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Abstract

The growing interest in the identification of kinase inhibitors, promising therapeutics in the
treatment of many diseases, has created a demand for the structural characterization of the entire
human kinome. At the outset of the drug development process, the lead-finding stage, approaches
that enrich the screening library with bioactive compounds are needed. Here, protein structure-
based methods can play an important role, but despite structural genomics efforts, it is unlikely
that the three-dimensional structures of the entire kinome will be available soon. Therefore, at the
proteome level, structure-based approaches must rely on predicted models, with a key issue being
their utility in virtual ligand screening. In this study, we employ the recently developed
FINDSITE/Q-Dock Ligand Homology Modeling approach, which is well suited for proteome-
scale applications using predicted structures, to provide extensive structural and functional
characterization of the human kinome. Specifically, we construct structure models for the human
kinome; these are subsequently subject to virtual screening against a library of more than 2 million
compounds. To rank the compounds, we employ a hierarchical approach that combines ligand-
and structure-based filters. Modeling accuracy is carefully validated using available experimental
data with particularly encouraging results found for the ability to identify, without prior
knowledge, specific kinase inhibitors. More generally, the modeling procedure results in a large
number of predicted molecular interactions between kinases and small ligands that should be of
practical use in the development of novel inhibitors. The dataset is freely available to the academic
community a user-friendly web interface at http://cssb.biology.gatech.edu/kinomelhm/as well as
the ZINC website (http://zinc.docking.org/applications/2010Apr/Brylinski-2010.tar.gz).

1. INTRODUCTION

One of the largest enzyme families, the protein kinase family, comprises about ~2% of the
human proteome 1. Each member of this family contains a highly conserved kinase catalytic
domain responsible for the reversible phosphorylation of protein substrates, a major
regulatory process in both prokaryotic and eukaryotic organisms 2, 3. The transfer of the γ-
phosphate of ATP to serine, threonine and tyrosine residues in many enzymes and receptors
turns them on and off; thus, the dysfunction of kinase activity is implicated in various
pathological conditions. The regulation of kinase activity has been recognized by the
pharmaceutical industry as an important therapeutic strategy in the treatment of many
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diseases including cancer, Alzheimer’s disease, diabetes, inflammation, multiple sclerosis
and cardiovascular disease 4–8. Currently, an estimated one-third of drug discovery
programs focus on protein kinases 9, with already approved drugs such as imatinib 10

(Gleevec, Novartis), gefitinib 11 (Iressa, AstraZeneca), lapatinib 12 (Tykerb/Tyverb,
GlaxoSmithKline) or sunitinib 13 (Sutent, Pfizer). These are just a few of the more than a
hundred successfully developed compounds with kinase inhibition as their mode of action
14.

To speed up the development of new biopharmaceuticals, computational techniques for the
identification of lead compounds are widely used 15. In particular, virtual screening, a
technique that shows great promise for lead discovery, is becoming an integral part of
modern drug design pipelines 16, 17. Due to advances in computer technology resulting in
constantly increasing computational power, virtual libraries comprising millions of
compounds can be rapidly evaluated in silico prior to experimental screens and at the
fraction of the cost. Virtual screening approaches, historically divided into ligand- and
structure-based algorithms 18, prioritize drug candidates by estimating the probability of
binding to the target receptor. Among many methods developed to date, docking-based
techniques are valuable tools for lead identification 19. These algorithms rank compounds by
predicting the binding mode for a query molecule in the binding pocket of the target protein
20–22; this is followed by the prediction of binding affinity from molecular interactions 23–
25. Recent successful applications of structure-based virtual screening to kinase targets
include the identification of potent inhibitors for death-associated protein kinases (DAPKs)
26, protein kinase B (PKB/AKT) 27, Janus kinase 2 (JAK2) 28, Met tyrosine kinase (RTK
Met) 29 and Aurora kinase A (AurA) 30.

Notwithstanding the practical value of virtual screening by ligand docking for lead
identification, there are significant flaws in current methods. Most salient is the fact that the
predicted binding affinity is strongly correlated with the molecular weight of the ligand,
independent of whether or not the ligand really binds to its target 31, 32. Furthermore, to
achieve satisfactory performance, many commonly used docking algorithms require the X-
ray structure of their receptor target, preferably in the ligand-bound conformational state 33.
Such high-resolution structural information is available only for the fraction of the
druggable proteome. At 90% sequence identity, Figure 1 shows that the coverage of the
human kinome by protein crystal structures from the PDB 34 is ~20%. On the other hand,
the popularity of kinase inhibitors as novel therapeutics has significantly increased. Since
1995, when one of five published papers on inhibitor development was related to kinases,
the interest in kinase inhibitors has grown significantly; in 2008, approximately one-third of
publications reporting on inhibitor development can be linked to protein kinases (Figure 1,
inset). This evident trend in pharmaceutical research creates a great demand for the
structural data that would cover the entire human kinome. The gap between the availability
of protein sequences and structures can be filled by protein structure prediction, particularly
comparative modeling 35, 36. For a target sequence, given a set of evolutionarily related
protein structures, state-of-the-art template-based algorithms can construct a model whose
quality is often comparable to that of a low-resolution experimentally determined structure
37. However, despite having the correct global topology, theoretically predicted protein
structures may still have significant structural inaccuracies in their ligand binding regions. It
has been demonstrated that even moderate structural errors in the backbone and side chain
coordinates interfere with traditional ligand docking approaches and cause a critical
deterioration in the ability to accurately reproduce binding poses 32, 33.

On that account, the use of protein models as target receptors for ligand docking in
structure-based drug development requires appropriate computational techniques that may
be different from those designed to operate on the crystal structures. The recently developed
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FINDSITE/Q-dock ligand homology modeling (LHM) methodology is one such approach
that has been demonstrated to exhibit the desired tolerance to receptor structure deformation
38, 39. Conceptually similar to protein comparative modeling, LHM extends template-based
techniques to the modeling of protein-ligand interactions and provides a detailed functional
annotation of the target proteins. As schematically depicted in Figure 2, following protein
structural characterization, the functional characterization can be considered as a three-stage
process. First, functional relationships between proteins are detected by sensitive methods
such as sequence profile-driven threading 40, 41 in order to identify essential features
associated with ligand binding, i.e. functionally important residues, common molecular
substructures in binding ligands and the structural conservation of their binding modes 39.
These insights are subsequently exploited during the initial docking of ligands by a
similarity-based approach 39, 42. Finally, drug candidates placed into the target binding
pockets are subject to a refinement procedure to optimize the interactions with the protein
and to rank the predicted poses 38, 43. To deal with the problem of structural deformations
when protein models are used as the target structures, low-resolution ranking and scoring
techniques have been developed 44–46.

In this study, we present the results of the large-scale structure modeling and virtual
screening of the entire human kinome. All-atom structural models of all kinase domains in
humans have been constructed by a state-of-the-art protein structure prediction approach 40,
41, 47, 48. Next, ATP-binding pockets were identified and used as the target sites in ligand-
based virtual screening against a large (>2×106) collection of commercially available drug-
like compounds 49 followed by ligand docking/refinement applied to the top 1×104

molecules for each kinase. Ligand homology modeling 38, 39 produced >1×109 molecular
fingerprint-based similarity assessments of drug-kinase pairs and >5×106 3D models of
drug-kinase complexes. The latter were subsequently evaluated by various scoring functions
and finally, the ranked lists of compounds were compiled for each human kinase. Modeling
accuracy is validated for protein structure prediction, binding residues identification and
ligand docking using available experimental data. Compound ranking is assessed in
retrospective benchmarks against several commonly used ligand libraries, including
BindingDB 50, MDL Drug Data Report 51 and the Directory of Useful Decoys 52.
Furthermore, in a case study, we discuss the possible application of machine learning on
virtual screening data to support the development of isoform-specific protein kinase
inhibitors.

The full set of modeled protein structures, docked ligand conformations and compound
rankings are freely available to the academic community via a user-friendly web interface
that can be accessed from http://cssb.biology.gatech.edu/kinomelhm/as well as from the
ZINC website (http://zinc.docking.org/applications/2010Apr/Brylinski-2010.tar.gz).

2. MATERIALS AND METHODS

2. 1. Kinase structure modeling

The sequences of all kinase domains identified in the human genome were taken from 1.
This repository contains 516 putative protein kinase genes; 409 of which are grouped into 8
major kinase families (AGC, CAMK, CK1, CMGC, RGC, STE, TK and TKL), 82 are
classified as “others” and 25 are considered atypical. Protein structure modeling was carried
out as follows: First, for each kinase domain structure templates were selected from a non-
redundant template library by our threading algorithm PROSPECTOR_3 40, 41, which was
designed to detect close as well as remote homologous templates. Subsequently, threading
templates were submitted to TASSER 47, 48, a coarse-grained structure assembly/refinement
procedure guided by tertiary restraints extracted from the template structures. All-atom
models were constructed from Cα coordinates obtained from the TASSER simulations by
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PULCHRA 53. Finally, the kinase structures were energy minimized in the CHARMM22
force field 54 using the Jackal modeling package 55. Modeled kinase structures were then
taken as targets for the prediction of ATP-binding sites by FINDSITE 56, 57, a threading-
based method that identifies ligand-binding sites based on binding site similarity among
superimposed groups of functionally and structurally related template structures. The ATP-
binding pockets were used as the target sites to dock ligands.

