALAMUS

It is well known that steroid hormones produced by the gonads 
exert feedback signaling to the hypothalamus to regulate 
GnRH production and release. Estrogen receptors (ERs) are 
transcription factors which exist as two isoforms: ERα and 
ERα. Estrogen is known to exert its positive feedback via cen-
trally located ERα to induce the LH surge [89,90]. However, 
GnRH neurons lack the ERα in rats [91], suggesting the in-
volvement of an intermediary neuronal pathway. Key work by 
Smith et al. [92] in 2006 investigated the potential role of kiss-
peptin in mediating the estrogen-induced LH surge. They ob-
served that kisspeptin expression in the AVPV of rats was 
highest during the evening of proestrus, whereas expression 
levels in the ARC were at their lowest during this time. Kiss-
peptin expression was increased in the AVPV at the time of an 
estrogen and progesterone-induced LH surge in ovariecto-
mized rats, whereas kisspeptin expression in the ARC was at 
its lowest during this time. Furthermore, kisspeptin neurons in 
the AVPV co-express the immediate early gene Fos at the time 
of the LH surge, whereas minimal Fos expression was ob-
served on diestrous. In contrast, kisspeptin neurons in the 
ARC did not express Fos during the LH surge or on diestrous. 
Lastly, they observed that most kisspeptin neurons in both the 
AVPV and ARC express the ERα. Taken together, these data 
suggest that kisspeptin neurons in the AVPV play a role in me-
diating estrogen signaling to generate the preovulatory LH 
surge in rats [92].
 A number of other studies have investigated the role of kiss-
peptin signaling in the LH surge. Exogenous kisspeptin ad-
ministration has been observed to potently induce LH secre-
tion resulting in ovulation in rats [93,94]. Furthermore, the es-
trogen-induced preovulatory surge is inhibited by the adminis-
tration of anti-kisspeptin antibodies in rats [95,96]. Clarkson 
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et al. [97] observed that, in knockout mouse models, kiss-
peptin receptor signaling was critical for the LH surge and 
subsequent ovulation. In contrast, kisspeptin receptor knock-
out mice created by Dungan et al. [98] underwent an estogen-
induced LH surge, suggesting that kisspeptin may not be criti-
cal to this process.
 More recently, Tomikawa et al. [99] examined the epigene-
tic regulation of kisspeptin gene expression mediating estro-
gen-positive feedback action in mice. They observed that the 
histone of the kisspeptin gene locus in the AVPV was highly 
acetylated, and the ERα was highly recruited at the region by 
estrogen, whereas the same locus in the ARC showed histone 
deacetylation in response to estrogen. This suggests that epi-
genetic regulation of kisspeptin may regulate kisspeptin ex-
pression in the AVPV in response to estrogen, and underlies 
the estrogen positive feedback resulting in the LH surge [99].

POTENTIALLY DIRECT GONADAL 
EFFECTS OF KISSPEPTIN

Whilst the central effects of kisspeptin are increasingly well 
described, it remains possible that direct gonadal effects of 
kisspeptin also exist. In 2004, Terao et al. [100] first observed 
expression of the genes encoding kisspeptin and its receptor in 
rat ovaries, which has subsequently been demonstrated in pri-
mate and human ovaries [10,101]. Futhermore, Castellano et 
al. [102] observed that ovarian expression of kisspeptin, and 
kisspeptin IR is cycle dependent in rats. 
 More recently, a study was able to provide functional evi-
dence of a direct effect of kisspeptin on ovaries in mice, inde-
pendent of its central effects via gonadotrophins. Gaytan et al. 
[103] observed that both kisspeptin receptor null and haplo-in-
sufficient mice had premature ovarian failure (POF), associated 
with decreased ovarian kisspeptin receptor expression. In the 
context of preserved levels of circulating gonadotrophins, this 
implies a direct interaction between kisspeptin and the ovaries 
may contribute to the pathogenesis of POF [103]. Furthermore, 
Dorfman et al. [104] recently demonstrated that neurotrophin 
signaling via the NTRK2 receptor (essential for oocyte matura-
tion during the preovulatory LH surge) is dependent upon kiss-
peptin receptor signaling using knockout mouse models. They 
suggest that both signaling pathways are required for oocyte 
survival and follicular integrity in the adult ovary [104].
 The genes encoding kisspeptin and its receptor are ex-
pressed in both human and rodent testes [3,5,100,105]. Irfan et 
al. [106] recently examined the effects of kisspeptin on the 

