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Abstract—Smart Grid has rapidly transformed the centrally
controlled power system into a massively interconnected cyber-
physical system that benefits from the revolutions happening in
the communications (e.g. 5G) and the growing proliferation of the
Internet of Things devices (such as smart metres and intelligent
electronic devices). While the convergence of a significant number
of cyber-physical elements has enabled the Smart Grid to be
far more efficient and competitive in addressing the growing
global energy challenges, it has also introduced a large number
of vulnerabilities culminating in violations of data availability,
integrity, and confidentiality. Recently, false data injection (FDI)
has become one of the most critical cyberattacks, and appears
to be a focal point of interest for both research and industry.
To this end, this paper presents a comprehensive review in the
recent advances of the FDI attacks, with particular emphasis on
1) adversarial models, 2) attack targets, and 3) impacts in the
Smart Grid infrastructure. This review paper aims to provide
a thorough understanding of the incumbent threats affecting
the entire spectrum of the Smart Grid. Related literature are
analysed and compared in terms of their theoretical and practical
implications to the Smart Grid cybersecurity. In conclusion,
a range of technical limitations of existing false data attack
research is identified, and a number of future research directions
is recommended.

Index Terms—Smart Grid, cybersecurity, power system reli-
ability, cyber-physical system, cyberattack, false data injection.

I. INTRODUCTION

THE major threat to critical infrastructure from nation
states and hostile actors raises real challenges in iden-

tifying the operational vulnerabilities of the Smart Grid, as
well as the various attack vectors that could jeopardise the
reliability and performance of the power system.

According to vulnerability reports from the US ICS-CERT
[1] and Kaspersky ICS-CERT [2], the energy sector has
reported the greatest number of vulnerabilities among all
network infrastructures. For example, Fig. 1 shows the number
of vulnerabilities of various Industrial Control System (ICS)
elements between 2010 and 2019 [1] [2]. Accordingly, 178,
110, and 283 cyberattack incidents were recorded in the energy
sector out of 322, 415, and 509 ICS cyberattack incidents, re-
spectively across the fiscal years 2017, 2018, and 2019. These
cyber incidents may lead to myriads of security risks including
the loss of critical data necessary for control operations, ma-
licious modification of critical power system states. Possible

consequences include incorrect customer billing information,
price manipulation in the energy market, small to large scale
electric power outage, and the likelihood of endangering lives
by limiting power to other national critical infrastructures.

There have been various attacks against the power grid over
the last decade. Fig. 2 demonstrates the timeline of the recent
global cyber incidents.

A. Purpose and Scope of the Study

Bad data detection (BDD) [3] [4] [5] has been widely
utilized in the power system control centers for the identi-
fication of cyber anomalies. Nevertheless, it has been proven
that the BDDs are incapable of detecting false data injection
(FDI) [6] attacks. The primary objective of this article is
to provide a systematic literature review and insights into
taxonomies of various FDI attack construction methodologies,
attack target, and attack impact relevant to the area of Smart
Grid cybersecurity.

B. Contributions

This report has analyzed a great number of publications
and reference materials in the attack construction, targets, and
impacts of the false data attacks across various domains of
the Smart Grid infrastructure. We systematically search for
older and more recent related literature, analyse the main
findings covered in each literature, critically evaluate them,
and compare each solution within the broader conception of
the cyber-physical data integrity attacks. Specifically, major
contributions of this article are summarised below.

1) The paper identifies essential cybersecurity requirements
of Smart Grid (Section IV), including theoretical analysis
with illustrative examples of stealthy FDI attacks, and
requirements for the stealthy FDI attacks (Section V).

2) Following a comprehensive review of relevant existing
survey papers, this work highlights their contribution and
identifies the gaps that have been addressed through this
survey. Detailed comparisons have been highlighted in
Table I and the related discussions have been presented
in Section VI, VII, and VIII.

3) This paper presents three different taxonomies related
to the FDI attack models (Section VI), attack targets
(Section VII), and their impacts (Section VIII).
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4) This paper analyses the various FDI-based adversarial
modeling methods and provides statistical facts on the
basis of the evaluation criteria in Section X and Table V.
Furthermore, the paper discusses main research gaps in
the existing false data attack papers in Section X.

5) Finally, this paper provides technical recommendations
for emerging advanced application areas, including Inter-
net of Things (IoT)-based Advanced Metering Infrastruc-
ture (AMI), cognitive radio, lightweight machine learning
(ML) for resource-constrained IoT devices, FDI attack in
edge computing environment, impact of FDI attack in
distributed electricity trading and Blockchain ecosystem.

We believe that a systematic survey and synthesis of such a
large number of independently developed studies will make a
major contribution to the Smart Grid cybersecurity discipline.

Fig. 1: Number of ICS vulnerabilities by year (reproduced
from the US ICS-CERT [1] and Kaspersky ICS-CERT [2])

Fig. 2: Timeline of recent global cyberattacks on power grid
(referred from [7], [8], [9], and [10]

C. Outline of the Paper

First, Section II discusses related survey papers on FDI
attacks and compares with our paper. Next, background on
Smart Grid and key cyber-physical elements are discussed
in Section III. Then, cyber-physical attacks, cybersceurity
main objectives, and security requirements of Smart Grid
are highlighted in Section IV. In Section V, we comprehen-
sively discuss the FDI attack, the attack vector construction
methodologies, demonstrate with example the stealthiness of
this class of cyber-physical attack, and the main requirements
for the FDI attack under the Smart Grid environment. The
next three sections discuss the suggested taxonomy of the
FDI attack, mainly from the adversarial point of view. In

particular, Section VI covers the attack construction model,
Section VII explores the FDI attack targets, and Section VIII
examines the attack impact. Literature search methodology,
selection & analysis of the surveyed literature, and evaluation
criteria among the multitude of algorithms of selected surveyed
papers are presented in Section IX. Furthermore, Section X
compares and contrasts among the numerous attack strategies.
Following a critical review of the shortcomings found in the
literature in Section XI, our technical recommendations that
can substantiate future researches in the field are provided in
Section XII. Finally, Section XIII concludes this survey article.

II. RELATED SURVEY PAPERS

The work by D Wang et. al [11] is one of the earliest works
where authors present a review on the cyber-physical attacks.
Authors described the fundamentals of false data attacks
from cyber-and physical-side, with cyberattack illustrations
being presented on smart meters. Authors in [12] presented a
comprehensive survey of FDI attacks under both AC and DC
power flow models in Smart Grid. Unlike to previous studies,
[12] has overviewed detection schemes and presented on the
basis of centralised-and distributed-based state estimation (SE)
techniques. Furthermore, a survey research of the data injec-
tion attacks with respect to three major cybersecurity aspects,
namely FDI attack construction, impacts of the attacks, and
countermeasures is studied by R Deng et. al [13]. Unlike to
previous studies, [13] thoroughly studied the impacts of data
injection attacks on the electricity market. Another line of
survey research is studied in [14], which summarises related
literature on different attack models, economic impact of
the attack, and mitigation techniques for various Smart Grid
domains including transmission, distribution, and microgrid
networks. Moreover, G Liang et. al [15] complement previous
studies and discuss various FDI attack models, physical and
economic impacts of the attacks, and countermeasures in
Smart Grid. Research works in [16] and [17] also compre-
hensively discuss the FDI attacks from the attacker’s and
operator’s point of view along with the consequential impacts
of the attacks.

Different from previous surveys the authors of [18] reviewed
two main classes of detection algorithms: model-based and
data-driven, and have discussed the benefits and drawbacks
of each technique. As compared to other review works which
mostly focus on the energy management system (EMS), the
authors in [19] discussed FDI attacks on various entities
of the online power system security. These authors review
and compare studies on the FDI attacks and provide a new
class of cyber-oriented countermeasure: prevention (further
classified into block chain and cryptography based techniques).
Unlike to the related works, this paper presents a detailed
survey of recent developments in the FDI and sets out a
taxonomy of the incumbent cyberattack with respect to adver-
sarial models, attack targets, and impacts across every Smart
Grid domain including transmission to consumption, automatic
generation control (AGC) to microgrids or distributed energy
resources (DERs), substation to wide area monitoring systems.
IoT, cognitive radios, and software-defined networks have
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TABLE I: Comparison of current survey articles and our paper

Literature
Comparison attributes [11] [12] [13] [15] [14] [16] [17] [18] [19] Our

paper

FDI attack model

Complete information X X X X X 5 X 5 X X
Partial information 5 5 5 X X 5 X 5 X X

LR attack 5 5 5 X X 5 5 5 ‡ X
GT attack 5 5 5 5 ‡ ‡ 5 ‡ X X

Data-driven 5 5 5 5 5 ‡ ‡ 5 5 X
Centralised ‡ X ‡ ‡ ‡ ‡ ‡ ‡ ‡ X
Distributed 5 X 5 5 ‡ 5 5 ‡ ‡ X

FDI attack target

EMS ‡ ‡ ‡ 5 ‡ 5 ‡ X 5 X
AGC 5 5 5 5 5 5 X X X X
DEM 5 5 5 5 ‡ 5 5 5 5 X
MMS 5 5 5 5 5 5 5 5 X X

Network comm. 5 5 5 5 5 ‡ 5 ‡ ‡ X
Intelligent devices 5 5 5 5 5 ‡ 5 5 5 X
Renewable DER 5 5 5 5 5 5 5 5 ‡ X

Impact of FDI attack

Secure opera-
tion& stability 5 5 5 5 ‡ ‡ 5 X ‡ X

Risk and reliability 5 5 5 5 ‡ 5 5 5 5 X
Electricity market 5 5 X ‡ X 5 5 5 5 X

Energy theft 5 5 5 ‡ ‡ 5 5 5 X X
Energy privacy 5 5 5 5 5 5 5 5 5 X

Evaluation criteria 5 5 5 5 5 5 ‡ ‡ ‡ X
Future directions 5 5 5 X X 5 X X X X

Duration of surveyed papers
2009
to
2013

2009
to
2013

2009
to
2015

2009
to
2015

2009
to
2016

2010
to
2017

2010
to
2019

2011
to
2019

2009
to
2019

2009
to
2020

X studied/covered, ‡ partially studied, 5 not studied

recently been introduced as enablers to the Smart Grid. These
communication technologies are very important to address
the cybersecurity aspects of today’s Smart Grid which were
missed in most of the existing related works. In general, in
light of research, this paper provides an in-depth survey of the
latest advances of the cyber-physical FDI attacks within the
Smart Grid infrastructure. Table I summarises the comparison
of existing survey papers and this article.

III. BACKGROUND

Smart Grid is primarily the convergence of two interdepen-
dent layers (i.e. cyber and physical systems), which are bound
together and create a cyber-physical ecosystem. It is crucial
to scrutinize the relations between the physical and the cyber
entities in order to investigate any underlying cyber-physical
attack incidents. Therefore, in this section, the main cyber-
physical elements of the Smart Grid are briefely discussed.