2.2. Ligand docking and ranking

The ligand docking procedure consisted of initial ligand placement by FINDSITELHM 39

followed by low-resolution refinement by Q-DockLHM 38 and all-atom refinement using
AMMOS 58. FINDSITELHM is a fast ligand homology modeling approach that docks
flexible ligands by a simple superpositioning procedure. It uses a collection of template-
bound ligands extracted from binding sites predicted by FINDSITE to derive the common
molecule substructures, viz. the anchor functional groups. Subsequently, the consensus
binding poses of the anchor substructures are used for target ligand superposition, where the
flexibility of a ligand is accounted for by the superposition of multiple low-energy
conformations generated by BALLOON 59. The conformation that can be superimposed
onto the reference coordinates with the lowest RMSD structure to the predicted anchor pose
is selected as the final model. Initial binding poses generated by FINDSITELHM were
submitted to low-resolution refinement by Q-DockLHM. Q-DockLHM is a direct extension of
Q-Dock 44 that additionally includes harmonic RMSD restraints imposed on the predicted
anchor-binding pose. The lowest-energy conformation generated during the Replica
Exchange Monte Carlo sampling was selected as the final docking result. Ligand poses
provided by Q-DockLHM were transformed into the all-atom representation and further
refined by molecular mechanics optimization using AMMOS 58. AMMOS uses the AMMP
molecular simulation package 60 to carry out automatic refinement of the protein-ligand
complexes. We used the sp4 force field in all simulations; protein atoms within a 12 Å
sphere around the ligand were allowed to be flexible (AMMOS Case 4).

To provide compound ranking in virtual screening, we applied the following scoring
functions: ligand-based molecular fingerprints implemented in FINDSITE 56, 61, anchor
substructure coverage, where the anchor substructures were identified by FINDSITELHM 39,
structure-based scoring by the total energy and the pocket-specific component from Q-
DockLHM’s force field 38 and the total docked energy provided by AMMOS 58.

2.3. Datasets

2.3.1. ZINC—Each protein kinase was screened against 2,095,759 compounds from the
ZINC7 library 49. In the first step, a fast ligand-based screening was applied using molecular
fingerprints provided by FINDSITE 56, 57, as described above. Subsequently, for each
target, the top 10,000 compounds (0.5% of the library) were selected based on the modified
Tanimoto score 39, 62, 63 and submitted to molecular docking by FINDSITELHM followed
by Q-DockLHM and AMMOS. Finally, the compounds were re-ranked by the structure-
based scoring functions.

2.3.2. PDB—Protein structure modeling, binding residue prediction and docking accuracy
were assessed for 326 kinase crystal structures taken from 64. The dataset consists of 57
different human kinases with a ligand bound in the ATP-binding site (278 unique protein-
ligand pairs) and 48 ligand-free forms.

Kinase structure modeling accuracy was assessed by the global Cα RMSD and the TM-score
65. Local structural distortions of the binding pockets were evaluated by their Cα and all-
atom RMSD calculated over the binding residues identified by LPC 66. The accuracy of
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ATP-binding site detection by FINDSITE was expressed as the distance of the predicted site
from the ligand geometric center in the crystal structures and the Matthew’s correlation
coefficient (MCC) calculated for the binding residues:

(Eq. 1)

where TP, TN, FP and FN denote respectively: true positives (correctly predicted binding
residues), true negatives (residues correctly predicted not to bind a ligand), false positives
(overpredicted binding residues) and false negatives (missing binding residues).

To evaluate docking accuracy, we use the fraction of correctly predicted binding residues as
well as the fraction of recovered native specific protein-ligand contacts 38. In theoretical
protein models, the local geometry of the binding pocket frequently deviates from the
experimental structure. Therefore, ligand poses transferred from the crystal structures upon
the superposition of the binding residues roughly estimate the upper bound for ligand
docking accuracy against protein models. Ligands randomly placed into the ATP-binding
pockets within a distance of 7 Å (docking sphere) from the predicted pocket center delineate
the lower bound of docking accuracy.

2.3.3. BindingDB—Ranking accuracy in virtual screening was assessed for 362 known
active compounds selected from BindingDB 50. The top 10,000 compounds from virtual
screening against the ZINC7 library were used as background compounds. For each known
kinase inhibitor, we assess the improvement of ranking by structure-based scoring using Q-
DockLHM and AMMOS over the fingerprint-based scoring by FINDSITE.

2.3.4. KEGG—The rank of ATP for each kinase target was calculated versus 12,158
background molecules from the KEGG compound library 67.

2.3.5. DUD—The Directory of Useful Decoys 52 was designed for benchmarking virtual
screening approaches and contains 40 protein targets, 2,950 active compounds and 36 decoy
molecules per one active compound with similar physical properties. Seven targets from
DUD belong to the human kinase family: CDK2, EGFR, FGFR1, KDR, p38a, PDGFRb and
SRC. Here, we use these targets to provide a comparative assessment of the screening
protocols used in this study and in state-of-the-art virtual screening using DOCK 68. The
energy-based ligand rankings by DOCK3.5 applied to the crystal structures of the target
kinases were taken from 52. In addition, we carried out docking simulations using DOCK6
against the crystal as well as modeled kinase structures. Target receptor structures were
prepared by Chimera 69 using the default set of parameters. Ligand preparation including the
Gasteiger-Marsili partial charge assignment and the calculation of hydrogen positions were
done using OpenBabel 70. Binding poses generated by flexible ligand docking simulations
using a default “anchor and grow” protocol were ranked by the total grid score. The results
provided by DOCK3.5/6 were compared to ligand rankings obtained by low-resolution
docking/scoring by Q-DockLHM 38, 44 (knowledge-based potential) and FINDSITELHM 39

(anchor coverage) using modeled structures. Furthermore, we applied data fusion to
combine the results from virtual screening using the pocket-specific potential (Q-DockLHM)
and the anchor coverage (FINDSITELHM). Here, we use the SUM rule that is expected to be
less sensitive to noisy input than both extreme rules 71 and is preferred when fusion is by
rank 72. For a given library compound k, a combined score (CS) is calculated from:
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(Eq. 2)

where n is the number of ranked lists (in our case, n=2: Q-DockLHM and FINDSITELHM)
and ri denotes the rank position of the library compound k in the i-th ranked list.

The performance of DOCK3.5/6 and Q-DockLHM/FINDSITELHM in virtual screening for
kinase inhibitors is assessed by EF10 (enrichment factor calculated for the top 10% of the
ranked screening library) 39, 73, BEDROC20 (Boltzmann-enhanced discrimination of ROC)
73, AUAC (area under the accumulation curve) 73 and ACT-50% (the top fraction of ranked
library that contains 50% of the active compounds). Random ligand ranking yields EF10,
BEDROC20, AUAC and ACT-50% of 1.0, 0.1, 0.5 and 0.5, respectively.

2.3.6. MDDR—MDL Drug Data Report provides comprehensive information on bioactive
compounds compiled from published and unpublished sources 51. 562 protein kinase C
(PKC) inhibitors were selected from MDDR (MDL activity index: 78374) and used in
virtual screening against 9 isoenzymes of PKC: α, β, γ, delta;, ε, η, θ, ι and ζ. For each PKC
isoform, 10,000 compounds randomly selected from the ZINC7 database 49 were used as the
background library.

2.3.7. PKC—In addition to the assessment of the ligand ranking capability for protein
kinase C, we also investigated the possibility of the prediction of inhibitor specificity toward
different isoenzymes of PKC by a machine learning approach. Here, we use 10 inhibitors
collected from the literature, for which half-maximal inhibition constants (IC50) values
toward PKC isoforms were determined experimentally: corallidictyal 74, GF-109203X 75,
Gö-6976 76, JTT-010 77, K252a 78, midostaurin 79, rottlerin 80, ruboxistaurin 81,
staurosporine 82 and UCN-01 83. A simple three-state classification model was constructed;
for each PKC isoenzyme, the inhibitors were divided into three classes based on the IC50
values: class I, good binders (IC50 < 100 nM), class II, weak binders (100nM < IC50 < 1
μM) and class III, non-binders (IC50 > 1 μM). The Supporting Vector Machine (SVM, nu-
SVC type with a polynomial kernel) 84 was trained on the following features: docking scores
(raw score and the Z-score from virtual screening): fingerprint-based (FINDSITE), final
docked energy (Q-DockLHM), pocket specific component (Q-DockLHM), and the chemo-
physical properties of the inhibitors: molecular weight (MW), octanol/water partition
coefficient (logP) and topological polar surface area (PSA). The molecular properties were
calculated by OpenBabel 70. The classification model was validated using the following
leave-one-out procedure: in each round, one inhibitor was removed from the dataset, the
SVM model was trained on the inhibition data for the remaining compounds and the
excluded inhibitor was assigned a binding class for each PKC isoenzyme. The accuracy is
assessed in terms of the fraction of correct assignments. Finally, the SVM model was trained
on all experimental data and the prediction was made for PKC isoenzyme–inhibitor pairs for
which no inhibition constants are reported in the literature.