testes in adult male monkeys. Kisspeptin administration en-
hanced human chorionic gonadotrophin (hCG) stimulated tes-
tosterone release in acyline treated monkeys, but had no effect 
on its own in acyline treated monkeys. They suggest that kiss-
peptin may potentiate the effect of hCG on testosterone release 
from the gonads via a novel peripheral pathway [106]. 
 Pinto et al. [107] detected kisspeptin and its receptor in hu-
man spermatozoa. They observed that exposure of human 
spermatozoa to kisspeptin resulted in a biphasic rise in intra-
cellular calcium, with associated increased motility [107]. Fu-
thermore, Hsu et al. [108] recently suggested that kisspeptin 
modulates the fertilization capacity of mouse spermatozoa by 
promoting capacitation, and that administration of a kisspeptin 
antagonist reduced fertilization rates of spermatozoa in rats. 
The biological significance of these findings are currently un-
clear. However, taken together these data suggest that kiss-
peptin may act peripherally to regulate gonadal function in 
both males and females.

ROLE OF KISSPEPTIN IN PREGNANCY 
AND IMPLANTATION

The highest levels of peripheral kisspeptin expression in the 
body have been found in the syncytiotrophoblast cells of the 
placenta [109,110]. Circulating levels of kisspeptin have been 
shown increase with gestation in humans, with levels in late 
pregnancy rising to up to 7,000 times greater than in non-
pregnant controls [111,112]. Levels of kisspeptin receptor ex-
pression are increased in placental tissue with gestational tro-
phoblastic disease when compared with normal placental tis-
sue [113]. Furthermore, plasma kisspeptin IR is raised in pa-
tients with gestational trophoblastic neoplasia when compared 
with non-pregnant controls, and falls during and after chemo-
therapy [114]. The precise function of kisspeptin in these in-
stances is unclear, although it has been speculated that it may 
act to regulate trophoblast cell invasion [111]. Thus, studies 
have proceeded to investigate the potential link between kiss-
peptin levels and placental dysfunction such as pre-eclampsia 
[115], and intrauterine growth restriction [116]. Cetkovic et al. 
[117] found plasma kisspeptin levels to be significantly lower 
in pregnant women with diabetes mellitus type 1, gestational 
diabetes, hypertension, pulmonary embolism, and placental 
dysfunction compared with healthy pregnant controls.
 Park et al. [118] first suggested a link between kisspeptin and 
miscarriage. They observed that levels of placental kisspeptin 
expression are lower in women with recurrent miscarriage 
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when compared with placental tissue in electively terminated 
pregnancies, although no matching for gestational age was per-
formed [118]. Furthermore, maternal plasma kisspeptin-10 lev-
els are lower in women with early pregnancy bleeding, sug-
gesting a possible association with abortus imminens [119]. 
Jayasena et al. [112] recently observed that plasma kisspeptin 
levels were significantly lower during the first trimester of 
pregnancy in women who went on to suffer miscarriage com-
pared with healthy pregnancies, and suggest that kisspeptin 
may provide a potential novel marker for identifying asymp-
tomatic pregnant women at increased risk of miscarriage.