A. SCADA

Supervisory control and data acquisition (SCADA) [20] is
an industrial and power system control application. Usually
a SCADA consists basically of three subsystems: a data
acquisition sub-system that collects measurement of the power
system, a supervisory sub-system that can control remote intel-
ligent electronic devices (IEDs) [20] by transmitting control
commands, and a communication sub-system that intercon-
nects the data acquisition sub-system to the supervisory sub-
system. A typical scenario in the integrated SCADA system
can be described, for example, when the SCADA gathers
data from diverse IEDs in a power system through various
communication methods, and then monitor the data using
different visualisation tools.

B. Energy Management System

Power system operations are regulated by system operators
from the control center. Within the control center lies EMS, an
automation system used to monitor, control, coordinate, and
optimize energy data performance across the majority of Smart
Grid infrastructure in real time. EMS depends on a SCADA
system for its data monitoring and analysis events. A typical
EMS comprises the following functional elements including
SE, optimal power flow (OPF), contingency analysis (CA),
alarm management system, planning and operations, AGC and
economic dispatch.

At the control center, a state estimator receives a set of
measurements, and provides accurate system information and
detects malicious measurement data (usually through a BDD
[3] [4] [5]). In general, the SE outcome presents real-time
database for other EMS applications (see Fig. 3).

C. Smart Grid Communication Systems

Communication systems are essential to the efficient oper-
ation of the Smart Grid. Various communication technologies
are utilised across the different domains, including IEC 61850
[21] [22] in substation automation system (SAS), PMU [23]
in wide area monitoring systems (WAMS), AMIs [24] across
customer-side, and Networked Control System (NCS) [25]
between sensors, actuators and controllers.

D. Distributed Energy Resources (DERs)

DERs are decentralised, versatile, and modular architecture
that incorporate a number of renewable sources [24]. Com-
pared to conventional approaches in which energy is generated
by centralised and big power plants, DER allows energy
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Fig. 3: Typical Smart Grid with 5-bus system.

production and delivery from many areas, including millions
of homes and businesses. Microgrid technology is one of the
enablers of Smart Grid that provides smooth collaboration
between DERs offering isolation options or access to the
conventional grid electricity.

IV. CYBER-PHYSICAL SECURITY OF SMART GRID

The security issues of Smart Grid have emerged from
both physical and cyber spaces that include: physical se-
curity [26] (i.e. security policies with respect to staffs or
personnel, physical equipment protection, and contingency
analysis), cybersecurity (focusing on the information security
of Smart Grid pertaining to IT, OT, network and commu-
nication systems), and cyber-physical security (incorporating
strength in all physical and cybersecurity measures against
inadvertent cyber-physical incidents within an integrated Smart
Grid framework). In this section, Smart Grid cybersecurity
goals, cybersecurity requirements, and cyber-physical attacks
are highlighted.

A. Smart Grid Cybersecurity Goals

Quality of service and secure power supply are the primary
concern of power companies and industrial sectors. So much
that the Smart Grid strives to build a much more efficient
and reliable energy, cybersecurity threats can inevitably slow
down its progress. Therefore, the Smart Grid needs to ensure
the basic security goals such as data integrity, availability
confidentiality, accountability, and etc of the various cyber-
physical elements. While these security principles have been
developed to govern policies on generic information security
within organisations, the principles of Smart Grid cybersecu-
rity have also been identified by NIST [26].

Avaiablity: The permanent availability and timeliness of
electricity are crucial in our day to day life. Within the
Smart Grid environment, availability is by far the most critical
security goal for stability of the power grid. It ensures reliable
access to and timely use of information. Availability can be
quantified in terms of latency, the time required for data to be
transmitted across the power grid. Smart Grid cybersecurity

solutions should provide acceptable latency thresholds of
various applications by minimising detrimental effects on the
availability.

Integrity: Integrity is the second yet highly critical Smart
Grid security requirement. As part of the cybersecurity objec-
tives, integrity ensures that data should not be altered without
authorized access, source of data need to be verified, the time
stamp linked with the data must be identified/validated, and
quality of service is under acceptable range.

Confidentiality: From the point of view of system re-
liability, confidentiality seems to be the least important as
compared to availability and integrity. Nevertheless, with the
proliferation of smart meters and AMIs across the Smart Grid
implies the increasing importance of confidentiality to prevent
unauthorized disclosure of information, and to preserve cus-
tomer privacy or proprietary information.

Accountability: Another security objective within the Smart
Grid ecosystem is accountability, a requirement that consumers
should be responsible for the actions they take. Accountability
is very important, particularly when customers obtain their
billing information from the utility center, they will have
sufficient evidence to prove the total power load that they have
used.

B. Smart Grid Security Requirements

The dynamics of the cyber-physical interaction in the Smart
Grid poses extrinsic system dependencies. Further, the open
inter-connectivity of Smart Gird with the Internet brings
various security challenges. Therefore, Smart Grid requires
stringent holistic security solutions to uphold the security
objectives discussed above and to provide salient features
within the Smart Grid infrastructure. First of all, the security
solutions need to be robust enough to counteract against
increasing security breaches that can lead to loss of data
availability, loss of data integrity, loss of data confidentiality.
In other words, the operation of power system should continue
24/7 regardless of cyber incident maintaining the power grid
reliability (consistent to the data availability and to almost
99.9% [26] of data integrity across the power system), and
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ensure consumer privacy. Second, resilient cyber-physical op-
erations are required. According to NIST’s recommendation
[27], cybersecurity in critical infrastructure such as the Smart
Grid can adopt a comprehensive security framework contain-
ing five main features. These include identifying of risks or
cyber incidents, providing protective mechanisms against the
impact of a potential cybersecurity event, providing defence
mechanisms to allow prompt discovery of security breaches,
appropriate response to minimise the effect of the incident, and
recovery plans to restore any systems that have been disrupted
due to cyber accidents. Moreover, as attacks from cyber
criminals on the power grid continue to rise in complexity
and frequency, it is inevitable that various parts of the Smart
Grid are vulnerable to the incumbent attacks. Therefore, it is
required to provide strong attack defence across the EMS and
to deploy secure communication protocols.

C. Cyber-Physical Attacks on Smart Grid

Attacks on Smart Grid vary on a wide range of factors, such
as the attacker’s motive, capability, skill, and familiarity with
the cyber-physical system processes. Different cyber criminals
generate attacks based on their ease of attack implementation,
course of incidents, and less complexity of creating the attack
to maximise damage. Multiple Smart Grid components are
likely to be vulnerable to simultaneous cyber threats which
could result in widespread power outages. The various types of
cyber-physical attacks against Smart Grid are broadly divided
into attacks on data availability, attacks on data integrity, at-
tacks on data confidentiality, accountability and authentication
attacks.

V. FALSE DATA INJECTION ATTACKS

FDI attack, first suggested by Liu et al. [6], is one of the
most critical malicious cyberattacks in the power system. The
theoretical frameworks for false data attacks are discussed in
this section.

A. Stealthy FDI Attack

After SE is conducted, BDD techniques are employed to
identify any injected bad data by computing residual vec-
tors in terms of `2-norm1 between the original measure-
ments y and the estimated measurements ŷ = Hx̂, given
by ||r||22 = ||y −Hx̂||22. However, research [6] proved that
BDDs are vulnerable to FDI anomalies. The outstanding
feature of false data attacks is the residual vectors of the
SE drop below the BDD’s threshold despite the presence
of maliciously corrupted measurements. Consequently, such
strategically constructed false data attack vectors can bypass
(i.e. remain stealthy in) the traditional BDD algorithms.

1) FDI Attack Construction and Proof of Stealthiness:
In the presence of FDI attack, the adversary’s goal is to
introduce an attack vector a into the measurements without
being noticed by the operator. Adversaries approach with
different FDI attack strategies whereby the final effect of

1`2-norm of r is defined as ||r̂||22 =
√∑

r̂2

the malicious data results in compromising state variables
across the power system domain. Generally, there are two
main FDI anomaly construction strategies, one that requires
knowledge of power system topology, and the other is based
on a data-driven approach also known as the blind FDI attack
strategy (details are given in Section VI). Here, we use the
former approach to demonstrate the stealthiness of the FDI
attack. Let a = [a1, a2, ..., am]T denotes the FDI attack, then
measurements that contain this malicious data are represented
by yfalse = y + a, and x̂false = x̂ + b refers to the estimated
state vector after the FDI attack, where b = [b1, b2, ..., bn]

T

is the estimated error vector injected by the adversary. It is
usually assumed [6] that the attack vector a can be formulated
as a linear combination of H given by a = Hb. It has been
proven [6] that if ||r||22 < τ it also holds true that ||rfalse||22 < τ
for some detection threshold τ . Hence, under a = Hb the
malicious measurement vector can pass the traditional BDD
algorithms.

2) Sparsity of FDI Attack: Although a is usually assumed
as a linear combination of the columns of H [6], the adver-
sary’s control can be limited to only over a few measurement
devices (let us say k). It could be because either the system has
secure measurement devices which the attacker cannot access,
or the attacker has limited physical access to the devices. This
results in a sparse FDI attack [6] [28]. FDI attack designed
with only few non-zero components is called sparse attack.

3) Demonstration with an Example: Here, the operation
of the state estimator and BDD module is demonstrated. The
aim of this demonstration is to see the effect of the FDI attack
on power system measurement and to justify the theoretical
discussions that is presented in the aforementioned sections.
In this case, IEEE 5 bus system is used as a test case. Fig
4 demonstrates measurement results when passed through a
weighted least squares (WLS) [29] based state estimator both
before and after the introduction of stealthy FDI attack. In
Fig. 4, four results are shown, the first being the original
measurement, the second is the measurement estimation us-
ing WLS estimator considering the FDI attack. Further, two
residual vectors accounting for the difference between original
measurement and attack-free estimated measurement, and the
difference between original measurement and FDI-estimated
measurement are shown. The attack free residual result shows
approximate to zeros where as the compromised measurements
have shown a very large deviation. In addition, in Fig 5, Chi-
square (χ2)−detector is employed for the detection of bad
data. The detection result shows a very poor probability of
detection of the false data attack.

4) Observability: System observability is an important re-
quirement for the operator. The observabiltiy analysis de-
termines whether a unique estimate can be calculated for
the system state provided that adequate measurements are
available in the power system [29]. Therefore, when there are
adequate measurement observations to determine the values
of the state variables, the power system is said to be fully-
observable. In contrast, limited number of measurements are
observed due to either removal of maliciously compromised
measurements or limited number of PMU placements in the
field which results in partial observability or even unobservable



6

Fig. 4: Power system measurement (before and after FDI attack.

Fig. 5: Attack detection based on χ2−detector.

system.