3. RESULTS

3. 1. Modeled structures for the human kinome

Template-based modeling is one of the most frequently used techniques in protein structure
prediction and has the capability of providing reliable models in the presence of
evolutionarily related template structures 35, 36. In this study, we constructed structure
models for all kinase sequences identified in the human kinome by our protein structure
prediction protocol: threading by PROSPECTOR_3 40, 41 followed by structure assembly/
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refinement using TASSER 47, 48. Figure 3 presents the global Cα root-mean-square-
deviation, RMSD, TM-score 65 and binding pocket RMSD from the crystal structure for the
set of 57 ligand-bound and 48 ligand-free human kinases 64 that have experimentally
determined structures in the PDB. The global structures of kinase domains have an average
Cα RMSD (TM-score) from the holo and apo crystal structures of 2.75Å (0.92) and 3.13Å
(0.90), respectively. The lower RMSD and higher TM-score values calculated for holo vs.
apo structures reflect the fact that most of the template structures in the PDB are in the
ligand-bound functional state (see Figure 1) and the force field used by TASSER for
structure refinement favors conformations that are typically more compact and contain more
inter residue contacts than the open conformational states. Figure 3C shows the local
deviations from the experimental structure for ATP-binding pockets; the accuracy of these
regions is critical for ligand docking and ranking. The average Cα (all-atom) RMSD
calculated over the binding residues is 1.27 Å (2.36 Å). Despite progress in the prediction of
residue rotamers 85–87, side chain modeling still needs further improvement. Nevertheless,
these values concur with the estimated plasticity of the binding sites that have the capability
to bind the same ligand (or class of ligands) in the kinase family 88 and proteins in general
39. In contrast to many ligand-docking algorithms that require highly accurate experimental
structures, the local distortions of ligand binding regions are tolerated to some extent by
docking approaches that use a lower resolution description 38, 44–46.

3. 2. ATP-binding pocket prediction by FINDSITE

To dock ligands into the modeled kinase structures, we used binding pockets predicted by
FINDSITE, a threading-based binding site prediction/protein functional inference/ligand
screening algorithm that detects common ligand binding sites in a set of evolutionarily
related proteins 56, 57. The average number of binding sites predicted by FINDSITE for a
kinase target is 32. Here, we use only the top-ranked pockets with the majority of low
ranked sites likely involved in nonspecific ligand binding. The results of ATP-binding
pocket prediction carried out for 57 different human kinases and 278 ligands are shown in
Figure 4. Considering a cutoff distance of 4 Å as the hit criterion, the success rate for all
complexes and for a non-redundant set with respect to the protein sequences is 86.7% and
94.7%, respectively. In most of the cases, the predicted distance is less than 2.5 Å. This very
high accuracy of binding site prediction results in high Matthew’s correlation coefficients
(MCC) calculated for the binding residues; for most of the complexes, the MCC is >0.80
(Figure 4, inset). Two major factors account for the exceptional efficiency of ATP-binding
site detection: the kinase structures have been modeled by TASSER to very high accuracy
and most of the currently available kinase inhibitors, whose complexes are present in the
PDB 34, target ATP-binding sites 64, 89.

3.3. Ligand binding pose prediction

Low-resolution docking techniques are frequently used to dock ligands into the distorted
binding sites of the modeled receptor structures 38, 44–46. In Figure 5, we assess the
accuracy of ligand docking into the ATP-binding sites of modeled kinase structures for 278
unique protein-ligand pairs using FINDSITELHM, Q-DockLHM and an all atom refinement
procedure, AMMOS 58. The upper bound for docking accuracy is estimated by transferring
ligands from the crystal structures into the modeled structures upon the local superposition
of the binding residues. The fraction of correctly predicted binding residues (Figure 5A) is
the highest for Q-DockLHM and is very close to the estimated upper bound. All-atom
refinement by AMMOS recovers less binding residues, and is comparable in performance to
FINDSITELHM. The fraction of correctly predicted specific protein-ligand contacts,
(essential for effective ligand ranking), provides a more detailed assessment of the docking
accuracy. Previous benchmark simulations demonstrated that ligand homology modeling by
FINDSITELHM followed by an anchor-constrained low-resolution refinement by Q-
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DockLHM outperforms other approaches in ligand binding pose prediction against modeled
receptor structures 38. Figure 5B shows that FINDSITELHM provides an approximately
correct binding pose, which is subsequently improved by low-resolution refinement using
Q-DockLHM. This procedure recovers significantly more specific protein-ligand contacts
than all-atom refinement using AMMOS. It is noteworthy that all programs used for ligand
docking perform significantly better than random ligand placement in terms of the recovered
binding residues as well as the specific protein-ligand contacts.

The success of a refinement procedure depends on the quality of the force field used. The
latter can be assessed by the correlation between the native-likeness, e.g. RMSD from the
crystal ligand binding pose and the energy score, and the location of the energy minimum;
the lowest energy pose should correspond to a conformation close to native. Here, for four
representative examples, we evaluate the quality of the Q-DockLHM’s force field that
impacts refinement outcome. In Figures 6A for cyclin-dependent kinase 2, CDK2, and in
Figure 6B for proto-oncogene serine/threonine protein kinase, PIM1, we show that when the
docking energy score is well correlated with RMSD and the energy minimum is located
close to the ligand-binding pose in the crystal structure, not surprisingly, low-resolution
refinement improves docking results; the fraction of specific contacts increases from 0.65
(using FINDSITELHM) to 0.70 (using Q-DockLHM) and from 0.45 to 0.60 respectively. On
the other hand, in some cases, the energy score is not correlated with the native-likeness of
the ligand poses; this results in minor (from 0.41 to 0.50 of the fraction of specific native
contacts that are recovered for tyrosine kinase FGFR2, Figure 6C) or no improvement by Q-
DockLHM over FINDSITELHM (0.40 for both methods for CDK2, Figure 6D). Nevertheless,
significantly better ligand binding poses are generated by Q-DockLHM for most of the
modeled complexes, which is critical for ligand ranking. As shown in Figure 5B, the fraction
of complexes with 0.40, 0.50, 0.60 and 0.70 of the specific native contacts recovered by
low-resolution, Q-DockLHM, refinement is 0.83, 0.72, 0.56 and 0.30, respectively.

We next consider some specific examples:

3.4. Staurosporine binding mode in modeled kinase structures

A natural product of S. staurosporeus, staurosporine (STU), was first described as an
inhibitor of protein kinase C 82. Later on, STU was demonstrated to have nanomolar potency
toward a variety of other protein kinases 90, 91. STU non-selectively inhibits protein kinases
by competitively binding to the ATP-binding site. Highly conserved across the protein
kinase family, the position of STU in the ATP-binding pocket (see Figure 7) is stabilized by
predominantly hydrophobic interactions and hydrogen bonds 92, 93. The inhibitor mimics
several aspects of adenosine binding; the lactam ring of STU occupies a similar position to
the amino group of ATP and the sugar moiety of STU binds to the region occupied by the
ribose of ATP, pointing out of the binding site. Despite the structural distortions of ATP-
binding sites in modeled kinase structures (see Figure 3C), similar binding modes of STU
and ATP were recovered by the low-resolution docking using Q-DockLHM. This is shown in
Figure 8 for nine protein kinases whose crystal structures are not available in the PDB 34.
High accuracy of STU docking into the ATP-binding sites of homology models has been
reported previously for eight protein kinases 88. Furthermore, it is noteworthy that structure-
based virtual screening against protein models using the pocket-specific potential as a
scoring function assigned very high Z-scores and corresponding ranks to both compounds
(Figure 8). This high ranking efficiency is encouraging since staurosporine, as a potent and
promiscuous kinase inhibitor, represents a prototypical ATP-competitive lead compound 94.
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3.5. Ligand ranking