A REGULATORY ROLE FOR KISSPEPTIN 
IN NUTRITION AND FERTILITY

It is well known that body weight affects fertility. The signals 
regulating body weight and energy expenditure have been ex-
tensively studied in recent years. Leptin is a peptide hormone 
secreted by adipocytes [120]. Deficiency of leptin results in de-
layed puberty and hypogonadtrophic hypogonadism in mice 
[121] and humans [122]. Furthermore, leptin administration re-
verses the infertility associated with leptin deficiency [121, 
123]. Subsequently it was hypothesised that leptin may consti-
tute a link between nutrition and fertility. However, GnRH 
neurons lack receptors for many of the major metabolic sig-
naling peptides, including insulin and leptin [124]. 
 Kisspeptin is implicated as an intermediary between leptin 
signaling and GnRH function. Kisspeptin neurons express the 
leptin receptor, and Ob/Ob mice have reduced ARC levels of 
kisspeptin mRNA compared with wild type controls [125]. 
Furthermore, kisspeptin expression is increased following ex-
ogenous leptin administration [125]. Fasting has been shown 
to reduce hypothalamic kisspeptin mRNA and delay the onset 
of puberty in rats. In addition, central administration of kiss-
peptin to chronically undernourished prepubertal rats restored 
parameters of delayed puberty [126]. However, Donato et al. 
[127] demonstrated that specific knockout of the leptin recep-
tor in kisspeptin neurons did not inhibit reproduction in ro-
dents, suggesting that kisspeptin is not a critical component in 
the effect of leptin on reproduction.
 Studies have also examined possible indirect actions by 
which leptin may regulate kisspeptin neurons in the hypothala-
mus. Neuropeptide Y (NPY) is an orexigenic peptide known to 
increase food intake. Pro-opiomelanocortin (POMC) is a pre-
cursor of α-melanocyte-stimulating hormone (α-MSH), known 
for its anorectic effects. Neurons expressing NPY and POMC 

have been shown to be in close apposition with kisspeptin neu-
rons in the ARC [128]. Furthermore, central administration of 
an α-MSH agonist results in increased kisspeptin mRNA in the 
preoptic area and increased plasma LH levels [129]. 
 Mammalian target of rapamycin protein (mTOR) is a key 
player in the regulation of energy homeostasis, acting to re-
duce cell growth and differentiation in undernutrition [130]. A 
link between mTOR and kisspeptin was suggested when an-
tagonism of mTOR by rapamycin led to reduced kisspeptin 
expression in the ARC and reduced plasma LH levels [131].
 Martin et al. [132] further examined the neuronal pathways 
mediating the effects of leptin on fertility, by creating mice 
with targeted deletions of GABAergic (predominantly inhibi-
tory) neurons, and glutaminergic (excitatory) first order neu-
rons. They found that GABAergic KO mice had delayed pu-
berty and reduced parameters of reproductive function, whilst 
glutaminergic KO mice had normal pubertal onset and repro-
ductive function. Furthermore, GABAergic KO mice had re-
duced levels of kisspeptin mRNA in the ARC compared with 
glutaminergic KO and wild type mice, with preserved GnRH 
and gonadotroph response to central administration of kiss-
peptin-10 [132]. These data suggest that leptin-responsive 
GABAergic neurons may convey signals of energy balance 
via kisspeptin neurons to regulate reproductive function. A re-
cent study has also demonstrated that a subset of neurons ex-
pressing kisspeptin and NKB co-express the anorectic hypo-
thalamic peptide cocaine and amphetamine regulated tran-
script in the infundibulum of postmenopausal women [69]. 
 Evans et al. [133] investigated the relationship between in-
sulin and kisspeptin signaling in the regulation of reproductive 
function. Using dual-label immunohistochemistry they found 
that 5% of kisspeptin IR cells express the insulin receptor. 
Furthermore, kisspeptin IR cell activation was not detected in 
response to insulin administration at physiological levels. Us-
ing kisspeptin-specific insulin receptor knockout mice (KIRKO) 
they also failed to observe any difference in the onset of pu-
berty, estrous cyclicity or reproductive competency in KIRKO 
mice compared with wild type controls, suggesting that direct 
insulin signaling to kisspeptin neurons is not a critical path-
way in the regulation of reproduction [133]. Qiu et al. [134] 
also investigated mice lacking insulin receptors in kisspeptin 
neurons. In the knockout mice, females had delayed vaginal 
opening and first estrus, and males had delayed sexual matura-
tion compared with wild type controls. Both male and female 
knockout mice also had reduced LH levels in early puberty 
compared with wil type controls. However, no difference in 
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adult reproductive capacity was observed between knockouts 
and controls [134]. These data suggest that impaired insulin 
signaling via kisspeptin neurons delays the onset of puberty 
but does not affect adult fertility.
 Another study investigated the effects of kisspeptin admin-
istration to fasted monkeys. They observed that monkeys fast-
ed for 12, 18, and 24 hours all maintained testosterone release 
in response to intravenous kisspeptin, although the mean tes-
tosterone level at 3 hours postinjection was lower in the 18 
and 24 hours fasted group compared with the 12 hours fasted 
group and fed controls. Furthermore, prolonged fasting (18 
and 24 hours) resulted in a delayed initial testosterone rise in 
response to kisspeptin injection [135]. These results suggest 
that fasting-induced suppression of the reproductive axis may 
involve attenuated responsiveness to endogenous kisspeptin, 
although the exact mechanism requires further validation.
 Sanchez-Garrido et al. [136] studied the effects of a high fat 
diet (HFD) on both metabolic and reproductive parameters in 
adolescent and adult male rats. They found that HFD rats, in 
addition to increased body weight and impaired glucose toler-
ance, had reduced testosterone levels, decreased hypothalamic 
kisspeptin receptor expression and decreased LH responsive-
ness to kisspeptin [136].
 Tolson et al. [137] recently made the striking observation 
that kisspeptin receptor knockout female mice had increased 
body weight, adiposity, and leptin levels, and reduced glucose 
tolerance compared with wild type controls. Moreover, kiss-
peptin receptor knockout males showed no difference in body 
weight or glucose tolerance compared with controls. In fe-
males, the effect of kisspeptin was shown to be independent to 
that of sex steroids, as the phenotype persisted in knockout 
ovariectomised mice, and was absent in ovariectomised wild 
type controls [137]. These data suggest a sexually dimorphic 
effect of kisspeptin signaling, acting independently of sex ste-
roids, to regulate body weight and glucose metabolism, al-
though more work is needed to further explore these findings. 
 A recent study by Song et al. [138] further investigated the 
possible interaction between kisspeptin and glucose metabo-
lism in mice. It has been suggested that increased glucagon se-
cretion occurs prior to islet cell dysfunction in the pathogene-
sis of type 2 diabetes mellitus (T2DM) [139]. Song et al. [138] 
observed that glucagon stimulates hepatic kisspeptin produc-
tion, which resulted in reduced glucose-stimulated insulin se-
cretion (GSIS) from pancreatic islet β-cells. They also ob-
served that synthetic kisspeptin administration led to reduced 
GSIS. Both humans and mice with T2DM were observed to 