A systematic amalgamation of injected data with the orig-
inal power system measurement data by cyber adversaries
produces a falsified estimate of the critical power states over

the control centers. This is because attackers can intelligently
construct the FDI attack vectors (as it has been shown above)
that can cause the power system unobservabile.
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B. Requirements for Stealthy FDI attacks
The requirements of FDI attacks vary from one application

domain to another. For example, in wireless sensor networks
(WSNs), the inherent wireless communication and broadcast
channels between the nodes increase the vulnerability of
adversaries that may eavesdrop on all traffic, inject false data
reports containing erroneous sensor readings, or can even
deplete the already limited energy capacity of sensor nodes
[30]. On the other hand, in the power system, it is challenging
for an adversary to access the network parameters, and thus
needs a much more intelligent strategy in order to launch a
successful attack. In general, therefore, the FDI attacks impose
strong requirements both from the point of view of adversaries
and the system operators. The following are some of the main
requirements for the stealthy FDI attacks in the cyber-physical
Smart Grid environment.

1) Rendering power system unobservability [6]: Through
the injection of false data, the attacker can remain undetectable
at the control center while resulting in incorrect decisions of
the state estimator. Even if the cyberattack can be detected by
the SE, part of the power network may become unobservable
where the SE cannot determine the system states.

2) Partial-Parameter-Information: Earlier studies on the
FDI attack models are based on the premise that the ad-
versaries are capable of getting complete information of the
power system topology. Authors in [31] presented that it is
also possible to construct stealthy attacks based on partial
network information. Yet, attacks based on partial information
need to satisfy the observability criteria. Another research
direction ensures that the stealthiness (i.e. undetectability) of
FDI attacks can also be modeled through data-driven or other
partial-parameter-information approaches.

3) Minimal Attack Vectors: For many reasons, the adver-
sary’s control can be limited to only over a few measurement
devices. It could be because either the system has secure
measurement devices which the attacker cannot access, or
the attacker has limited physical access to the devices. For
this reason, stealthy FDI attacks should be designed with
a very small attack magnitude and with only few non-zero
components (i.e. attack sparsity) [6] [32]. Consequently, the
attacker is required to compromise just smallest set of devices
to cause network unobervability.

4) Attack Specificity: Whatever the motives of the cyber
criminal are, the strategy behind the attack may be either
indiscriminate or targeted. The scope and impact of these two
adversarial approaches are different. For example, in the for-
mer, the FDI attack may not require specific knowledge of the
cyber-physical devices but launched arbitrarily against random
Smart Grid elements. On the other hand, the targeted one
can require a sophisticated approach which can be launched
against targeted nodes or communication infrastructure or any
targeted cyber-physical element. One of the most prominent
targeted FDI attacks is load redistribution attack [33] targeting
load measurements of nodal power injections and power flows.

5) Requirement on The Influence of The Attack: Attackers
can approach in various ways to launch a successful attack
and to cause a security risk on the Smart Grid. Some attackers
want to exploit the data collected from sensors and networked

devices across the power system. They may intend to exploit
the weaknesses of sensors and communication protocols and
launch the attack vector. Some typical examples of attack
scenarios can be attack against sensor measurements (tamper-
ing power system parameter values in remote terminal units
(RTUs) and PMUs). Another example can be by leveraging
the communication protocols, where remote tripping injection
can be performed by adversaries. In addition, attackers can
infiltrate AMI-based communications networks in order to
tamper with the contents of customer data that can result in
disorder of the SE and other EMS functionalities. Others may
intend to directly falsify the outcome of the state estimators
[6].

6) Requirement Based on Security Violations: Some FDI-
based malicious attackers try to infringe data availability, some
violate data integrity, and others go against data confidentiality.
(a) Loss of data integrity: For example, by injecting a sys-

tematically generated false data, a cyber intruder may
compromise the integrity of the SE by hijacking a subset
of metres and returning a modified data. The modification
may involve deletion of data from the original meter
readings, addition of bad data to sensor readings, or
alteration of values in the hijacked measurements. The
majority of FDI attacks, including, but not limited to, [6]
[32] [34] [35] are based on this type of security violation.

(b) Loss of data availability: Furthermore, FDI attack can
compromise the availability of critical information that is
either intended to disrupt the power system or to stop its
availability by shutting down network and communication
devices [12] [13]

(c) Attack on confidentiality: Although the effect of FDI on
data confidentiality ranks among the least of all security
objectives, the injection of false data could also violate
the privacy of customers, especially in AMIs of the
Smart Grid. This has become so common these days as
illustrated in [36] [37].

7) Requirement based on Attack Impact on The Power
System: Threat actors can exploit Smart Grid security vul-
nerabilities that may lead to malfunctions in energy systems,
operational failures in communications equipment as well as
physical devices, and may even trigger a cascading failure.
According to a report by NIST [26], three potential impact
levels, namely low, moderate, and high have been assessed
for each of the Smart Grid security objectives following the
degree of adversarial effect and associated risk level.

Eventually, the ultimate aim of FDI adversarial strategies is
to pose significant consequences against the Smart Grid, such
as causing sequential transmission line outages, maximizing
operation cost of the system by injecting falsified vectors into
subset of targeted meters, culminating in large-scale failure of
the power system operation, and regional/national catastrophic
impacts.

VI. TAXONOMY

The success of cyber-physical attacks in general and the
FDI attack in particular depends on both the perspective of the
adversary and the operator. In other words, it is highly likely
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Fig. 6: Taxonomy of false data attacks in Smart Grid

that adversaries are subject to a trade-off between maximizing
the probability of impact on various cyber-physical system
components and minimizing the probability of detection of the
launched attack. In this survey paper, the false data attacks in
Smart Grid are classified under three major categories.

1) False data attack models: There are various threat models
of FDI to corrupt the cyber-physical infrastructure of
the Smart Grid. While some adversarial models require
complete information on network data and topological
configurations, others require limited resources. Data-
driven approaches are also employed to construct the
stealthy FDI attacks. This FDI category is presented in
this section (VI-A).

2) False data attack targets: Coordinated cyberattackers try
to target various elements of the Smart Grid. The vulner-
able components include, but not limited to, power gener-
ators, transmission lines, substation networks, renewable
energy sources, monitoring and control centers, smart
electronic devices, network and communication systems,
which are all discussed in Section VII.

3) Impact of false data attacks: The growing threat of cyber-
attacks against the critical Smart Grid infrastructure have
devastating impacts on its stability, reliability, economy,
customer data privacy, and social welfare. The category
of attack impact is addressed in Section VIII.

Each class is also divided into subcategories. Fig. 6 is the
taxonomy of the FDI attacks. The order of presentation of each
category is to a large extent a reflection of the chronological
order of the researches, starting from attack construction,
going through the targets, and attack impacts. While the
first taxonomy is discussed in this section, the other two are
presented in the subsequent two sections.

A. Classification Based on Attack Model

Adversaries follow various FDI attack strategies whereby
the ultimate outcome of their malicious activity results in
breaching state variables across the power system domain. The

various FDI attack models can be seen in the first part of Fig.
6. In the following, each false data attack category is described,
and Table II lists several of the relevant papers that focus on
FDI attack construction methodologies.

1) Power Flow Model: Most FDI attack researches are
conducted in a constrained environment, on the basis that the
functions from power system states to measurements are linear
(DC-based power flow models) while most industry standard
state estimators are based on the nonlinear AC power flow
model. One of the pioneer FDI attack under the DC model is
proposed by Liu et al. [6]. Since then other similar lines of
researches have been studied including [31] [38] [39] [40]
[32]. In most situations, the study of the AC power flow
models has to be accompanied by solving complete nonlinear
power flow equations which are involved in the nonlinear
models. Consequently, the complexity of analysis must be re-
duced and completely ignored the nonlinear constraints while
modeling the cyberattacks. While most of the FDI techniques
available in the literature rely on the simplified DC state
estimators, such techniques are not valid to AC-based SEs. For
example, Hug and Andrew [41] have shown that the nonlinear
representation of power systems in AC state estimators have
inherent strengths and are more robust to unobservable FDI
attacks than the DC-based SEs. They have analytically derived
stealthy FDI attack for AC SE model considering RTUs as
attack target using IEEE 57 bus test system. Accordingly,
adversaries using a specific type of FDI attack like in the
RTU level under DC model has higher risk of introducing
errors in the measurements, which in effect, would trigger the
BDD, and the adversary requires significantly more system
data under the AC model than the DC model of the same
target. Similarly, authors in [42] [43] studied the construction
of stealthy FDI attacks against AC-based SE models. Further,
in [44] the authors have proven that DC-based attacks can be
detected using AC-based SE even though the attack magnitude
is relatively small. Moreover, it has been investigated that
AC-based SE models need a more sophisticated attacker than
the DC-based models [45]. Very recently, the authors of [46]
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studied an experimental case with industrial standard AC-
based SE is utilised to exemplify an AC model based FDI
attack design. And, only few researches [47] [48] have studied
the FDI attack under both the DC and AC power flow models.
Therefore, it is highly important that the vulnerability analysis
of the Smart Grid with respect to the incumbent cyberattacks,
and the countermeasures requires a thorough understanding of
the physical properties of the power system in general and
which power flow model is utilised.

2) Network Architecture: In general, the operation of a
Smart Grid depends upon the availability of information
from hierarchically distributed cyber-physical elements and
the outcomes of the central control center. It is important to
investigate that the FDI attacks from the view point of network
architecture: centralised and distributed.

Centralised FDI attacks target against the centralised state
estimator. Once the adversary manipulates the measurement
reports sent from different communication devices to the
control center, the SE fails to estimate the optimal system
states which further affects other functional elements such as
optimal power flow, economic dispatch, and CA that rely on
the SE outcome. A great many of FDI attack construction
methodologies are introduced using centralized network ar-
chitecture, some of which include [6], [53], [54], [102] (for a
list of them, see Table II).

However, the centralised attacks may be difficult to be
implemented in distribution systems, which require knowledge
of local states [109]. Adversaries may also intend to forge
the injection of bad data against the energy system at the
supply-side, against energy control commands, and the com-
munication link of energy transmission, and distributed energy
routing processes [112]. Some of the FDI research papers
which devote on the distributed architecture are [75], [74],
[112], and [28] (list of others can be inferred from Table II).

3) Construction Methods: Here, various adversarial con-
struction methods are discussed.

Attacks with Complete Topology Information: In these
types of FDI attacks, adversaries typically require a complete
knowledge of network topology, transmission system parame-
ters, details of SE algorithm, and/or BDD methods. This case
presumes the adversary has access to several resources of the
electric power system and can successfully construct the FDI
attack vector. Although most FDI attack researches consider
this type of strategy, it is impractical to assume that adversarial
models have access to a large number of measurements. Liu et
al. [6] have demonstrated the constraints faced by adversaries.
Accordingly, the adversary can be restrained only to certain
set of sensor readings; due to the sensors may have specific
physical defences or the adversary may have limited budget
to compromise the sensors.

According to the findings of [6], the objective of the
adversaries may be to randomly inject bad data, where they
aim to locate any attack vector so long as it can bring a wrong
SE performance of state variables, or to launch more targeted
attack vectors, where the adversaries aim to build bad data
injections into some chosen state variables. Studies include
random and targeted FDI attacks from the SE to other cyber-
physical components. In [112] random bad data were injected

to distributed system to compromise the supply-demand of
energy system. Targeted attacks are discussed in more details
later.