The goal of virtual screening is to rapidly assess a large library of compounds in order to
identify those molecules that most likely bind to a drug target. To estimate the reliability of
ligand ranking, known active molecules are typically included in the screening library; high
ranks assigned to these compounds by a virtual screening approach indicate that the top
fraction of the ranked library is significantly enriched in biologically active compounds.
Here, we assess the accuracy of ligand- and structure-based virtual screening for a set of 362
known kinase inhibitors selected from the BindingDB 50. We note that only compounds that
are not present in the PDB 34 are used in this analysis. The results in terms of the ranks
assigned to known active molecules in the screening library of the top 10,000 ranked
compounds of the ZINC7 library are presented in Figure 9. First, we assess the improvement
in ligand ranking of structure-based over ligand-based virtual screening. For most of the
compounds, docking-based scores provide better (lower) ranks than the fingerprint-based
scoring using FINDSITE, with the low-resolution scoring by Q-DockLHM providing the
most effective ligand ranking. The number of compounds assigned with ranks <100 (the top
1% of the library) is 3, 68 and 2 for FINDSITE, Q-DockLHM and AMMOS, respectively. Q-
DockLHM assigned ranks lower than 1,000 (the top 10% of the library) to almost twice as
many known inhibitors as AMMOS and four times more inhibitors than FINDSITE.
Separately, we assess the ranking of ATP that binds to all kinases (Figure 9, inset). For 95%
of the protein kinases, ATP was ranked by Q-DockLHM within the top 1% of the screening
library. Strong evolutionary relationships between protein kinases are easily detected by
sequence profile-driven threading; this results in similar sets of templates identified for
individual members. Hence, the ranks assigned to ATP by FINDSITE using the molecular
fingerprints extracted from template-bound ligands are invariant across the kinase family.
The improved ranking provided by Q-DockLHM over FINDSITE provides a very strong
justification for the more CPU-expensive Q-DockLHM-based ligand docking. We note that
the top 10,000 compounds selected by FINDSITE from the ZINC7 database 49 have been re-
ranked by Q-DockLHM and AMMOS for all 516 kinases identified in the human proteome.

3. 6. Performance on the DUD dataset

The Directory of Useful Decoys (DUD) provides a large unbiased benchmark set to test the
performance of virtual screening approaches 52. In contrast to many other datasets, the
decoy compounds included in DUD are physically similar to active compounds, yet they
have a different topology from their active counterparts. This important feature helps avoid
the artificial enrichment often seen in virtual screening studies 95; hence DUD is frequently
used in the assessment of the performance of virtual screening approaches 96–100. In Table
1, we compare the performance of the ligand homology modeling approach
(FINDSITELHM/Q-DockLHM) used in this study to DOCK3.5/6, the all-atom docking/
screening tool on a set of 7 protein kinases from DUD. First, we note that for receptor
crystal structures, DOCK6 provides higher enrichment with respect to the previous version,
DOCK3.5. In benchmarks against modeled structures, considering single scoring functions,
FINDSITELHM performs better on average than DOCK6, Q-DockLHM and AMMOS with
an average EF10, BEDROC20, AUAC and ACT-50% (the top fraction of ranked library that
contains 50% of the active compounds) of 1.905, 0.133, 0.625 and 0.285, respectively.
Moreover, the performance of FINDSITELHM for protein models is close to or depending on
the metric used exceeds the performance of DOCK6 applied to the crystal structures, 1.955,
0.173, 0.383 and 0.779. The two docking algorithms, DOCK6 and Q-DockLHM perform
quite comparably against modeled structures; DOCK6 outperforms Q-DockLHM with
respect to EF10 and BEDROC20; however, the average AUAC and ACT-50% are notably
better for Q-DockLHM. Poor AUAC and ACT-50% measures calculated for ligands ranked
by DOCK6 suggest that active compounds are not equally well distributed across the
screening library and low ranks are assigned to a significant fraction of known inhibitors. In
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addition, we find that high-resolution refinement and scoring using AMMOS applied to
ligand poses generated by Q-DockLHM does not improve ligand ranking. The combined
approach, data fusion using the SUM rule applied to ligand rankings from FINDSITELHM

and Q-DockLHM, performs significantly better than the other approaches used in this study
and yields an average EF10, BEDROC20, AUAC and ACT-50% of 2.378, 0.162, 0.624 and
0.316, respectively. The most important conclusion emerging from this study is that ligand
homology modeling by FINDSITELHM/Q-DockLHM using predicted protein structures is a
competitive alternative to classical structure-based virtual screening with better or at least
comparable efficacy in ligand ranking to approaches that require solved protein crystal
structures with bound ligands.

3. 7. Virtual screening for isoform-specific PKC inhibitors

An early event in signal transduction pathways, the activation of the protein kinase C family
(PKC), leads to many biological responses that regulate major cellular functions 101.
Different PKC isoenzymes are considered to be promising targets in the treatment of many
diseases, including diabetes, multiple sclerosis, cardiovascular disease, cancer and
Alzheimer’s 5, 6, 8. Based on their structure and regulation mechanisms, the isoforms of
protein kinase C can be divided into three categories: conventional calcium-dependent PKCs
(α, βI, βII and γ) that are activated by both phospholipids and diacylglycerol (DAG), novel
PKCs (δ, ε, η and θ) that require phospholipids and DAG for activation but do not require
Ca2+ and atypical PKCs (ι/λ and ζ) that are unresponsive to both activators 102, 103. Most of
the compounds inhibit PKC isoforms non-selectively; to exploit the distinct function of
different PKC isoenzymes, isoenzyme-specific inhibitors are highly desired. Here, in a
benchmark scenario, we demonstrate how virtual screening data can be used to support the
development of isoform-specific PKC inhibitors.

In the first step, we carried out the retrospective evaluation of the virtual screening for the
PKC inhibitors using 562 active compounds from the MDDR database 51 and 10,000
random decoys from the ZINC7 library 49. We note that MDDR does not specify the
selectivity of PKC inhibitors toward different isoenzymes. Therefore, the results in terms of
the enrichment behavior plots are presented in Figure 10 for each isoform of the PKC. This
example shows that the compound ranking using an all-atom scoring function such as the
one used by AMMOS 58 is ineffective when modeled protein structures are used as the
target receptors. It has been already demonstrated in more representative benchmarks that
all-atom approaches for ligand docking and ranking are highly sensitive to structural
distortions in ligand binding regions 38, 39, 44. Molecular fingerprints provided by
FINDSITE perform better that random ligand selection with 4.8% and 24.0% of the known
inhibitors recovered in the top 1% and 10% of the screening library, respectively. Since
PKC isoforms are closely related to each other, the ranks of library compounds by
FINDSITE are identical for all isoenzymes; similar behavior was seen when FINDSITE is
applied to the prediction of ATP binding (see Figure 9, inset), as FINDSITE emphasizes the
conserved binding features across a protein family; here, we are interested in their
differences. Quite similar performance is observed for structure-based virtual screening by
the total energy reported by Q-DockLHM (which includes both generic and protein specific
components, see Methods, below) Here, the percentage of active compounds recovered in
the top 1% (10%) of the library varies from 2.8% (12.6%) for PKC-γ to 10.1% (27.6%) for
PKC-ι. Undoubtedly, the best performance is obtained using the pocket-specific component
of the Q-DockLHM’s force field as a scoring function to rank ligands. The fraction of known
PKC inhibitors ranked within the top 1% and 10% of the library varies from 11.7% (PKC-α)
to 13.9% (PKC-ι) and from 34.9% (PKC-α) to 42.3% (PKC-ε), respectively. Furthermore,
using the pocket specific scoring function, ligand ranking is very stable across different
isoforms of the PKC.
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Next, we employed a simple machine learning model to demonstrate that virtual screening
data can be used for the prediction of the inhibitor specificity toward different PKC
isoenzymes. Leave-one-out cross validation (Table 2, in italics) shows that for 7 out of 10
inhibitors (GF-109203X, Gö-6976, K252a, midostaurin, rottlerin, staurosporine and
UCN-01) the three-state binding assignment of good, weak and non-binders (see Materials
and Methods) was better than random (random accuracy is 33.3%). The highest benchmark
accuracy (60%) is observed for the indolocarbazole Gö-6976, which is the first discovered
PKC inhibitor that was shown in vivo to discriminate between Ca2+-dependent and Ca2+-
independent PKC isoenzymes 76. In the validation of our model, Gö-6976 is predicted to
inhibit α and β isoforms with high affinity <100 nM (experimental IC50 values are 2.3 nM
and 6.2 nM, respectively). PKC isoenzymes d and e are false positives i.e. predicted to be
inhibited, while the experimental data shows no inhibition. Gö-6976 is correctly assigned as
a non-active compound against the isoform ζ. The activity of three other Ca2+-independent
PKC isoenzymes, η, θ and ι, is also predicted to be unaffected by Gö-6976; this is in good
agreement with its class-selective inhibition profile. Another interesting example is rottlerin
that was predicted as a weak/non-inhibitor for most PKC isoforms. In the recent study of
protein kinases and inhibitors, rottlerin failed to show any PKC inhibitory activity against
the α and delta; PKC isotypes 104, 105, which is consistent with our results. Considering the
relatively high prediction accuracy, we used all experimental data to predict IC50 values for
PKC isoenzyme–inhibitor pairs for which no inhibition constants are reported in the
literature (Table 3, in bold).