have increased serum kisspeptin levels and increased hepatic 
kisspeptin expression. Lastly, they observed that specific 
knockout of hepatic kisspeptin in diabetic mice resulted in im-
proved GSIS and glycaemic control [138]. Taken together, 
these data suggest that increased levels of glucagon may act 
via kisspeptin to impair GSIS in the pathogenesis of T2DM.
 In summary, numerous studies have investigated the role of 
kisspeptin as an intermediary signal between nutrition and re-
production. There is anatomical evidence to suggest both di-
rect and indirect signaling pathways between leptin and kiss-
peptin, although loss of this pathway appears not to critically 
impair reproductive function. Similarly, loss of insulin recep-
tors in kisspeptin neurons did not impair adult reproductive 
capacity but did appear to delay the onset of puberty in mice. 
Hepatic kisspeptin may also act as an intermediary signal in 
the pathogenesis of impaired glycaemia. 

KISSPEPTIN AND STRESS

Stress is known to inhibit reproductive function by suppress-
ing GnRH release. Although the exact mechanisms underlying 
this profound effect remain unclear, the hypothalamic neuro-
peptide corticotrophin releasing factor (CRF) has been impli-
cated [140,141]. Kinsey-Jones et al. [142] observed that ex-
pression of kisspeptin and its receptor is reduced in the ARC 
and medial preoptic area (mPOA) of mice in response to cen-
tral injection of CRF. Reduced kisspeptin and kisspeptin ex-
pression was also observed in response to other stressors in-
cluding restraint, insulin-induced hypoglycaemia and lipopoly-
saccharide (LPS) [142], suggesting that kisspeptin may con-
tribute to stress-induced suppression of reproductive function. 
 LPS is commonly used to mimic immune stress as a model 
in the investigation of stress-induced suppression of reproduc-
tive function. LPS is known to reduce GnRH secretion in sev-
eral mammalian species [143-145]. Knox et al. [146] observed 
that neonatal exposure to LPS caused delayed puberty and de-
creased kisspeptin mRNA in the mPOA of female rats. Fur-
thermore, Iwasa et al. [147] recently demonstrated that intra-
peritoneal administration of high dose LPS in both ovariacto-
mized and gonadal intact female rats led to decreased plasma 
LH levels and decreased hypothalamic kisspeptin and GnRH 
mRNA levels. They suggest that there is a steroid-independent 
role of kisspeptin in mediating stress-induced suppression of 
reproductive function [147].
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POTENTIAL THERAPEUTIC 
APPLICATIONS OF KISSPEPTIN