Differently, Kosut et al. in [52] and [53] view the nature
of stealthy FDI attacks as a matter of basic constraint on the
detectability of malicious data attacks. Unlike to [6], Kosut
et al. came up with the concept of a detectability heuristic to
find the attacks that would render BDD the most vulnerable
provided a specific set of meters controlled by the attacker.
An extension to [52], they proposed FDI attack algorithm [53]
based on minimal energy leakage by considering two forms
of attacks: the strong attack and the weak attack. In the strong
attack regime, the adversary compromises a sufficient number
of meters such that the system state becomes unobservable
by the SE utilising a graph theoretic approach, where as in
the weak attack regime, the adversary controls just a limited
number of meters. However, the FDI attacks pose several
stringent requirements against the intruders. For instance, the
topology settings of the power system are typically only avail-
able at the operator’s EMS, whose physical access is strongly
restricted and secured. Further, these settings do change very
often due to routine normal maintenance of electrical power
grid devices and unplanned incidents such as unexpected field
device failure. In general, intruders have restricted physical
access to most power grid infrastructure and they barely have
real-time knowledge with respect to topology configurations
and physical states like the transformer tap changes, circuit
breakers, and switches. Therefore, attackers need to pursue
alternative approaches, which are discussed below.

Attacks with Partial Topology Information: As discussed
earlier, the construction of valid FDI attack is subject to certain
constraints. Although it is ideally fair to implicitly presume
that the topology information can be accessible to the adver-
sary in order to build the attack vector; however, it is more
realistic to believe that the adversary has incomplete topology
knowledge for certain transmission line networks due to the
adversary’s lack of real-time knowledge with respect to topol-
ogy configurations and physical status like the transformer tap
changes, circuit breakers, and switches. Therefore, a realistic
FDI attack can be launched with incomplete information as the
adversary can have only access to limited resources. Rahman
et al. [31] proposed FDI attacks using incomplete knowledge
of network topology from both the adversary’s and defence
point of views. Similar line of researches have been studied
including, but not limited to [39] [40] [43] [78] [68]

G. Liang et. al. [15] have reviewed various scenarios under
which adversaries can get partial topology information neces-
sary to launch a successful FDI of this attack category. One
is a manual or online mode [31] where before generating the
FDI attack the adversary collects grid topology information
either manually or through online where the adversary can
use his/her own meters to access the grid. The other is through
a market database (extracting the topology information from
locational marginal prices). Finally, extraction of H from
power flow measurements.

Load Redistribution Attacks: Under restricted access to
specific metres, load redistribution (LR) attack is one of special
type of FDI attacks targeting load measurements of nodal
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TABLE II: FDI attack construction methodologies

Power flow Architecture

FDI attack model DC AC Centralised Decentralised References

Complete Topology Information X 5 X 5
[6] [49] [50] [51] [52] [53] [54] [55] [56] [57]

[58] [59] [60] [61] [62] [63] [64] [65]
5 X X 5 [42] [45] [66] [67]
5 X 5 X [3] [68] [69] [70]
− − 5 X [71] [72] [73]
X 5 X X [28] [74]
X 5 5 X [75] [76]
X X X 5 [41] [44]
− − X 5 [77]

Partial Topology Information X 5 X 5 [56] [78] [79] [80] [81]
X 5 5 X [40] [82] [83] [84] [85]
5 X X 5 [23] [42] [43] [86]
X X X 5 [87]

LR attack X 5 X 5 [33] [88] [89] [90] [91] [92] [93] [94] [95]
5 X 5 X [96]
− − X 5 [97]
X X 5 X [98]

GT attack X 5 5 X [82] [83] [84] [85] [99]
5 X X 5 [100] [101]
X 5 X 5 [56]

Data-driven X 5 X 5 [32] [38] [48] [102] [103] [104] [105] [106] [107]
X 5 5 X [103]
X X X 5 [108]
5 X X 5 [109] [110]
5 X 5 X [111]

power injections and power flows. This kind of FDI attack
aims to generate biased load estimates. Yuan et al [33] are the
first to formulate the LR cyberattacks with various attacking
resource limitations. This framework was further developed in
reference [90] of the same authors to quantitatively evaluate
two attacking goals: immediate and delayed attacks, using
a a max-min attacker-defender model. In addition, Xiang
et al [89] suggested a coordinated cyber-physical attack on
LR, generator, and transmission line, formulated as a bilevel
optimization problem of attacker-defender model. Also, in
reference [91], by using their proposed local topology attacks
in [99] and applying the idea in [31], the authors came up with
a local LR attacking strategy with partial network knowledge.
Unlike [31], the attacking region is no longer limited within
a cut, for the attacker can select an attacking area of their
interests.

Grid Topology Attacks and Line Outages: Attacks against
power grid topology (GT) and outages of transmission line are
very recent research developments. Most of the adversarial
models mentioned earlier are focused on the premise that the
power grid topology stays unchanged. This implies that the
adversary can only inject false data to the measurement data of
the power system. As a matter of fact, topology configurations
do change very often due to routine normal maintenance of
electrical power grid devices and unplanned incidents such
as unexpected field device failure. Therefore, the state of
art literature on FDI attack strategy targeting power system
states has further been extended to reflect on the real-time
grid topology. The purpose of such attack is to concurrently
alter the measurements of network and the topology config-
urations such as physical states of transformer tap changes,
circuit breakers, and switches so that the estimated topology
is consistent with the received network data. Such stealthy

malicious attack model was formulated by J. Kim and L.
Tong [56]. Their proposed adversarial model is characterised
by two attack regimes: strong and weak attacks, depending
on the information available to the attacker. To avoid the
detection by the SE, FDI attack is constructed to make the
received measurement data are consistent with the topology
while actually aiming to create a false topology at the state
estimator under DC and AC power flow models.

Following the research in [56], few similar researches,
but with a different approach have been conducted. In [83],
the authors studied a coordinated cyber-physical attack that
could cause undetectable transmission line outages. They have
shown that an adversary can hide the topology of a power grid
by injecting bad data into a specific number of measurements.
After physical attacks are launched, cyberattacks consisting of
topology preserving attack and LR attack are systematically
orchestrated to hide line outages and to potentially cause
cascading failures. The works in [56] and [83] lack a realistic
topology attack to simulate the attack behaviors and to further
determine how much network knowledge is required by the
adversary to initiate the topology attack. To alleviate this
drawback, a topology attack model was suggested in [99].
[99] proposed a heuristic method for determining the possible
attacking region of a line using less information. Yet, the
researches in [56], [83], and [99] did not consider the function
of PMUs in detecting the line outages. For example, if a
line outage occurs, there would be a deviation in the PMU
bus phasors that helps the operator to detect the line outage.
Following the same principle as in [83] and [99], the authors of
[84] came up with a concept that line outages can be masked
through manipulating PMU data based outage detection by
injecting malicious data into measurements. Additionally, [85]
considered the effect of security constrained economic dis-
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patch on the transmission line attacking strategy.
Data-Driven Attack: In this type of class attack, also

known as the blind attack method, undetectable FDI attacks
are constructed without prior power grid knowledge, typi-
cally using statistical inferences (e.g independent component
analysis [113], subspace-based singular value decompistion
[114], principal component analysis techniques [115], sparse
optimization [116]), heuristic methods, and ML algorithms.
In other words, the adversary is expected to make inferences
from the correlations of measurement data and/or topology
parameters of the power system. The question, therefore, is if
H is not completely or partially available to adversaries, how
can the adversaries still effectively launch the undetectable
FDI attack?

Esmalifalak et al [102] are the pioneers to answer the above
question. They proposed an inference algorithm using inde-
pendent component analysis under very small power system
dynamics and a linear measurement model. Their findings have
shown that an adversary can infer both system topology and
power states just by observing the power flow measurements.
However, this method requires that power system loads to
be statistically independent, and assumes the need of metre
measurement data. Differently, a singular value decomposition
[114] technique was employed in [104] to formulate a stealthy
FDI attack using estimated subspace structure of measure-
ments.

In [48], in order to construct a blind stealthy FDI attack,
a statistical model based on principal component analysis
[115] is used to transform the observed measurements into
a linear combination of a vector of non-correlated principal
components, which are the product of the Jacobian matrix
of the power grid with a projected matrix. Their PCA-
based blind cyberattack construction strategy has opened up
a potential research direction and has been followed by range
of academic researchers. However, the data-driven methods
mentioned above are valid if the measurement matrix involves
only AWGN. Adnan and Abdun [38] [32] have proven that
in the case of gross errors, those blind attack strategies failed
to pass the conventional BDD of the SE. In [38], the blind
stealthy FDI attack is formulated based on matrix recovery
problem by extracting the original low-rank measurement
matrix and the gross error. Additionally, following similar
principle to [38], in [105] they formulate a data-driven un-
detectable malicious attack utilizing a low-rank and sparse
matrix factorization methodology on the original measurement
matrix with missing values. Finally, other recently suggested
data-driven approaches include [47], [108], [103] and [111].

VII. CLASSIFICATION BASED ON ATTACK TARGETS

Various cyber-physical elements are essential for monitoring
and controlling the grid operation. However, they also make
the Smart Grid vulnerable to a variety of data breaches that
may bring a greater exposure to attacks on data integrity,
data confidentiality, data availability, and so forth. FDI attacks
target various cyber-physical components of the Smart Grid
ranging across all domains, namely generation, transmission,
distribution, consumption, market, and operations. In this sub-

section, vulnerabilities of some of the principal cyber-physical
elements are discussed.

1) EMS: The EMS within the control center is the most
affected target in smart power system. State estimator serves
as an interface between the cyber space and the physical space,
rendering it the most vulnerable element within the EMS of the
Smart Grid environment. This is quite important, particularly
because the processes within the EMS are temporally sequen-
tial. For example, the output of the SCADA or PMU systems
are critically demanded by the state estimator, and the other
subsequent EMS modules highly require the output of the state
estimator. As a result, the state estimator is the most impor-
tant target for cyber attackers. Coordinated and sophisticated
cybertattacks, such as the FDI can compromise measurement
data (targeting either the input to the SE or the outcome as
discussed in V-B). This can cause unbounded estimation errors
and can deceive the system operator stealthily. Further, this
can be seen from the various consequences of the FDI attacks
against the SE as presented in VIII.

Since the first paper [6] of FDI attack, the majority of FDI
attack methodologies described in VI-A target the SE. The
vulnerability issues in the SE problem can be investigated with
respect to the various cyber-and physical elements, including
Physical properties of the power system, communication sys-
tems, IEDs, and AMIs. Related attack targets also include
transmission lines [85] [95], topology [117] [56] [83], and
system observability [89].