Finally, we apply the SVM model to assign the selectivity toward PKC isoenzymes to 562
known inhibitors from MDDR. Since no information on the selectivity profile is provided by
MDDR, we indirectly validate the results using the Google search engine. The results are
shown in Figure 11. Most of the compounds were predicted by the SVM to inhibit the
conventional PKC isoforms with an IC50 <100 nM, whereas relatively few inhibitors were
predicted to be atypical PKC specific (Figures 11A and B). This trend is in good qualitative
agreement with the number of hits reported by Google (Figure 11C). The highest number of
hits was obtained using “protein kinase C alpha inhibitors” as the query phrase. Significantly
fewer hits are reported for the novel and particularly for the atypical PKC isoenzymes. This
simple study on the isoform selectivity of PKC inhibitors demonstrates that virtual screening
using protein models can provide useful information for the development of
biopharmaceuticals with desired specificity. Despite showing a classification accuracy that
is better than random, there is still the possibility of further improvements. However, these
would require an alternate approach that focuses on the variability across homologues rather
than on their conserved features.

3. 8. Simulation times

Computational procedures were carried out on IBM cluster with 2.0GHz AMD Opteron
processors and deploying Linux OS. Figure 12 shows docking times for the programs used
in this study. FINDSITELHM is the least CPU-expensive procedure with an average docking
time of less than 2 min per compound. Q-DockLHM requires ~8 min to dock a ligand on
average. High-resolution refinement by AMMOS typically uses less than 5 min of CPU
time.

4. DISCUSSION

The increasing interest in kinase inhibitors as novel therapeutics has created a demand for
the structural characterization of the human kinase family. Targeting the entire family rather
than individual members gives better prospects for developing compounds with improved
selectivity 106, 107 or, in some cases, inhibitors that are “selectively unselective” i.e.
modulate activity of multiple kinase targets associated with the selfsame pathological
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process 88, 108. Despite progress in protein crystallography and structural genomics efforts
that doubled the rate of experimental structure determination 109, the structural coverage of
the kinase family remains poor and unequally distributed 110. Propitiously, the presence of a
sufficient number of template structures in the PDB 34 and the high structural conservation
of kinase domains make the members of the kinome family perfect targets for template-
based structure modeling. A wide range of highly accurate protein models would not only
contribute directly to the structure-based drug design 111, but also to the initial experimental
structure determination of new kinases by molecular replacement techniques 112.

In this study, we constructed reliable three-dimensional models for all kinase sequences
identified in the human proteome for use in structure-based drug design. Structure modeling
was followed by a detailed functional characterization, starting from the identification of
ATP-binding pockets that are the primary target sites for most of the currently available
kinase inhibitors 64, 89, 113. Highly accurate protein models and the availability of ligand-
bound template structures resulted in precisely annotated binding residues, which constitute
a practical dataset to guide further mutational studies. Next, for each kinase family member,
we applied fast fingerprint-based virtual screening to rank a collection of >2×106

compounds from the ZINC database 49. By selecting the top 10,000 molecules for each
kinase, a kinase-focused library of ~30,000 unique compounds was compiled. This
collection, representing reasonable chemical coverage of kinase inhibitor space, should
improve the efficiency of drug development. In high throughput screens, large combinatorial
libraries are frequently supplemented with the target-oriented libraries 114, 115. Recent
screening experiments on 41 kinases demonstrated that the overall hit enrichment is
significantly higher for a target class focused library compared to generic drug-like
compounds 116. Our kinase-focused, 30,000-compound library compiled from the top virtual
screening hits may be of practical use for the selection of compounds for high-throughput
screens by providing scaffolds with high kinase inhibitory potential.

Docking benchmarks carried out for modeled kinase structures demonstrate that ligand
homology modeling often produces approximately correct binding poses, which recover
most of the native protein-ligand contacts. These results, nota bene non-trivial, since the
distorted binding sites in protein models represent a considerable challenge for many ligand-
docking algorithms, are in good agreement with our previous studies 38, 39. We note that
over five million distinct models of three-dimensional protein-drug complexes have been
constructed; these can be used for rapid binding affinity assessment by any structure-based
scoring function.

Our retrospective virtual screening analyses validate the modeled kinase structures as
valuable targets in structure-based drug development. Here, we applied a hierarchical virtual
screening approach. First, a large collection of compounds was assessed by a fast
fingerprint-based approach. Subsequently, the top-ranked fraction of the screening library
was submitted to more CPU-expensive ligand homology modeling followed by low-
resolution docking/refinement. In the end, lead candidates were re-ranked using structure-
based scoring functions. Such a workflow is very common in modern virtual screening
protocols that typically consist of a cascade of different filter approaches 117. The least
computationally expensive ligand-based techniques applied at the outset of in silico
screening allow for a rapid assessment of large compound libraries, with the top fraction of
the ranked library enriched with active compounds 39, 56, 100. These pre-filtered subsets are
subject to structure-based virtual screening by flexible ligand docking. Predicted binding
modes in the target receptor pockets are re-ranked according to the energy of binding
estimated from molecular interactions. Finally, the top fraction of the library, typically
containing hundreds to thousands molecules, is submitted for experimental validation.
Following a protocol of consecutive hierarchical filters, lead candidates that show IC50
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values in the micro to nanomolar range have been successfully identified for, e.g., the
human aldose reductase 118 and the human carbonic anhydrase 119. Our approach to virtual
screening that combines ligand homology modeling and low-resolution docking can be
applied to theoretically modeled receptor structures and yields accuracy at least comparable
to structure-based virtual screening against high quality X-ray structures using state-of-the-
art docking algorithms.

5. CONCLUSIONS

Considering the accelerated pace of genome sequencing and the much slower rate of
experimental protein structure determination, it is unlikely that three-dimensional structures
will be soon available for all potential drug targets. Therefore, modern drug development at
the proteome level must rely on modeled structures provided by state-of-the-art protein
structure prediction techniques. In this study, we show that hierarchical virtual screening
combining fast fingerprint-based filtering with structure-based ligand homology modeling
emerges as a powerful compound prioritization technique applicable to the early stages of
proteome-scale drug design projects. By applying this approach to all kinase domains in
humans, we have provided the scientific community with a very extensive structural and
functional characterization of the human kinome to support the discovery of novel kinase
inhibitors.

Acknowledgments

We thank Drs. Brian K. Shoichet and John J. Irwin (UCSF) for making the dataset available from the ZINC
website. This work was supported in part by grant No. GM-48835 and GM-37408 of the Division of General
Medical Sciences of the National Institutes of Health.

References

1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of
the human genome. Science. 2002; 298(5600):1912–34. [PubMed: 12471243]

2. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase
(catalytic) domain structure and classification. FASEB J. 1995; 9(8):576–96. [PubMed: 7768349]

3. Kennelly PJ. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS
Microbiol Lett. 2002; 206(1):1–8. [PubMed: 11786249]

4. Adcock IM, Chung KF, Caramori G, Ito K. Kinase inhibitors and airway inflammation. Eur J
Pharmacol. 2006; 533(1–3):118–32. [PubMed: 16469308]

5. Basu A. The potential of protein kinase C as a target for anticancer treatment. Pharmacol Ther.
1993; 59(3):257–80. [PubMed: 8309991]

6. Bradshaw D, Hill CH, Nixon JS, Wilkinson SE. Therapeutic potential of protein kinase C inhibitors.
Agents Actions. 1993; 38(1–2):135–47. [PubMed: 8480534]

7. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ,
Mandelkow EM, Eisenbrand G, Meijer L. Indirubins inhibit glycogen synthase kinase-3 beta and
CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease.
A property common to most cyclin-dependent kinase inhibitors? J Biol Chem. 2001; 276(1):251–
60. [PubMed: 11013232]

8. Sasase T. PKC - a target for treating diabetic complications. Drugs of the Future. 2006; 31(6):503–
11.

9. Weinmann H, Metternich R. Drug discovery process for kinase inhibitors. Chembiochem. 2005;
6(3):455–9. [PubMed: 15742380]

10. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB.
Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells.
Nat Med. 1996; 2(5):561–6. [PubMed: 8616716]

Brylinski and Skolnick Page 13

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



11. Barker AJ, Gibson KH, Grundy W, Godfrey AA, Barlow JJ, Healy MP, Woodburn JR, Ashton SE,
Curry BJ, Scarlett L, Henthorn L, Richards L. Studies leading to the identification of ZD1839
(IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor
targeted to the treatment of cancer. Bioorg Med Chem Lett. 2001; 11(14):1911–4. [PubMed:
11459659]