Understanding the role and interactions of kisspeptin in the re-
productive system is allowing us to identify a number of po-
tential targets in the treatment of subfertility and other associ-
ated disorders of reproduction. Although kisspeptin primarily 
acts centrally to regulate reproduction, peripheral administra-
tion of kisspeptin has been shown to stimulate GnRH release 
in several animal studies [26,93], and subsequently in human 
studies [27,148,149] with no reported adverse effects. This has 
opened up the possibility of manipulating kisspeptin signaling 
in disorders related to both decreased GnRH signaling e.g., 
HH, and in disorders where the reproductive axis needs to be 
supressed e.g., hormone sensitive cancers. 
 Human studies investigated the effects of exogenous kiss-
peptin on LH secretion. In 2005 Dhillo et al. [27] observed that 
intravenous infusion of kisspeptin in healthy male subjects re-
sulted in increased plasma gonadotrophin and testosterone lev-
els. In 2007 the same group observed that subcutaneous kiss-
peptin injection in healthy pre-menopausal females led to in-
creased plasma LH levels [28], an effect which was most pro-
nounced in the preovulatory phase of the menstrual cycle. Jay-
asena et al. [150] examined the effects of kisspeptin adminis-
tration in women with hypothalamic amenorrhoea. They ob-
served that twice daily subcutaneous administration of kiss-
peptin led to an increase in plasma gonadotrophins [150], al-
though this effect diminished after 2 weeks. However, twice 
weekly kisspeptin administration in the same cohort of women 
with hypothalamic amenorrhoea resulted in a sustained gonad-
otrophin response over an 8-week period [151]. Chan et al. 
[148] examined the effects of kisspeptin on endogenous GnRH 
pulse generation, as reflected by LH secretion in healthy hu-
man males. They observed that a single peripheral bolus of kis-
speptin-10 induced an immediate LH pulse, irrespective of 
temporal relation to the previous endogenous pulse, and the 
mean amplitude of kisspeptin-induced LH pulses were greater 
than endogenous pulses. Furthermore, kisspeptin administra-
tion delayed the next endogenous LH pulse by roughly the nor-
mal interpulse interval, suggesting that kisspeptin might act to 
reset the GnRH pulse generator [148]. George et al. [149] ob-
served that boluses of kisspeptin-10 potently induced LH se-
cretion, and continuous infusion resulted in increased LH pulse 
frequency and size in healthy human men. Jayasena et al. [152] 
also observed that a single bolus of kisspeptin-54 increased LH 
pulsatility in healthy women, and kisspeptin-54 infusion in-

creased LH pulsatility in women with hypothalamic amenor-
rhoea [153]. Furthermore, Young et al. [86] observed that con-
tinuous kisspeptin infusion restored LH pulsatility in patients 
with de-activating mutations in the genes encoding NKB or its 
receptor.