2) Automation Generation Control: In the power grid, data
between AGC and generator units or NCSs is transmitted via
communication systems such as SCADA and PMU, making
them vulnerable to cyberattacks. Reference [118] has exper-
imentally evaluated that the AGC algorithm can be manipu-
lated by adversaries on frequency measurements, generation
of load balance, and control commands between AGC and
generator units. Further, in [119], the authors studied data
integrity attacks directed at the AGC. They defined various
data integrity attack templates such as a scaling attack, ramp
attack, pulse attack, random attack, and explored at how
these attacks could modify the measurements and generator
operating points through the AGC by providing an incorrect
perception of the system load. However, instead of pursuing
prescribed data integrity models, intelligent and coordinated
adversarial models targeting AGC are likely to be tactical,
and their strategies can be more adaptive during attacks. As
a solution for this shortcoming, Tan et al [55] are the first
to research on the attack of false data on AGC’s sensor
measurements, demonstrating that FDI attacks on the power
flow measurement vector can deceive grid frequency to reach
certain safety-critical thresholds in the shortest possible time,
without triggering at any integrity checks on the sensor data.
A parallel line of research focusing on the FDI attack targeting
the vulnerabilities of AGC and associated communication
infrastructure can be found in [120] [121].

3) Contingency Analysis: The feasibility of FDIs on CA
through the SE is studied in [49]. Attackers could stealthily
introduce contingency of transmission line to a normal con-
tingency list by misleading the CA process by injection of
false data into the SE. The exploited contingency would
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then be embedded as security constraints in the security-
constrained economic dispatch (SCED), which may result in
various impacts (see Section VIII-3). Similarly, FDI attack
against the CA considering security constrained optimal power
flow (SCOPF) and transmission line capacities is studied in
[122]. Accordingly, their findings have shown that potential
FDI threat vectors could prevent CA such that the system can
experience overloading conditions on one or more transmis-
sion lines when particular contingencies arise.

4) Distribution Energy Management: Distribution energy
management (DEM) [24] has become so instrumental for
handling real-time networks and dynamic decisions that could
not otherwise be taken by conventional EMSs. More im-
portantly, DEMs are highly applicable in distributed-based
SEs and DERs/microgrids with the aim of maximizing the
efficiency and quality of service in terms of minimizing
outages, mitigating interruption time, and ensuring reasonable
frequency and voltage levels [123]. Despite their popularity in
the power grid, they face the unprecedented challenge from
the incumbent cyberattack. The vulnerability of DEM to FDI
was studied in [112]. It was found that the manipulated data
introduced by the attacks would cause imbalanced demand
and response, increase costs for electricity transmission and
distribution, and affect the reliability of energy supplies in the
power grid. The vulnerability of DEM to the false data attacks
has been further explored with regard to dynamic microgrids,
as demonstrated in reference [72].

5) Market Management System: Market management sys-
tem (MMS) [124] is the national electricity market of the
grid that dictates energy prices. MMS is designed to facilitate
standardised transactions between service providers and utility
consumers in the energy industry. The MMS provides market
information based on variables such as price, dispatch and
other constraints obtained from EMS/DEM modules such
as SCOPF. Even so, MMS has become a primary goal for
adversaries to manipulate intelligence on the utility market or
otherwise to make illicit financial gains. Among the pioneer
research works in FDI attacks against the MMS include [65]
[59] [125]. The financial risks induced as the result of such
vulnerabilities are covered in Section VIII-3.

6) Communication Systems: Numerous communication
technologies [24] in the Smart Grid are vulnerable to the FDI
attacks. Power system measurements are vulnerable to the FDI
attacks, for instance via the SCADA [38] system. This may
further affect other cyber-physical elements such as the SE or
AMI. In other words, if adversaries get access to the SCADA
system they can damage AMI and the intruders can carry
out falsifying customer billing information. Communication
protocols (such as the IEC 61850) are also vulnerable to the
FDI attack [24]. Among the communication systems that can
potentially bring vulnerability to the Smart Grid environment
include NCS [77], WAMS [23], IEEE C37.118 [24], and wide
area network communication infrastructure [26].

7) Intelligent Electronic Devices: IEDs link field devices to
a communication infrastructure that enables SCADA and SAS
to gather critical grid information. FDI attacks have been found
to jeopardise such critical information by breaching IEDs [73].
For example, FDI attacks can temper voltage readings over the

IEDs, and they can modify IED settings that can also cause
the relay to trip. This can also lead to an abrupt voltage drop
below the critical level, resulting in load shedding and much
worse, power outages.

8) Renewable DERs: DERs have been among the most
vulnerable cyber-physical components to FDI attacks. In [112],
the vulnerabilities of DERs considering routing process have
been investigated. Their discussion confirmed that the forged
data injected by the attackers would induce imbalanced de-
mand and response, cause higher costs for energy transmis-
sion, distribution, and the number of outage customers.

Microgrids have become increasingly popular in the Smart
Grid infrastructure owing to their versatility and integration
with renewable energy. However, they have also become
potentially susceptible to the exponentially escalating variety
of cyber threats. In particular, their performance can worsen
dramatically in the face of more intelligent FDI attacks. [71]
[72] [73] [96] are among the research efforts that examine
vulnerabilities of microgrids to FDI attacks in the Smart Grid.

TABLE III: Impact of the FDI attacks in Smart Grid

Impact category References

Risk and reliability [23] [41] [45] [57] [58] [60] [63] [64] [82] [84] [90]
[92] [95] [97]

Secure operation and
stability [50] [72] [89] [90] [98] [99] [119]

Electricity market and
pricing economics

[3] [49] [53] [59] [62] [63] [64] [65] [80] [88] [117]
[125] [126] [127] [128] [129] [130] [131] [132] [133]

Energy theft [3] [65] [70] [134] [135]
Energy data privacy
and confidentiality [134] [136] [137] [138]

VIII. CLASSIFICATION BASED ON IMPACT

The study on the impact of FDI attacks across the elec-
tric power system has become one of the most interesting
research direction. Therefore, it is important to quantitatively
examine the possible severity of the physical or economic
consequences of threats associated to the FDI. For example,
if an adversary successfully launches an FDI attack that can
control the results of the state estimator, the system operator
can make non-optimal, uneconomic, or even dangerous power
dispatch decisions on the results of the incorrect state estimate.
Furthermore, discrepancies due to injection of malicious data
in the SE can be amplified in the follow-up modules and
lead to devastating consequences starting from tripping of a
transmission line breakers or unsafe frequency fluctuations, to
economic impacts, and blackouts in large geographic regions.
In this sub-section, major impacts on the power grid, including
secure operation and stability, risk and reliability, electricity
market and pricing economics, energy theft, energy data
privacy and confidentiality are presented. Table III summarises
the related research papers.

1) Risk and Reliability: Reliable supply of electricity is
essential for any power system. Equally important, grid op-
erators are expected to provide electricity to their customers
at an acceptable risk level. In the mean time, the likelihood
of cyber security events significantly impacts the reliability of
power system. Cyber adversaries can have detail knowledge
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of the various cyber-physical components of the Smart Grid.
This will help them to examine the cyber-to-physical mapping
in the penetration of attack vectors that eventually impact the
power system reliability [139]. For instance, circuit breaker
trips can be caused by the probabilities of successful cyber-
capable attacks through the SCADA system [140], and through
RTU [141].

One of the major risks of FDI attacks is its ability to induce
cascading failures. For example, attackers can intrude with
injections of false data to deliberately cause overloaded branch
trips [95], which can induce cascading failure and potentially
do serious harm to power grids. In addition, adversaries can
develop an optimal FDI attack to deliberately cause a re-
dispatch [45] of power generation that results in a physical
overflow on the target transmission line, and shutdown of a
larger portion of the power grid [41]. Moreover, LR attacks
[90] [92] [95] [97] (see Section VI-A3) are some of the FDI
attacks which have potential impacts on the reliability of power
supply. For example, in [97] the reliability of power system
considering generator, line and load demand subject to the
LR attack is evaluated. Finally, [23] [57] [58] [60] [63] [64]
[82] [84] are among some of the researches of FDI attacks
that study the impacts of risk and reliability of Smart Grid
infrastructure.

2) Secure Operation and Stability: When the power system
is working under the range of acceptable limits it is known to
be secure. Power system operators employ security assessment
procedures, typically using static security assessment and
dynamic security assessment to ensure the secure operation,
system design, and stability of the power grid. Although a
secure power system is engineered to tolerate contingency
events, orchestrated hidden FDI attacks have catastrophic
impact on the secure operation and the stability of the power
system. The effect of FDI attacks against static security
assessment was reported in [50]. The authors considered two
attack scenarios: fake secure signal attack and fake insecure
signal attack. According to the finding, the former attack
scenario misleads the control center to believe that the system
works in a secure condition when it is not, and the latter
attack scenario misleads the control center to take corrective
actions, like generator rescheduling and load shedding when it
is costly and unnecessary. Similarly, reference [119] discussed
the impact of data integrity attacks directed at the AGC on
the stability of the power system and the operation of the
electricity market. Similarly, the impact of FDI attack on
real-time load measurement readings through AMI has been
investigated [98]. It was evaluated through a case study of load
information modification for a load distribution and dispatch
where the aim of the attacker is to inflict an instability to the
power system by the sudden change in load. FDI attackers
also impact the stability of microgrids, for instance, by falsely
changing the measurements for energy supply and demand
of consumers within the microgrids [72]. [50] [89] [90] [99]
[119] are some of the research works which have discussed
consequential impacts on the secure operation and stability of
the power grid.

3) Electricity Market and Pricing Economics: A success-
ful FDI attack on the Smart Grid infrastructure would see

serious economic impact. For example, a prolonged power
outage as a result of the incumbent cyber threat can bring
substantial economic losses within the grid and may fur-
ther cause tremendous disturbances to other businesses that
have dependency on the supply of electricity. The financial
misconduct of cyberattackers through the FDI can be seen
from two main perspectives: manipulation of electricity market
and modification of loads via the economic dispatch in the
EMS/MMS. These are explained below.

Stealthy FDI targeting EMS and MMS has an impact on
power system operations, such as economic dispatch problem,
a large-scale optimization problem in the Smart Grid, which
aims to meet the system demand, at the lowest possible cost,
subject to reliability constraints. The impact of FDI attack on
the economic dispatch was demonstrated by the authors in
[64], where they implemented an FDI attack model with full
system knowledge against transmission line ratings to cause
maximal congestion over critical lines, resulting in a breach of
capacity limits. This illustrates the economic and safety risks
raised by the use of the FDI exploited key parameters such
as line ratings. Power grid retailers charge for the electricity
they supply to the market according to the locational marginal
price (LMP) [142] [65] [59] at their point of connection to
the system; and customers obtain the electricity they buy on
the basis of the LMP at their point of connection. [142] shows
that day-ahead and real-time LMP algorithms utilise recurrent
outputs of the SE. Consequently, the FDI-compromised SE
outcomes have a significant impact on the electricity market,
where falsified prices can be sent to customers. There are
various literature that cover the impact of FDI attacks on the
electricity market which are explained below.