12. Burris HA 3rd. Dual kinase inhibition in the treatment of breast cancer: initial experience with the
EGFR/ErbB-2 inhibitor lapatinib. Oncologist. 2004; 9(Suppl 3):10–5. [PubMed: 15163842]

13. Sun L, Liang C, Shirazian S, Zhou Y, Miller T, Cui J, Fukuda JY, Chu JY, Nematalla A, Wang X,
Chen H, Sistla A, Luu TC, Tang F, Wei J, Tang C. Discovery of 5-[5-fluoro-2-oxo-1,2-
dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-
diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and
platelet-derived growth factor receptor tyrosine kinase. J Med Chem. 2003; 46(7):1116–9.
[PubMed: 12646019]

14. Noble ME, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from
structure. Science. 2004; 303(5665):1800–5. [PubMed: 15031492]

15. Terstappen GC, Reggiani A. In silico research in drug discovery. Trends Pharmacol Sci. 2001;
22(1):23–6. [PubMed: 11165668]

16. Jain AN. Virtual screening in lead discovery and optimization. Curr Opin Drug Discov Devel.
2004; 7(4):396–403.

17. Zoete V, Grosdidier A, Michielin O. Docking, virtual high throughput screening and in silico
fragment-based drug design. J Cell Mol Med. 2009; 13(2):238–48. [PubMed: 19183238]

18. McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol. 2007; 11(5):494–
502. [PubMed: 17936059]

19. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug
discovery: methods and applications. Nat Rev Drug Discov. 2004; 3(11):935–49. [PubMed:
15520816]

20. Abagyan RA, Totrov MM, Kuznetsov DN. ICM - a new method for protein modelling and design.
Applications to docking and structure prediction from the distorted native conformation. J Comput
Chem. 1994; 15(5):488–506.

21. Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated
molecular docking of flexible molecule databases. J Comput-Aided Mol Des. 2001; 15(5):411–28.
[PubMed: 11394736]

22. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated
docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J
Comput Chem. 1998; 19(14):1639–1662.

23. Chen H, Lyne PD, Giordanetto F, Lovell T, Li J. On evaluating molecular-docking methods for
pose prediction and enrichment factors. J Chem Inf Model. 2006; 46(1):401–15. [PubMed:
16426074]

24. Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP. Comparison of automated
docking programs as virtual screening tools. J Med Chem. 2005; 48(4):962–76. [PubMed:
15715466]

25. Kroemer RT. Structure-based drug design: docking and scoring. Curr Protein Pept Sci. 2007; 8(4):
312–28. [PubMed: 17696866]

26. Okamoto M, Takayama K, Shimizu T, Ishida K, Takahashi O, Furuya T. Identification of death-
associated protein kinases inhibitors using structure-based virtual screening. J Med Chem. 2009;
52(22):7323–7. [PubMed: 19877644]

27. Medina-Franco JL, Giulianotti MA, Yu Y, Shen L, Yao L, Singh N. Discovery of a novel protein
kinase B inhibitor by structure-based virtual screening. Bioorg Med Chem Lett. 2009; 19(16):
4634–8. [PubMed: 19604696]

28. Kiss R, Polgar T, Kirabo A, Sayyah J, Figueroa NC, List AF, Sokol L, Zuckerman KS, Gali M,
Bisht KS, Sayeski PP, Keseru GM. Identification of a novel inhibitor of JAK2 tyrosine kinase by
structure-based virtual screening. Bioorg Med Chem Lett. 2009; 19(13):3598–601. [PubMed:
19447617]

Brylinski and Skolnick Page 14

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



29. Peach ML, Tan N, Choyke SJ, Giubellino A, Athauda G, Burke TR Jr, Nicklaus MC, Bottaro DP.
Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J Med
Chem. 2009; 52(4):943–51. [PubMed: 19199650]

30. Coumar MS, Leou JS, Shukla P, Wu JS, Dixit AK, Lin WH, Chang CY, Lien TW, Tan UK, Chen
CH, Hsu JT, Chao YS, Wu SY, Hsieh HP. Structure-based drug design of novel Aurora kinase A
inhibitors: structural basis for potency and specificity. J Med Chem. 2009; 52(4):1050–62.
[PubMed: 19140666]

31. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL 3rd. Assessing scoring functions for protein-
ligand interactions. J Med Chem. 2004; 47(12):3032–47. [PubMed: 15163185]

32. Kim R, Skolnick J. Assessment of programs for ligand binding affinity prediction. J Comput
Chem. 2008; 29(8):1316–31. [PubMed: 18172838]

33. McGovern SL, Shoichet BK. Information decay in molecular docking screens against holo, apo,
and modeled conformations of enzymes. J Med Chem. 2003; 46(14):2895–907. [PubMed:
12825931]

34. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE.
The Protein Data Bank. Nucleic Acids Res. 2000; 28(1):235–42. [PubMed: 10592235]

35. Cozzetto D, Kryshtafovych A, Fidelis K, Moult J, Rost B, Tramontano A. Evaluation of template-
based models in CASP8 with standard measures. Proteins. 2009; 77(Suppl 9):18–28. [PubMed:
19731382]

36. Ginalski K. Comparative modeling for protein structure prediction. Curr Opin Struct Biol. 2006;
16(2):172–7. [PubMed: 16510277]

37. Moult J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction.
Curr Opin Struct Biol. 2005; 15(3):285–9. [PubMed: 15939584]

38. Brylinski M, Skolnick J. Q-Dock(LHM): Low-resolution refinement for ligand comparative
modeling. J Comput Chem. 2009

39. Brylinski M, Skolnick J. FINDSITE(LHM): a threading-based approach to ligand homology
modeling. PLoS Comput Biol. 2009; 5(6):e1000405. [PubMed: 19503616]

40. Skolnick J, Kihara D. Defrosting the frozen approximation: PROSPECTOR--a new approach to
threading. Proteins. 2001; 42(3):319–31. [PubMed: 11151004]

41. Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the
PROSPECTOR_3 threading algorithm. Proteins. 2004; 56(3):502–18. [PubMed: 15229883]

42. Marialke J, Korner R, Tietze S, Apostolakis J. Graph-based molecular alignment (GMA). J Chem
Inf Model. 2007; 47(2):591–601. [PubMed: 17381175]

43. Marialke J, Tietze S, Apostolakis J. Similarity based docking. J Chem Inf Model. 2008; 48(1):186–
96. [PubMed: 18044949]

44. Brylinski M, Skolnick J. Q-Dock: Low-resolution flexible ligand docking with pocket-specific
threading restraints. J Comput Chem. 2008; 29(10):1574–1588. [PubMed: 18293308]

45. Vakser IA. Low-resolution docking: prediction of complexes for underdetermined structures.
Biopolymers. 1996; 39(3):455–64. [PubMed: 8756522]

46. Wojciechowski M, Skolnick J. Docking of small ligands to low-resolution and theoretically
predicted receptor structures. J Comput Chem. 2002; 23(1):189–97. [PubMed: 11913386]

47. Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic
scale. Proc Natl Acad Sci U S A. 2004; 101(20):7594–9. [PubMed: 15126668]

48. Zhang Y, Skolnick J. Tertiary structure predictions on a comprehensive benchmark of medium to
large size proteins. Biophys J. 2004; 87(4):2647–55. [PubMed: 15454459]

49. Irwin JJ, Shoichet BK. ZINC--a free database of commercially available compounds for virtual
screening. J Chem Inf Model. 2005; 45(1):177–82. [PubMed: 15667143]

50. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of
experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007;
35(Database issue):D198–201. [PubMed: 17145705]

51. MDL Drug Data Report. Prous Science. 2007. http://www.mdl.com/

52. Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;
49(23):6789–801. [PubMed: 17154509]

Brylinski and Skolnick Page 15

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.mdl.com/


53. Rotkiewicz P, Skolnick J. Fast procedure for reconstruction of full-atom protein models from
reduced representations. J Comput Chem. 2008; 29(9):1460–5. [PubMed: 18196502]

54. MacKerell AD, Bashford D, Bellott, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo
H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T,
Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J,
Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-Atom Empirical Potential for
Molecular Modeling and Dynamics Studies of Proteins. J Phys Chem B. 1998; 102(18):3586–
3616.

