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ABSTRACT Nowadays, machine learning (ML), which is one of the most rapidly growing technical tools,

is extensively used to solve critical challenges in various domains. Vehicular ad hoc network (VANET)

is expected to be the key role player in reducing road casualties and traffic congestion. To ensure this

role, a gigantic amount of data should be exchanged. However, current allocated wireless access for

VANET is inadequate to handle such massive data amounts. Therefore, VANET faces a spectrum scarcity

issue. Cognitive radio (CR) is a promising solution to overcome such an issue. CR-based VANET or

CR-VANET must achieve several performance enhancement measures, including ultra-reliable and low-

latency communication. ML methods can be integrated with CR-VANET to make CR-VANET highly

intelligent, achieve rapid adaptability to the dynamicity of the environment, and improve the quality of

service in an energy-efficient manner. This paper presents an overview of ML, CR, VANET, and CR-

VANET, including their architectures, functions, challenges, and open issues. The applications and roles of

ML methods in CR-VANET scenarios are reviewed. Insights into the use of ML for autonomous or driver-

less vehicles are also presented. Current advancements in the amalgamation of these prominent technologies

and future research directions are discussed.

INDEX TERMS Machine learning, VANET, cognitive radio, autonomous vehicles, smart transportation

system.

I. INTRODUCTION

Machine learning (ML) is an artificial intelligence (AI) tech-

nique used to teach a system about the unknown and make

efficient and effective decisions. The use of ML in nearly all

aspects, such as robotics, business, arts, automated systems,

biotechnology, and intelligent automated transportation sys-

tems, has become popular due to the availability of low-cost

and highly capable (i.e., high computational power and huge

data storage) machines and the presence of massive amounts

of data. ML provides smart and fast decision making for
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improving system performance, including reliability, energy

efficiency, and quality of service (QoS) [1].

Traffic congestion and safety have become vexing and

complex issues in many urban areas due to the rapid increase

in population and the proliferation of vehicles. Approxi-

mately 1.25 million people die every year worldwide due

to road accidents, which are the leading cause of death

among people aged between 15 and 29 years [2]. Congestion

causes expensive delays, stress, pollution, and wasted fuel.

In the U.S., the congestion cost was $305 billion in 2017 [3].

A smart and efficient transportation system can provide

smooth traffic flow, reduced road accidents, and a green envi-

ronment, which in turn improves economic competitiveness.

Vehicular ad hoc network (VANET) is designed to improve
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traffic safety and ameliorate traffic congestion for reducing

the travel time of commuters, particularly during peak hours.

The exponential growth of wireless devices has led to

the need for a vast spectrum to support high-volume data

transmission. However, spectrum scarcity (inadequate allo-

cation compared with the demand) has become a hindrance

to the deployment, support, and scaling of next-generation

applications for commuters, including the Internet of Things

(IoT), smart cities, virtual reality, augmented reality, and

high-definition 3D video streaming services. The two main

factors that cause spectrum scarcity are as follows: (a) fre-

quency bands are allocated to licensed users based on the

traditional fixed spectrum assignment policy and (b) a huge

volume of real-time data is generated and transferred over

a wireless medium in a dynamic environment. The authors

in [4] showed that most bands are still vacant and suitable for

secondary usage.

Cognitive radio (CR), which was introduced byMitola and

Maguire in [5], is a key enabling technology for spectrum

sharing that allows devices to sense and use underutilized

licensed channels (e.g., TV bands) dynamically in an oppor-

tunistic manner and for spectrum mobility that allows users

to vacate licensed channels re-occupied by licensed users [6].

CR can play a vital role in solving the spectrum scarcity

issue of VANET. Hence, CR-based VANET or CR-VANET

is a promising technology to tackle road safety, congestion,

and infotainment issues, and it serves as a basic building

block for next-generation transportation systems, especially

autonomous-driving vehicles.

This study focuses on the applications of ML in

CR-VANETs to ensure that decision making is fast, highly

reliable, secure, and energy-efficient. ML helps CR-VANETs

become increasingly intelligent to adapt to uncertain radio

environments rapidly and efficiently and reduces complex-

ity. This study reviews the recent advancements and future

directions of ML used in CR-VANETs.

A. MOTIVATION: NEED FOR ML IN CR-VANET

Numerous new vehicles are expected to appear on roads

in the coming years, and they would cause serious traffic

congestion that can paralyze urban areas and adversely affect

the economies of countries. Apart from contributing to eco-

nomic losses, poor management of transportation systems

can cause stress to people, reduce working efficiency, and

increase the number of accidents and casualties. To solve

these issues, the smart transportation system or VANET must

be improved to obtain an automated smart traffic system that

provides useful information on road and traffic conditions and

automated driving vehicles [7].

For a successful implementation of VANET, a massive

amount of live data must be exchanged. According to Intel,

a phenomenon called ‘‘flooding of data’’ is expected to occur,

whereby each smart autonomous vehicle (AV) would gener-

ate and consume approximately 4 terabytes of data on the

average per day of driving [8]. This amount is many times

larger than the current amount of data that an average person

currently generates.