Xie et al [65] were the first to show the impact of FDI
attacks on the electricity market. Using a method considering
Ex-Post market model for finding cases where price shift
occurs, authors demonstrated the likely financial misconduct
that can be triggered by the FDI cyberattacks while being un-
detected by the SE of the system operator. This line of research
has been expanded to [59], which formalizes the economic loss
due to the FDI attacks on real-time LMPs. They analysed the
financial impact of FDI threats on energy market operations
using day-ahead and ex-post real-time LMP models. They also
suggested the likelihood that the malicious attack could give
financial profit to the adversary by incorporating with virtual
bidding. In [53], the authors showed that an attacker can inject
a malicious vector to change real-time and day-ahead market
revenue of generation, and can potentially make a profit.
The authors considered residue energy heuristic to determine
especially harmful effects in weak attack regimes also showing
various attack detection probabilities. Reference [126] looks at
the problem of FDI cyberattacks against the real-time pricing
model that incorporates various DERs and traditional power
resources. They considered the impacts of two attacks on
the real-time pricing scheme: Ex-ante (FDI launched by the
attacker before a decision-making process) and Ex-post (FDI
launched by the attacker after a decision-making process).
They analyzed a welfare gain and welfare loss with regard to
the attack’s impact on the real-time pricing system. In contrast
to the previous studies, reference [127] evaluated financial
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risk in electricity market operations, where the threat model
was defined through inter-temporal constraints of an economic
dispatch [128].

Additionally, [88] studied vulnerabilities of the electricity
market through the LR attack, where the attacker can stimulate
a false price of real-time electricity by constructing biased
pattern of transmission congestion. Similarly, the impact of
transmission line rating on electricity markets is studied in
[129], where the real-time LMPs are exploited by falsified
injections of transmission line rating vector. Further assump-
tions are made that the adversary has complete information
of the system (including system load, generation cost infor-
mation). Another research work on the consequences of FDI
attacks on the real-time market operations is by the authors
in [125], who modelled the real-time LMP using a geometric
characterization to demonstrate the relationship between bad
data and price. A similar research on the vulnerability of
electricity market to the FDI attacks, [130] considered a more
practical adversarial model that could produce unpredictable
pricing signal on the assumption of the attacker’s incomplete
knowledge of the power system. Other research works on
the impact of FDI attacks in electricity market and pricing
economics in Smart Grids include [131], [132], and [80].

Unlike the above researches which are based on day-ahead,
ex-post and ex-ante electricity market models, references [133]
and [62] use multi-step electricity price (MEP) [133] model,
which has been implemented by many countries to encourage
energy efficiency, load balancing, and fairness in energy con-
sumption. The authors of [133] proposed a two-dimensional
MEP model to analyze and determine a desirable quantity
and price of electricity in several steps, in which each step
is scaled by both the time when the electricity is utilised and
the quantity of electricity. As compared to the other electricity
market models, MEP has been found to be robust against FDI
attacks [62].

4) Energy Theft: Energy theft is a growing concern that
has incurred massive financial damages to electricity sup-
ply providers worldwide. There are different motives behind
energy theft cyberattack using the FDI. For example, by
manipulating a number of sensors and sending false measure-
ment to the Regional Transmission Organizations, a malicious
attackers aims to generate a profit from the market [65]. As
such, a stealthy injection of bad data can bring a profit to the
adversary by exploiting a virtual bidding system. Another rea-
son could be a malicious customer may exploit the electricity
consumption computed by a smart meter to pay less than the
actual value of the energy consumed.

Energy theft by an FDI attack has also been reported in [70],
which shows an attacker that minimises the measurement of
active power on a standard bus power system by moving a
power load from the 5th bus to the 4th bus. As a result, if the
attack is successfully launched on the stated bus and the attack
continues for one day, consumers connected to the 5th bus may
see their charges falsely reduced by $272,871. Another case
of energy theft via the FDI malicious hackers has occurred
in AMIs, where attackers alter data of smart meter as it is
transmitted over the network between the meter and the control
center [134]. Finally, in a very recent article [135] it has been

revealed that energy theft by malicious customers breach into
the smart meters monitoring their renewable generation system
and exploit their readings to demand higher energy supply to
the national grid and thereby wrongly overcharge the utility
provider.

5) Energy Data Privacy and Confidentiality: As well as
it is a common understanding in data security, cyberattacks
against data confidentiality put emphasis on a breach against
data privacy of customers. Most of the studies on FDI attack
impact are focused on the impacts mentioned above (such as
energy theft and electricity market); however, privacy against
customers in the grid emerges at various data monitoring
interfaces, and hence needs special attention. In particular,
smart meters act as unified interfaces between the cyber and
physical environments of the Smart Grid, rendering them face
risks from the combined cyber-physical attacks. Data flow
between smart metres and utility centers include electricity
usage activity and system monitoring commands. There are
several ways coordinated attackers can have access to the
smart meters. For example, they can bypass the cryptographic
functions of smart meters, can have access to customer data,
can manipulate it, and result in falsification of the data or
even disordering integrity of the utility center. Additionally,
the attackers can send mass packets to exhaust the bandwidth
of communication of the smart meter and to further cause
communication to disconnect [138]. The attacker would then
gain access to the data via a physical memory, and will execute
unauthorised writing or reading operations in the physical
memory. Again, when the communication is back to normal
the newly injected or modified customer data is transmitted to
the network.

The forgery of the power consumption across the smart
metre can be accomplished during either the collection of data
(i.e. input to the metre) or during the transmission/reception
in the AMI network [136]. Further, the data manipulation can
happen when the data is at rest (i.e. storage of data within
the meter) [134]. Finally, the manipulated smart metres can
expose customer’s data, report a falsified power consumption
data in the AMI, and could have substantial consequences on
the operation of the Smart Grid.

IX. LITERATURE REVIEW METHOD

A systematic search, selection, analysis, and critical evalu-
ation of the literature is described in this section.

Fig. 7: Literature review methodology
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A. Literature Search Methodology

It seems that the literature search process plays an important
role in crafting a comprehensive analysis of a topic. The
literature survey of this paper is based on the search method-
ology adopted by Webster and Watson [143]. The systematic
identification of high-quality publications (namely review ar-
ticles, journals, conferences, and Books), technical reports,
and dissertations are reflections of the correct selection of
databases, keywords, the time covered, the papers considered
in the literature search, and performing backward and forward
searches [144].

Fig. 7 is a description of the methodology used for litera-
ture search on this paper. The following academic research
databases are considered: IEEE Xplore (IEEE/IET) digital
library, Elsevier ScienceDirect, ACM digital library, Springer-
Link, and Others. To find relevant papers, Fig. 7 is applied
for each of the academic research databases. Using the first
step, keywords using Google Scholar and Microsoft Academic
were identified with respect to the adversarial model, attack
targets, and impacts. "Smart Grid", "power system", "false data
injection", and "cyber security" are common keywords used in
each of the three classes. Accordingly, the following keywords
were used for each class of the FDI attack (also using intitle,
AND, OR and other Google search engine advanced operators
wherever necessary). 1) Adversarial model: "Smart Grid",
"power system", "cyber security", "false data injection", "ad-
versary", "construction", "attack model". 2) Attack targets:
"Smart Grid", "power system", "cyber security", "target", "vul-
nerable". 3) Attack impacts: "Smart Grid", "power system",
"cyber security", "impact", "consequence", "effect".

TABLE IV: Summary of relevant publications

Database
source

Survey
arti-
cles

Original
res.
articles

Conf.
papers Book

Tot. no. of
relevant pa-
pers

IEEE
Xplore 5 59 19 - 83

Elsevier
SD 1 6 - - 7

ACM 1 2 1 - 4
Springer 1 1 - 1 3
Others - 3 1 - 4
Total 8 71 21 1 101

B. Literature Selection and Analysis

Primarly, we reflect entirely on FDI threats with respect to
the Smart Grid cybersecurity, as there are also FDI articles
related to other areas such as WSN, healthcare, software-
defined networks, and so on. Another consideration is, while
all the scholarly research sources considered are prestigious
and are assumed to publish quality works, further evaluations
were made using scientific journal ranking platforms to assess
quality of the journals and the CORE2 was used for the
conferences. Based on the search method as described above,
a systematic literature selection and analysis are used which
are described here. First, aggressive search was conducted

2CORE: Computing Research and Education Association of Australasia
(https://www.core.edu.au/)

using the above keywords and Step 2 of Fig. 7 that resulted
in abundant number of papers. Then, after a systematic re-
finement across each taxonomy of the FDI, relevant literature
was selected (Step 3 and Step 4 of Fig. 7. In addition
to the keywords, titles and abstracts were considered for
correctly categorising the selected papers. It also allowed us
to subsequently re-categorize some literature as there were
some publications that included more than one of the three
classes. Next, important concepts were assembled for each of
the chosen articles, accompanied by an overview of research
results, and a thorough analysis (the last three steps of Fig. 7).
After an in-depth analysis of the literature, approximately 101
papers are found which, to varying degrees, dealt with the topic
of an FDI attack in Smart Grid cybersecurity under the three
classes. Note that the study of FDI attack in Smart Grid started
in the late 2009. Therefore, the search for the most relevant
literature of our survey starts from 2009 up to December 31,
2020 although related literature such as the BDD goes back in
time before 2009. Table IV is a summary of the number and
source of the relevant publications considered in our survey
paper.

TABLE V: Evaluation criteria for the false data attacks in
Smart Grid

Criterion Description

Attack model Review the cyberattacks from the point of considered
adversarial construction model

Approach Review various technical approaches followed by
researchers for the design of the attack models

References Review which articles study which FDI attack model
Network
architecture

Relevant articles are reviewed from network-centric
point of view

Power flow
model

Adversaries use different approaches with different
power flow models, so the incumbent cyberattacks
are reviewed and compared accordingly

Attack target Relevant articles are reviewed from the point of view
of vulnerabilities of cyber-physical system elements

Attack impact Articles are compared on the basis of risk of the
cyberattack

Validation metric Show the main claim of the research exemplifying
the performance

Experimental
platform

Show the theoretical proofs or hardware testbeds
utilized to justify the method

C. Evaluation Criteria

In order to quantify the efficacy and associated challenges
of the different cyberattack strategies, several key evaluation
criteria are suggested in relation to the requirements of the
power systems and the Smart Grid cybersecurity. The assess-
ment criteria used to compare the selected false injection attack
papers are summarized in Table V.

The evaluation criteria are used to compare and contrast
among the various attack construction methods, attack targets
and impacts as detailed in Section VI, VII, VIII respectively,
and summarised in Table VI. One of the main evaluation cri-
teria is attack model, a criterion that reflects the reviewed FDI
threat construction model. Five commonly used attack con-
struction methodologies have been considered for the attack
model criterion, namely attack with complete information, at-
tack with partial information, LR attack, GT attack, and attack
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TABLE VI: Comparison of FDI attacks in Smart Grid cybersecurity
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Heuristics [6]D,c X SCADA Prob. of attack vector vs % of
compromised meters X

9, 14, 30,
118, 300

[51]D,c X
SCADA,
PMU X

Security index bound vs mea-
surement number X 14

[52]D,c X − ADR vs attack sparsity X 14

[54]D,c X PMU Prob. of sparsest attack vector
vs % of compromised meters

30, 57, 118,
300

Graph-
theoretic [53]D,c X PMU X

DAR vs attack MSE, market
revenue X 14

[75]D,d X − ADR vs FPR X −

[41]A/D,c X SCADA X
Injected meas vs line number.
# of compromised RTUs vs
line/bus.