55. Xiang Z, Honig B. Extending the accuracy limits of prediction for side-chain conformations. J Mol
Biol. 2001; 311(2):421–30. [PubMed: 11478870]

56. Brylinski M, Skolnick J. A threading-based method (FINDSITE) for ligand-binding site prediction
and functional annotation. Proc Natl Acad Sci U S A. 2008; 105(1):129–34. [PubMed: 18165317]

57. Skolnick J, Brylinski M. FINDSITE: a combined evolution/structure-based approach to protein
function prediction. Brief Bioinform. 2009; 10(4):378–91. [PubMed: 19324930]

58. Pencheva T, Lagorce D, Pajeva I, Villoutreix BO, Miteva MA. AMMOS: Automated Molecular
Mechanics Optimization tool for in silico Screening. BMC Bioinformatics. 2008; 9:438. [PubMed:
18925937]

59. Vainio MJ, Johnson MS. Generating conformer ensembles using a multiobjective genetic
algorithm. J Chem Inf Model. 2007; 47(6):2462–74. [PubMed: 17892278]

60. Harrison RW. Stiffness and Energy Conservation in Molecular Dynamics: an Improved Integrator.
J Comput Chem. 1993; 14(9):11122–1122.

61. Brylinski M, Skolnick J. Comparison of structure-based and threading-based approaches to protein
functional annotation. Proteins. 2009

62. Tanimoto, TT. An elementary mathematical theory of classification and prediction. 1958.

63. Xue L, Godden JW, Stahura FL, Bajorath J. Profile scaling increases the similarity search
performance of molecular fingerprints containing numerical descriptors and structural keys. J
Chem Inf Comput Sci. 2003; 43(4):1218–25. [PubMed: 12870914]

64. Kinnings SL, Jackson RM. Binding site similarity analysis for the functional classification of the
protein kinase family. J Chem Inf Model. 2009; 49(2):318–29. [PubMed: 19434833]

65. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template
quality. Proteins. 2004; 57(4):702–10. [PubMed: 15476259]

66. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M. Automated analysis of interatomic
contacts in proteins. Bioinformatics. 1999; 15(4):327–32. [PubMed: 10320401]

67. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M. LIGAND: database of chemical
compounds and reactions in biological pathways. Nucleic Acids Res. 2002; 30(1):402–4.
[PubMed: 11752349]

68. Lorber DM, Shoichet BK. Hierarchical docking of databases of multiple ligand conformations.
Curr Top Med Chem. 2005; 5(8):739–49. [PubMed: 16101414]

69. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF
Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;
25(13):1605–12. [PubMed: 15264254]

70. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J,
Willighagen EL. The Blue Obelisk-interoperability in chemical informatics. J Chem Inf Model.
2006; 46(3):991–8. [PubMed: 16711717]

71. Ginn CMR, Willett P, Bradshaw J. Combination of molecular similarity measures using data
fusion. Perspect Drug Discov Design. 2000; 20:1–16.

72. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A. Comparison of
fingerprint-based methods for virtual screening using multiple bioactive reference structures. J
Chem Inf Comput Sci. 2004; 44(3):1177–85. [PubMed: 15154787]

73. Truchon JF, Bayly CI. Evaluating virtual screening methods: good and bad metrics for the “early
recognition” problem. J Chem Inf Model. 2007; 47(2):488–508. [PubMed: 17288412]

74. Chan JA, Freyer AJ, Carte BK, Hemling ME, Hofmann GA, Mattern MR, Mentzer MA, Westley
JW. Protein kinase C inhibitors: novel spirosesquiterpene aldehydes from a marine sponge Aka (=
Siphonodictyon) coralliphagum. J Nat Prod. 1994; 57(11):1543–8. [PubMed: 7853003]

Brylinski and Skolnick Page 16

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



75. Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P,
Boursier E, Loriolle F, et al. The bisindolylmaleimide GF 109203X is a potent and selective
inhibitor of protein kinase C. J Biol Chem. 1991; 266(24):15771–81. [PubMed: 1874734]

76. Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Marme D,
Schachtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J
Biol Chem. 1993; 268(13):9194–7. [PubMed: 8486620]

77. Sasase T, Yamada H, Sakoda K, Imagawa N, Abe T, Ito M, Sagawa S, Tanaka M, Matsushita M.
Novel protein kinase C-beta isoform selective inhibitor JTT-010 ameliorates both hyper- and
hypoalgesia in streptozotocin- induced diabetic rats. Diabetes Obes Metab. 2005; 7(5):586–94.
[PubMed: 16050952]

78. Geiges D, Meyer T, Marte B, Vanek M, Weissgerber G, Stabel S, Pfeilschifter J, Fabbro D,
Huwiler A. Activation of protein kinase C subtypes alpha, gamma, delta, epsilon, zeta, and eta by
tumor-promoting and nontumor-promoting agents. Biochem Pharmacol. 1997; 53(6):865–75.
[PubMed: 9113106]

79. Marte BM, Meyer T, Stabel S, Standke GJ, Jaken S, Fabbro D, Hynes NE. Protein kinase C and
mammary cell differentiation: involvement of protein kinase C alpha in the induction of beta-
casein expression. Cell Growth Differ. 1994; 5(3):239–47. [PubMed: 8018556]

80. Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G, Marks F. Rottlerin, a novel
protein kinase inhibitor. Biochem Biophys Res Commun. 1994; 199(1):93–8. [PubMed: 8123051]

81. Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald JH 3rd, Neel DA, Rito CJ, Singh U,
Stramm LE, Melikian-Badalian A, Baevsky M, Ballas LM, Hall SE, Winneroski LL, Faul MM.
(S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-dimetheno-1H, 13H-
dibenzo[e, k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-d ione (LY333531) and
related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem. 1996;
39(14):2664–71. [PubMed: 8709095]

82. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F. Staurosporine, a potent
inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986;
135(2):397–402. [PubMed: 3457562]

83. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ. Differential inhibition of
protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol. 1994; 45(6):
1207–14. [PubMed: 8022414]

84. Chang, C-C.; Lin, C-J. LIBSVM: a library for support vector machines. 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm

85. Krivov GG, Shapovalov MV, Dunbrack RL Jr. Improved prediction of protein side-chain
conformations with SCWRL4. Proteins. 2009; 77(4):778–95. [PubMed: 19603484]

86. Liang S, Grishin NV. Side-chain modeling with an optimized scoring function. Protein Sci. 2002;
11(2):322–31. [PubMed: 11790842]

87. Xiang Z, Steinbach PJ, Jacobson MP, Friesner RA, Honig B. Prediction of side-chain
conformations on protein surfaces. Proteins. 2007; 66(4):814–23. [PubMed: 17206724]

88. Rockey WM, Elcock AH. Structure selection for protein kinase docking and virtual screening:
homology models or crystal structures? Curr Protein Pept Sci. 2006; 7(5):437–57. [PubMed:
17073695]

89. Liao JJ. Molecular recognition of protein kinase binding pockets for design of potent and selective
kinase inhibitors. J Med Chem. 2007; 50(3):409–24. [PubMed: 17266192]

90. Fabian MA, Biggs WH 3rd, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA,
Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko
DE, Insko MA, Lai AG, Lelias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel
HK, Zarrinkar PP, Lockhart DJ. A small molecule-kinase interaction map for clinical kinase
inhibitors. Nat Biotechnol. 2005; 23(3):329–36. [PubMed: 15711537]

91. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri
P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ,
Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP. A quantitative analysis of kinase
inhibitor selectivity. Nat Biotechnol. 2008; 26(1):127–32. [PubMed: 18183025]

Brylinski and Skolnick Page 17

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.csie.ntu.edu.tw/~cjlin/libsvm


92. Lawrie AM, Noble ME, Tunnah P, Brown NR, Johnson LN, Endicott JA. Protein kinase inhibition
by staurosporine revealed in details of the molecular interaction with CDK2. Nat Struct Biol.
1997; 4(10):796–801. [PubMed: 9334743]

93. Prade L, Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D. Staurosporine-induced
conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory
potential. Structure. 1997; 5(12):1627–37. [PubMed: 9438863]

94. Gescher A. Analogs of staurosporine: potential anticancer drugs? Gen Pharmacol. 1998; 31(5):
721–8. [PubMed: 9809468]

95. Verdonk ML, Berdini V, Hartshorn MJ, Mooij WT, Murray CW, Taylor RD, Watson P. Virtual
screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci.
2004; 44(3):793–806. [PubMed: 15154744]

96. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C. Comparison of several
molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model.
2009; 49(6):1455–74. [PubMed: 19476350]

97. Dror O, Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. Novel approach for efficient
pharmacophore-based virtual screening: method and applications. J Chem Inf Model. 2009;
49(10):2333–43. [PubMed: 19803502]

98. Fan H, Irwin JJ, Webb BM, Klebe G, Shoichet BK, Sali A. Molecular docking screens using
comparative models of proteins. J Chem Inf Model. 2009; 49(11):2512–27. [PubMed: 19845314]

99. Tawa GJ, Baber JC, Humblet C. Computation of 3D queries for ROCS based virtual screens. J
Comput-Aided Mol Des. 2009

100. von Korff M, Freyss J, Sander T. Comparison of ligand- and structure-based virtual screening on
the DUD data set. J Chem Inf Model. 2009; 49(2):209–31. [PubMed: 19434824]