KISSPEPTIN AND THE FEMALE 
OVULATORY CYCLE

The effects of kisspeptin appear to vary at different stages in 
the menstrual cycle. The first study investigating this in hu-
mans found a maximal gonadotrophin response to exogenous 
kisspeptin during the preovulatory phase of the menstrual cycle 
[28]. Jayasena et al. [154] observed no gonadotrophin response 
to kisspeptin-10 administration in women in the follicular 
phase of the menstrual cycle. However, Chan et al. [155] ob-
served LH responses to kisspeptin-10 administration in half of 
the women in the early follicular phase, and in all women in the 
luteal and preovulatory phase. Recently, Baba et al. [156] found 
that kisspeptin expression is increased in endometrial stromal 
cells through decidualization, suggesting a role for kisspeptin 
in preparing the endometrium for adequate placentation.
 Several studies have shown that continuous kisspeptin ad-
ministration causes desensitization in a range of species in-
cluding humans [150,157,158]. As previously described, Jay-
asena et al. [150] investigated the effects of dose-interval kiss-
peptin-54 in women with hypothalamic amenorrhoea versus 
healthy female controls. In women with hypothalamic amen-
orrhoea, twice daily administration of kisspeptin-54 resulted 
in desensitization. However, healthy women remained respon-
sive to twice weekly administration of kisspeptin. In contrast, 
George et al. [149] found no evidence of desensitization when 
kisspeptin-10 was infused continuously over 22.5 hours in 
healthy men, or with 11 hours infusions in hypotestosterone-
mic men with T2DM [159]. 
 Animal data have suggested that kisspeptin may stimulate 
growth hormone (GH) and prolactin release from the anterior 
pituitary. Both in vitro [160,161] and in vivo [162,163] animal 
studies have suggested that kisspeptin may stimulate GH and 
prolactin release, although these findings were not replicated 
in monkeys [164]. Furthermore, a recent study investigated 
this possible effect in humans, and observed no change in 
mean serum GH, prolactin or thyroid-stimulating hormone 
levels in five healthy women following both acute and chronic 
kisspeptin-54 administration. In addition, no disturbance in 
GH pulse frequency or amplitude was observed [165]. We 
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therefore cannot exclude the possibility that kisspeptin stimu-
lates nonreproductive pituitary hormones in humans, but 
would conclude that any effects are subtle.
 Prolactin is known to suppress gonadotrophin release [166]. 
Hyperprolactinaemia induced HH is a major cause of infertili-
ty, both physiological (during lactation), and pathological 
[167]. Kisspeptin neurons in the hypothalamus express the 
prolactin receptor, whereas GnRH neurons show minimal ex-
pression [168,169]. Recent work by Araujo-Lopes et al. [170] 
demonstrated that, in ovariectomized rats, high prolactin lev-
els suppressed kisspeptin expression in the ARC and subse-
quent LH release, suggesting that kisspeptin neurons may act 
as an intermediary signaling pathway in the prolactin-induced 
suppression of LH release. This may provide an additional 
therapeutic target in the development of new treatments for in-
fertility caused by hyperprolactinaemia, which are resistant to 
first-line therapies.
 With evidence from rodents and sheep that kisspeptin is a 
critical stimulus for the LH preovulatory surge, a recent study 
investigated the potential for kisspeptin to be used in women 
undergoing in vitro fertilization (IVF) therapy. Jayasena et al. 
[171] administered a single injection of kisspeptin-54 at dif-
fering doses to women undergoing IVF, following standard re-
combinant follicle-stimulating hormone and GnRH antagonist 
therapy. Egg maturation was observed in response to each 
tested dose of kisspeptin at 36 hours from administration. The 
mean number of mature eggs per patient increased in a dose-
dependent manner [171]. Current practice most commonly 
uses hCG to trigger egg maturation [172], which acts directly 
on ovarian LH receptors to stimulate egg maturation. The use 
of hCG confers a risk of ovarian hyperstimulation syndrome 
(OHSS) due to sustained agonist activity compared with the 
endogenous LH surge, and a lack of negative feedback con-
trol. Thus, by stimulating endogenous GnRH and gonadotro-
phin release at physiological levels, kisspeptin use in IVF 
therapy may have reduced risk of OHSS, although comparison 
to existing therapies is required in larger studies.

CONCLUSIONS

It is widely accepted that kisspeptin plays an integral role in 
the regulation of reproduction. We are now forming a more in-
depth understanding of the diverse and complex interactions in 
kisspeptin signaling. It appears that kisspeptin also participates 
in the translation of signals of nutritional state and stress into 
reproductive capacity via GnRH signaling. Furthermore, it is 

becoming increasingly apparent that kisspeptin acts together 
with NKB and DYN in a complex manner to precisely regu-
late GnRH pulse generation in response to dynamic changes in 
steroid hormone concentrations. Kisspeptin may represent a 
novel target in the treatment of fertility disorders. Thus far, re-
sults from human studies have been promising. In particular, 
the observations that kisspeptin increases LH pulsatility in 
women with hypothalamic amenorrhoea [150], and that kiss-
peptin induces egg maturation in a dose-dependent manner in 
women undergoing IVF treatment [171] provide hope that kis-
speptin may be successfully used to develop new or improve 
existing fertility treatments. Research is also focusing on the 
use of prolonged kisspeptin agonism to induce testosterone 
suppression in the treatment of prostate cancer, with promising 
results from phase 1 clinical trials [173]. Furthermore, with the 
ability to manipulate the endogenous kisspeptin signaling 
pathway in therapeutics, it may be possible to reduce side-ef-
fects associated with current gold-standard therapies.
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