X 57

[44]A/D,c X X SCADA % of attack vs SR X 57

[68]A,d X SCADA
Prob. of successful attack vs
system information complete-
ness

X
9, 14, 30,
118, 300

[76]D,d X X SCADA
System states vs bus number;
# of compromised measure-
ments vs # of attacked states

X 13, 37

[72]d X
Smart
meter X X

Energy loss (KWH) vs # of
supply units X 30

[70]A,d X
Smart
meter X X

Attack success probability vs
injection level X

14, 39, 118,
300

LP [55]D,c X SCADA

Frequency deviation vs AGC
cycle index, Compromised
power flow vs AGC cycle
index

X 16 X

[61]D,c X
SCADA,
PMU X

Real-time revenue vs detection
probability, attack target loca-
tions

X 14

LASSO [74]D,c/d X X PMU Prob. of attack vector vs SR vs X 9, 57

[28]D,c/d X X PMU Prob. of attack vector vs SR vs X
9, 30, 57,
118

SDP [66]A,c X
SCADA,
PMU

Spurious values vs original
values of measurements; attack
sparsity vs regularisation

X 30

Bi-level
MILP [45]A,c X SCADA X

Prob. of attack vector vs load
shift constraints X 24

[57]D,c X X SCADA X
Generator and line contin-
gency vs attack vector X 14, 30

[69]A,d X
AMI,
smart
meter

X
Compromised system states vs
# of buses X 33

[63]D,c X − X X
Financial benefit ($/hour) vs
total load (MW) X 14, 30

MINLP [49]D,c X X SCADA X
LMP vs bus number; LMP de-
viation vs attack cases X 14

Differential
Evolution [50]D,C X SCADA X X X

System states vs measurement
number X 39

Multi-
objective
Opt.

[62] X
Smart
meter X Prices vs FDI attack cases X 39

Game-
theoretic [77] X

PMU,
NCS

Adversarial cost vs defence
budget X −

[71]d X PMU X X
Adversarial cost vs defence
budget; Power mismatch vs
time

X −

[73]d X − X X
Load shading cost (MW) vs #
of attack round X 9, 14

[64]D,c X − X X

Attacker’s optimal gain (line
cap. violation), manipulated
line rating (MW) vs time
(hour)

X 118 X

Clustering [3] X SCADA X X
Compromised measurement vs
injection attack X 14
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KICA [78]D,c X SCADA

Time of attack construction
vs degree of incomplete info;
Prob. of attack vector vs % of
incomplete info

X 14, 30, 118

Bi-level
MILP [87]D/A,c X − System re-dispatch vs SR X 24

[79]D,c X − Physical PF vs injected PF X 24, 118

Heuristics [82]D,d X − X
Line outages vs load measure-
ment attack X 6, 96

[43]A,c X PMU X
Attack cost vs attacking re-
gions X 14, 118

Graph-
theoretic [86]A,d X

SCADA,
PMU

Measurement residual vs %
of estimation error of attacked
state variables

X 30, 118

Semi-
Markov
Process

[58]D,c X
PMU,
IEC
61850

X X X
Attack probability, risk index,
impact (generator/line loss) X 200, 500

− [67]A,c X X − X X
Generation schedule, system
congestion vs malicious load
vector

X 30

− [42]A,c X PMU Change in residue vs measure-
ment number X 30

RTP [59]D,c X X SCADA X
Real-time pricing (RTP) vs bus
location X 14

[60]D,c X SCADA X X X RTP, stability vs attack vector X 14, 30 X

SDP [80]D,c X SCADA X
Profit confidence vs attack un-
detectability, information un-
certainty

X 14, 118

Game-
theoretic [81]D,c X PMU X

Defender’s loss vs # of attack-
ers; LMP (in MWH) vs bus
number

X 30

[23]A,c X PMU X
Load shading value (in MW)
vs attacked lines, attack-
defence strategy

X 14, 57, 118

L
R

at
ta

ck Heuristics [88]D,c X SCADA X
Real-time LMP vs bus number,
dispatch interval X 6

Bi-level
MILP [33]D,d X SCADA X X

Generation dispatch, economic
loss vs attack quantity X 14

[89]D,d X − X
Load sensitivity vs attack re-
source X 14

[90]D,d X SCADA X X X
Generation dispatch, economic
loss, operation cost vs attack
quantity

X 14

[91]D,d X SCADA Power flows vs load attack
magnitude X 14

[92]D,c X
SCADA,
PMU X

Load level (in MW) vs load
attack magnitude X 118

[95]D,c X SCADA X
Load reduction (%) vs lines
tripped X 118

Tri-level
MILP [85]D,d X − X

Optimal dispatch plan (in
MW) vs injected attack X 14

[40]D,d X SCADA Percentage of attacking re-
gions X

24, 30. 39,
57, 118

Semi-
Markov
Process

[97] X SCADA X
Load curtailment, Pd vs # of
attacked substations X 79

Game-
theoretic [93] X SCADA X

Load curtailment vs system
state number, defence budget X 24

Graph-
theoretic [94]D,c X

SCADA,
Router

Load ratio vs # of removed
nodes X 39

[98]A/D,d X
AMI,
Smart
meter

X X
Meter current and power flow
vs time X 17 X

[96]A,d X − X
Compromised system states vs
time X 4
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Graph
theoretic [56]D,c X SCADA X

DAR vs target branch,
congested lines vs real-
time LMP

X 14, 118

[100]A,c X SCADA Pd vs target line X 24

[101]A,c X SCADA X
Transmission loss (in
MVA) vs line number X 14, 118

Heuristics [82]D,d X − X
Attack budget vs impact
severity X 96

[99]D,d X SCADA X
Line outages vs load mea-
surement attack X

14, 24, 30,
39, 57, 118

Metaheuristics [145]A,c X −
Economic loss vs relative
perturbation factor (%);
relative perturbation factor
(%) vs target line

X 39

Bi-level
MILP [83]D,d X SCADA X

Line outages vs load mea-
surement attack X 14, 118

[84]D,d X PMU X
Line outages vs load mea-
surement attack X 39, 118

D
at

a-
dr

iv
en

ICA [102]D,c X SCADA X
MSE of ICA vs SNR, # of
observations; LMP vs bus X 14, 30

PARAFAC [103]D,c X SCADA MSE vs # of intercepted
meters; Pmd vs τ X 14, 30

PCA [104]D,c X SCADA
Normalised SE error (%)
vs attack magnitude; ADR
vs attack magnitude

X 14, 118

[48]D,c X SCADA Pmd vs τ X 14
[38]D,c X SCADA Pmd vs τ X 14

[105]D,c X SCADA Measurement residue vs #
of observations X 14

[32]D,c X
SCADA,
PMU

Compromised
measurements vs
# of observations;
Compromised states
vs # of state variables;
Pmd vs τ

X 14, 30, 57

Geometric [108]D/A,c X SCADA X
Pmd vs τ , SCED opera-
tion cost vs malicious load X 14, 30

− [109]A,c X PMU Measurement residue vs #
of observations X 56

POMDP [111]A,d X
IEC
61850 X

Voltage sag vs attacked
bus, Attacked bus vs time X 39, 118

Deep RL [110]A,c X PMU

Load measurement (in
MWA) vs bus number;
Attack resources vs
training episodes

X 30

Eliminate-
Infer-
Determine

[106]D,c X
Smart
meter

Attack vector vs bus num-
ber; Pmd vs τ X

14, 30, 118,
300

Random
matrix
theory

[107]D,c X − Attack sparsity vs Pd X 118

[RefD/A]: DC/AC model, [Refc/d]: centralised/decentralised architecture, [Refcd]: centralised and decentralised architectures, [RefRL]: real load data
considered, ADR: attack detection rate, DD: Detection delay, FPDR: False positive DR, DA: Detection accuracy, FPR: False positive rate, TPR: True positive
rate, FDI: injected magnitude of FDI attack, payoffs: Game metric of attacker-defender cost in payoffs, SR: FDI attack sparsity ratio, SNR: Signal-to-
noise ratio, MAPE: Mean absolute percentage error, PE: Percentage error between true and estimated states, AR: attacking rate (Attackability, or successful
attacking probabilities), MSE: Mean square error, Pd: Probability of detection, Pmd: Probability of missed detection, PARAFAC: PARallel FACtor analysis, τ :
attack detection decision threshold, POMDP: Partial Observable Markov Decision Process, MINLP: Mixed-Integer Nonlinear Programming, NFP: Nonlinear
Fractional Programming, SDP: Semidefinite Programming.
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using data-driven. The other evaluation criterion is approach
or algorithm for the design of the attack models. The various
approaches for the evaluation of the literature mentioned in
this survey paper include heuristics, meta-heuristics, graph-
theoretic, game-theoretic, bi-level & tri-level Mixed-Integer
Linear Programming (MILP), Statistical transformation ap-
proaches (PCA, ICA, PARAFAC), Markov and ML models.
Furthermore, the AC and DC models are considered for the
power flow model. The reviewed articles are also evaluated
from network-centric point of view (considering centralised
and decentralised architecture). Note that the power flow
model and the network architecture are used as super-script
of the ’Reference’ (column 3 Table V). Most importantly, the
FDI attack papers are investigated with regards to the attack
target and attack impact evaluation criterion. Notice that the
different components of the Smart Grid can be seen from
the discussion in Section III. Finally, two evaluation criteria,
namely performance metrics and experimental platform have
been inspected.

X. COMPARISON AND STATISTICS AMONG DEFENCE
STRATEGIES

In our review paper, 101 publications are considered for the
three classes of the false injection attacks. Here, the various
strategies are compared and some statistical facts based on the
evaluation criteria are presented.

A. Adversarial Model

Since the original conception of the FDI attacks by Liu
[6], most adversarial models have been assumed by the full
knowledge of the underlying power system operations. Ac-
cordingly, this category of adversarial model comprises around
42% of the total works surveyed. These adversarial models
with full knowledge of network data and topological settings
have been on the premise that attackers could hack any more of
the stringent power system security controls. The adversarial
model with limited knowledge of topological and network data
is more reasonable than the adversarial model with complete
knowledge that makes the other most popular approach used
in the Smart Grid cybersecurity community. In this case,
approximately 18% of the total surveyed publications have
come within this threat model. Adversarial models leveraging
data-driven approaches are relatively the latest and are the
second most popular research areas with respect to FDI attack
construction strategies at present, standing at about a fifth of
the total surveyed literature. Notably with the emergence of
cyber-physical datasets, these strategies are more appealing in
the handling of the complex Smart Grid infrastructure. The
other well researched attack models are LR attack and GT
attack, which are very harmful and have very serious conse-
quences, as described in Section VI-A. Both of these attack
types account for a fifth of the total surveyed publications.