101. Nishizuka Y. Studies and prospectives of the protein kinase c family for cellular regulation.
Cancer. 1989; 63(10):1892–903. [PubMed: 2539241]

102. Hofmann J. The potential for isoenzyme-selective modulation of protein kinase C. FASEB J.
1997; 11(8):649–69. [PubMed: 9240967]

103. Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J. 1998; 332(Pt 2):
281–92. [PubMed: 9601053]

104. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some
commonly used protein kinase inhibitors. Biochem J. 2000; 351(Pt 1):95–105. [PubMed:
10998351]

105. Soltoff SP. Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol
Sci. 2007; 28(9):453–8. [PubMed: 17692392]

106. Diller DJ, Li R. Kinases, homology models, and high throughput docking. J Med Chem. 2003;
46(22):4638–47. [PubMed: 14561083]

107. Goldstein DM, Gray NS, Zarrinkar PP. High-throughput kinase profiling as a platform for drug
discovery. Nat Rev Drug Discov. 2008; 7(5):391–7. [PubMed: 18404149]

108. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P,
McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M,
Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA. BAY 43–
9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway
and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;
64(19):7099–109. [PubMed: 15466206]

109. Grabowski M, Joachimiak A, Otwinowski Z, Minor W. Structural genomics: keeping up with
expanding knowledge of the protein universe. Curr Opin Struct Biol. 2007; 17(3):347–53.
[PubMed: 17587562]

110. Marsden BD, Knapp S. Doing more than just the structure-structural genomics in kinase drug
discovery. Curr Opin Chem Biol. 2008; 12(1):40–5. [PubMed: 18267130]

111. Stout TJ, Foster PG, Matthews DJ. High-throughput structural biology in drug discovery: protein
kinases. Curr Pharm Des. 2004; 10(10):1069–82. [PubMed: 15078142]

112. Argos P, Ford GC, Rossmann MG. An application of the molecular replacement technique in
direct space to a known protein structure. Acta Crystallogr. 1975; A31:499–506.

Brylinski and Skolnick Page 18

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



113. Cohen P. The development and therapeutic potential of protein kinase inhibitors. Curr Opin Chem
Biol. 1999; 3(4):459–65. [PubMed: 10419844]

114. Schnur DM. Recent trends in library design: ‘rational design’ revisited. Curr Opin Drug Discov
Devel. 2008; 11(3):375–80.

115. Sun D, Chuaqui C, Deng Z, Bowes S, Chin D, Singh J, Cullen P, Hankins G, Lee WC, Donnelly
J, Friedman J, Josiah S. A kinase-focused compound collection: compilation and screening
strategy. Chem Biol Drug Des. 2006; 67(6):385–94. [PubMed: 16882313]

116. Gozalbes R, Simon L, Froloff N, Sartori E, Monteils C, Baudelle R. Development and
experimental validation of a docking strategy for the generation of kinase-targeted libraries. J
Med Chem. 2008; 51(11):3124–32. [PubMed: 18479119]

117. Muegge I, Enyedy IJ. Virtual screening for kinase targets. Curr Med Chem. 2004; 11(6):693–707.
[PubMed: 15032724]

118. Kraemer O, Hazemann I, Podjarny AD, Klebe G. Virtual screening for inhibitors of human aldose
reductase. Proteins. 2004; 55(4):814–23. [PubMed: 15146480]

119. Gruneberg S, Stubbs MT, Klebe G. Successful virtual screening for novel inhibitors of human
carbonic anhydrase: strategy and experimental confirmation. J Med Chem. 2002; 45(17):3588–
602. [PubMed: 12166932]

Brylinski and Skolnick Page 19

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 1.

Availability of the ligand-bound and ligand-free crystal structures for the human kinome.
Inset: Histogram of the number of abstracts published since 1995 selected from the PubMed
using following queries: (“inhibitor”[Text Word]) AND (“YEAR/01/01”[Publication Date]:
“YEAR/12/31”[Publication Date]) and ((“inhibitor”[Text Word]) AND (“kinase”[Text
Word])) AND (“YEAR/01/01”[Publication Date]: “YEAR/12/31”[Publication Date]).
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Figure 2.

Hierarchical approach to structural and functional characterization of proteins using
homology modeling techniques.
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Figure 3.

Accuracy of kinase structure modeling using TASSER. Global Cα RMSD (A) and TM-score
(B) are calculated versus ligand-bound (holo) and ligand-free (apo) structural forms of the
target proteins. Local Ca and all-atom RMSD calculated over the binding residues are
shown in C.

Brylinski and Skolnick Page 22

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4.

ATP-binding pocket detection by FINDSITE. The results are presented as the cumulative
fraction of kinase targets with a distance between the center of mass of an inhibitor in the
crystal complex and the center of the predicted binding sites, less than or equal to the
distance displayed on the x axis. Open circles show the results for a non-redundant (nr)
dataset with respect to the target proteins. Gray area corresponds to randomly selected
patches on the protein surface. Inset: Matthew’s correlation coefficient calculated for the
predicted binding residues.
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Figure 5.

Docking accuracy of the ligand homology modeling approach applied to the human kinome.
Fraction of binding residues (A) and specific protein-ligand contacts (B) predicted by
FINDSITELHM, Q-DockLHM and AMMOS is compared to the ligand poses directly
transferred from the crystal structures as well as to ligands randomly placed into the binding
pockets.

Brylinski and Skolnick Page 24

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6.

Low-resolution docking/refinement by ligand homology modeling using protein models as
the target receptors. A – CDK2, 1oiq; B – PIM1, 1yxx; C – FGFR2, 1oec and D – CDK2,
2btr. Left, middle: Inhibitor binding poses predicted by FINDSITELHM and Q-DockLHM

(solid sticks, colored by atom type) are compared to the crystal structures (transparent
sticks). Protein models (binding residues colored in red) are superposed onto the crystal
structures of the target kinases (binding residues colored in orange). Right: correlation of the
Q-Dock energy score and RMSD from the crystal binding pose for the ligand conformations
sampled using Replica Exchange Monte Carlo (REMC). The red line highlights low-energy
conformations for the broad range of RMSD values.
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Figure 7.

Crystal structures of several protein kinases complexed with staurosporine (STU) and ATP.
A – CDK2 (STU: 1aq1, ATP: 1b38), B – GSK3B (STU: 1q3d, ADP: 1j1c), C – LCK (STU:
1qpd, ANP: 1qpc), D – PIM1 (STU: 1yhs, AMP: 1yxu), E – PDK1 (STU; 1oky, ATP:
1h1w), F – MAPKAPK2 (STU: 1nxk, ADP: 1ny3). STU, the set ATP/ADP/AMP/ANP and
selected binding residues are colored in green, red and blue, respectively.
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Figure 8.

Modeled structures of protein kinases bound to staurosporine (STU) and ATP. A – CDC2, B
– Erk1, C – FGR, D – LYN, E – PKACa, F – PKCa, G – PKCg, H – PKG1, I – smMLCK.
STU, ATP and selected binding residues are colored in green, red and blue, respectively.
ATP and STU ranks and Z-scores from virtual screening using Q-DockLHM against modeled
kinase structures are given.
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Figure 9.

Performance of virtual screening on the BindingDB dataset. Active compounds are sorted by
increasing rank reported by FINDSITE fingerprints (ligand-based screening), Q-DockLHM

(structure-based screening, low-resolution) and AMMOS (structure-based screening, high-
resolution). Inset: ATP ranks for all protein kinases; for FINDSITE, the ranks in the KEGG
compound library are used.
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Figure 10.

Virtual screening for protein kinase C inhibitors. The enrichment behavior for FINDSITE
(molecular fingerprints), Q-DockLHM (total energy score and the pocket-specific
component) and AMMOS (all-atom scoring) is compared to a random ligand selection for
different isoenzymes of PKC.
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Figure 11.

Prediction of the PKC isoenzyme selectivity of known PKC inhibitors from MDDR. A –
three-state binding assignment of good (IC50 <100 nM), weak (100nM < IC50 < 1 μM) and
non-binders (IC50 >1 μM) by machine learning. B – number of MDDR compounds
predicted to inhibit different PKC isoforms with IC50 <100 nM, C – number of hits returned
by the Google search engine (http://www.googlefight.com/) using different PKC isoenzyme
inhibitors as the query phrases.
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Figure 12.

Docking times for FINDSITELHM, Q-DockLHM and AMMOS. Boxes end at the quartiles Q1
and Q3; a horizontal line in a box is the median. “Whiskers” point at the farthest points that
are within 3/2 times the interquartile range. Outliers and suspected outliers are presented as
solid and blank circles, respectively.
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