B. Attack Target

Although many of the IT and OT elements of the Smart Grid
are vulnerable to the cyberattack, EMS and SCADA/PMU

are found to be the most vulnerable control and monitoring
systems. This is due to the fact cyber attackers aim to com-
promise the SCADA measurement data or try to manipulate
the outcome of the EMS/DEM (Refer Section VII). Most of
the FDI attacks consider EMS and SCADA/PMU as the main
target elements, accounting for almost 95% of the other critical
elements. Consequently, other key OT elements such as the
AGC, economic dispatch, and MMS will also be at a greater
risk. Some attackers also try to compromise the sensor data
via the IEDs/RTUs, communication systems such as the AMI,
IEC 61850, DNP3, and Modbus, and. As compared to other
sub-domains, the vulnerability issues of renewable DERs and
microgrids have got little attention.

C. Attack Impact
Details of the investigation into the impact of cybersecurity

attacks on the cyber-physical systems are shown in Section
VIII. Almost half of the surveyed articles examined the impact
(directly or indirectly) of the FDI attack on the Smart Grid. In
fact, one third of these studies are related to the impact of the
FDI attack on the economic dispatch and electricity market.
Moreover, around 30% of the surveyed papers analysed the
effect of FDI attacks on the secure operation and power system
reliability. Finally, a relatively limited number of papers (just
under 10%) looked at the impact of the incumbent cyberattack
on energy theft and customer data privacy.

D. Performance Metric
The FDI attacks vary, among other things, in terms of

the construction model, algorithmic design, attack target, and
network architecture. For this reason, instead of providing a
distinct performance metrics for all the adversarial models,
we present comprehensive qualitative metrics. A plentiful of
performance metrics are presented for each of the counter-
measure subcategories (see 16th column of Table VI). For
example, across the complete topology information category,
optimal/subset of meter/IED protection, attack cost are the
main metrics considered. Further, packet loss, computational
cost, communication cost, and end-to-end delay are the main
evaluation metrics adopted among the prevention schemes. In
most of the detection based on dynamic SE, statistical-based
models, and data-driven defence categories, detection rates (in
terms of probability of detection, TPR) are compared against
false positive rates or false alarm rates.

E. Experimental Platform
The vast majority of studies performed numerical results

based on simulations of IEEE standard or modified electric
grid test cases. Various sizes of test cases have been con-
sidered, IEEE 14 bus system being the most widely referred
test case. Although the vast majority of literature use only
a single test case to conform their numerical results, some
considered multiple test cases. The majority of the studies
are based on simulations using MATPOWER3 optimization
toolbox. To further verify the efficacy of their proposal just a
very few of the scholars incorporated a real-time testbed.

3https://matpower.org/
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XI. MAIN GAPS OF EXISTING FALSE DATA ATTACK
RESEARCHES

In what follows, we describe the key gaps of existing FDI
attack researches.

Some Emerging Smart Grid Areas Are Not Well
Studied: The plethora of literature examined in this review
paper tried to cover a multitude of Smart Grid infrastructures;
however, there are some open issues with respect to the scope
(network architecture, DERs, and communication systems).
The majority of existing cyberattack researches have focused
on the traditional centralised EMS. Hence, FDI threat models
against distribution systems of SE is still an open research. For
example, adversarial construction methodology in realistic
multi-phase and unbalanced smart distribution systems
and DERs [76] can be more interesting. While decentralized
energy generation and distribution systems (such as the DERs)
have become very popular, yet they can be among the most
vulnerable cyber-physical components to the orchestrated FDI
attacks. But, only few research studies have been undertaken
with respect to the attack construction and/or impact of the
flase data attacks against the DERs. This can be seen from
the 15th column of Table VI. Further, only few papers have
discussed FDI attacks in the SAS, AMI, and WAMS-based
communication systems. Our survey also reveals that the
impact of FDI attack on energy theft and user data privacy
is another research area with just little attention at the moment.

Need for Further of FDI Attack for AC-Based Systems:
Most existing FDI attack experiments are performed in a
confined setting on the assumption that the functions from
the power system states to the measurements are linear
(DC-based power flow models). Although this approach
can be a very good assumption, many industry standard
SE models are of non-linear AC power flow. Therefore,
although the AC power flow model is far more complex
than the DC counterpart, cybersecurity practitioners and
other stakeholders need to come up with the stealthy FDI
attack for industry-wide AC-based SEs. It would be more
interesting, if the cyberattack can be explored in large-scale
realistic EMS/DEM applications considering industrial-based
AC state estimators that involve dynamic contingency analysis.

Need for Corroboration of Experimental Results Via
Testbed Platform: Although the literature surveyed in this
paper have proven their cybersecurity solutions via numerical
simulations benchmarked against standardised test cases, it is
vital to validate the experimental results via cyber-physical
testbeds, which is missing in the literature except to a few of
them ( [146] [111] [147]). This downside can be seen from the
perspectives of data- and system-oriented approaches. Most of
the FDI attack schemes surveyed did not consider commercial-
level datasets, which otherwise, can practically validate the
vulnerability of the state estimators to the stealthy FDI attacks.

Testbeds [148] are essential tools for testing the perfor-
mance evaluation of algorithms and protocols in the Smart
Grid. The highly complex and multidisciplinary essence of
the Smart Grid requires the implementation of cyber-physical

testbeds with different characteristics for comprehensive ex-
perimental validation. There is a considerable need to analyse
new Smart Grid security concepts, architectures, and vul-
nerabilities via cyber-physical system test platforms. More
recently, there has been a growing attention to the study
of cyber-physical Smart Grid testbeds [148]. Most notably,
hardware-in-the-loop test platforms have become much more
popular for the development, analysis, and testing of cyber-
physical components of the electrical power system. For ex-
ample, some Smart Grid stakeholders, such as ABB4, Siemens
Power Technologies5, and OPAL RT6 foster hardware-in-the-
loop testing using real-time digital simulators across various
Smart Grid realms, including microgrids, SAS- and WAMS-
based protection environments. Therefore, we suggest that
assessing the effects of FDI attacks on the Smart Grid using
the hardware-in-the-loop testbed platform is critical in crafting
the stringent cybersecurity requirements.

XII. EMERGING ADVANCED APPLICATIONS: FUTURE
RESEARCH DIRECTIONS

Securing the electricity grid is one of the highest priorities
of many countries around the world. Academic studies
and industries are expected to tackle a range of issues for
future research on cybersecurity attacks in the Smart Grid
infrastructure. Particularly, the reliance of reliable and secure
power system operation on the communication infrastructure,
along with potential cyber threats are increasingly growing.
In the following, potential emerging advanced applications
are discussed as means of future research prospects.

Cybersecurity for Emerging Smart Grid Communi-
cation Systems: Despite the fact that the communication
infrastructure is the most critical target to the FDI attacks,
the study of threat modeling and impacts have to be studied
well, especially, across the SAS-compliant IEC 61850 and the
WAMS-compliant IEEE C37.118. The FDI attack can well
be studied especially with the incorporation of cyber-physical
testbed platforms [148]. Moreover, although AMI is one of
the most vulnerable communication systems to the FDI attack,
little has been done the risks associated with the incumbent
cyberattack. Especially, given the increasing adoption of WSN
and IoT in the Smart Grid, it will be interesting to address
cybersecurity issues of IoT-based AMI with regard to the FDI
attacks.

Software-defined networking is one of the emerging
networking applications. The coupling of software-defined
networking with the Smart Grid applications can bring
efficient network monitoring. However, the security issue of
this technology is worth investigating especially with respect
to the FDI attacks. Further, FDI attacks on heterogeneous
cognitive radio, WSN and IoT are potential cybersecurity
researches which are worth investigating. The application of
data-driven models across the more intelligent communication

4https://new.abb.com/news/detail/62430/abbs-acs6000-power-electronics-
grid-simulator-pegs-tests-medium-voltage-equipment

5https://assets.new.siemens.com/siemens/assets/api/uuid:1fb8264a-9ee6-
4d71-a703-bb68beb7ca94/version:1587982708/rtds-datasheet-en-1909.pdf

6https://www.opal-rt.com/hardware-in-the-loop/
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arena of the Smart Grid can be explored to tackling against
the orchestrated cyberattacks.

Security Framework Based on Lightweight ML:
Countless memory and computational-restricted wireless
sensor nodes are connected to IoT applications in Smart
Grid. Several reports have shown that such limitations raise
obstacles to the usage of conventional security measures over
IoT systems. For example, from a defence against the FDI
attack perspective, security frameworks using lightweight ML
[149] can be proposed for resource-constrained IoT devices.
On top of that, lightweight ML can be proposed for prevention
schemes such as encryption, message authentication, and
dynamic key management against the false data attacks in an
end-to-end Smart Grid communication system.

FDI Attack in Edge Computing: In a distributed
computing environment, edge computing [150] improves
the communication overhead and system bandwidth by
bringing the processing and data storage near to the origin
of data source. Further, the emergence of Industry 4.0 [151]
across a number of industries, including the Smart Grid,
brings ubiquitous networked elements, and intelligent edge
computing. While edge computing provides considerable
advantages, it can also lead attackers with an easy point of
entry to some of the cyber-physical edge devices that can
then be used to obtain access to the core components of the
Smart Grid. For instance, bringing more IoT devices to the
edge network can introduce various cybersecurity threats like
the FDI. Hence, the FDI attack is worth investigating across
edge computing-based Smart Grid.

Distributed Electricity Trading: The prevalence of DERs
promotes the concept of distributed electric energy. Distributed
electricity trading is one of emerging applications for a
device-to-device energy sharing. As such the vulnerability
and comprehensive risks of FDI attacks against LMP market
pricing can be investigated in regards to DEM applications.

Blockchain Technology: As an innovative distributed com-
puting ecosystem, Blockchain offers a secure solution for
facilitating the immensely complex interactions among vari-
ous cyber-physical Smart Grid entities. False injection attack
across the Blockchain ecosystem is a very new research area,
which requires a further investigation (for instance, privacy
preservation and anomaly detection).

XIII. CONCLUSION

Smart Grid poses a rising threat from an emerging cyber-
physical attack called FDI. By injecting falsified attack vectors
stealthily, adversaries can violate the availability, integrity, and
confidentiality of critical Smart Grid data, and may render
the power system unobservable. In addition, coordinated FDI
attacks can pose serious consequences for the Smart Grid, such
as causing sequential transmission line outages, maximizing
operation cost of the power system, culminating in large-scale
failure of the power system operation, and regional/national
catastrophic impacts.

This survey paper analysed the FDI attacks in Smart Grid
in three main classes, namely the attack model, the attack
target, and the attack impact. In order to quantify the efficacy
and associated challenges of the various cyberattack models
in the literature surveyed, a number of key evaluation criteria
were used in relation to the requirements of the power systems
and the Smart Grid cybersecurity. Finally, future research
directions for FDI attacks are also proposed as a way of
advancing the Smart Grid cybersecurity framework.
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