An actively operating vehicle can generate an amount of

data that 3000 people currently generate on average. These

data, which can be gathered by sensors, cameras, and crowd-

sourcing, include road and traffic conditions, personal data,

and application data (e.g., marketing, societal, and enter-

tainment data). Therefore, data are the next ‘‘oil’’ in the

transportation system. However, the bandwidth required to

accommodate suchmassive real-time data exchange is scarce,

resulting in network congestion, especially in urban areas.

Based on the traditional fixed spectrum assignment policy,

two types of bandwidth or frequencies, namely, licensed

and unlicensed, are available. Unlicensed frequencies, such

as the industrial, scientific, and medical (ISM) band, are

free to use and thus prone to interference [9], which can

degrade QoS. Moreover, existing allocated frequency bands

are insufficient to handle large amounts of data. For exam-

ple, IEEE 802.11p (or IEEE 1609), which is also known as

the dedicated short-range communication (DSRC) standard,

has reserved 75 MHz of bandwidth in the frequency range

of 5.85–5.925 GHz for vehicular networks; however, this

bandwidth is insufficient to accommodate massive amounts

of data [10]. Meanwhile, licensed bandwidths or frequen-

cies, such as TV or military radio bands, are not highly

utilized [11], thereby rendering these bands idle and inac-

tive. In other words, spectral efficiency is lacking, and the

CR-based wireless communication system is the best solution

in these situations.

In the CR system, an unlicensed user (or secondary user,

SU) identifies any vacant or unoccupied licensed frequency

owned by licensed users (or primary users, PUs). Upon iden-

tifying a vacant frequency band, the SU is allowed to use

it providing that it does not interfere with any PU. Thus,

the SU must release the frequency band when the PU’s

activities reappear. The SU must ensure that its transmis-

sion power does not interfere with the PU’s activities in the

neighborhood [12].

High-speed mobility and a dynamic environment have

brought about additional complexities and challenges to

CR-VANET compared with other wireless networks such

as WSN (wireless sensor network). ML methods can ease

these complexities and provide tremendous improvements in

terms of network performance enhancement (e.g., reduced

delay, increased reliability, secure performance, and energy

efficiency) to CR-VANET. Although the energy capacity

of vehicles is generally sufficient, the cumulative energy

requirement of vehicles can be very high; thus, energy effi-

ciency must be achieved in consideration of the huge carbon

emission that can pose a threat to the green environment [13].

Another important issue is to improve the QoS and quality of

experience (QoE) of the network because the conventional

spectrum sensing, transmission adaptation, and handover in

the CR system (see Section III.A for additional description)

increase the delay, overhead, and energy consumption [14].

ML is an excellent candidate to enhance the network
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TABLE 1. Benefits of CR and ML in VANETs.

performance of CR-VANET [15]. Security enhancement is

one of the major issues in CR-VANET. Here, a vehicle can

pretend to be a PU and propagate false information to obtain

spectrum access selfishly. ML can be used to detect such

actions and enhance security [16], [17]. ML also provides

an optimum route to CR-VANET users to avoid traffic jams

and road accidents. ML can also play a vital role in the

best infotainment experience in CR-VANET. It can be used

for appropriate scheduling, selecting the best channel, and

prioritizing messages.

CR and ML can play a major role in the next-generation

driverless car system. The role of CR in the next-generation

transportation system has been presented in previous discus-

sions. This survey shows how ML can be applied to reduce

road accidents and traffic congestion. CR can be used to

accommodate the spectrum required to support massive data

communication among automated driverless vehicles and

networks. ML can be an integral part of this driverless or

automated vehicle system. Similar to a robot, an autonomous

vehicle (AV) can learn the surrounding environment and

communicate with increased safety, reliability, QoS, and

energy efficiency by applying such learning.

This paper presents the dynamic usages of ML in

CR-VANET elaborately. Several of the benefits of CR in

VANETs andML inVANETs andCR-VANETs are presented

in Table 1.

B. CONTRIBUTIONS OF THIS SURVEY ARTICLE

Many survey articles describe CR, VANET, ML, and

CR-VANETs individually or describe a few aspects of their

amalgamation. To the best of our knowledge, surveys that

cover the usage of ML in CR-VANET scenarios are lacking.

In this article, a comprehensive survey of the usage of ML in

CR-VANET is presented.

Several of the contributions of this work are as follows:

• The detailed concepts of CR, ML, VANET, and their

amalgamations are presented.

• The usages of CR and various ML methods in VANETs

are discussed.
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• Various types of ML techniques, including their

overview, limitations, and applications, are presented.

• Various usages of ML in CR-VANET, including spec-

trum sensing, spectrum switching, routing, congestion

control, and security enhancement, are surveyed in

detail.

• Several technological advancements in the aspects of

this integration are described.

• The applications of ML to reduce road accidents and

traffic congestion are presented.

• The usage of ML and CR for autonomous or driverless

vehicles is described.

• The open issues, challenges, and future research direc-

tions of ML in CR-VANETs are discussed.
The performance of CR processes depends on the qual-

ity of the spectrum sensing (the process of finding out the

vacant spectrum). Good spectrum sensing means it has to

be faster, highly accurate, robust to interference and noise,

low complex and low energy consumption [19]. However,

there are many challenges to achieve such good spectrum

sensing such as vehicle’s speed and direction, the effect of

multipath fading, shadowing problem, heterogeneous QoS

requirement and so on [19]. To enhance the performance of

the CR process and to solve these issues, ML can be applied

in CR-VANET [23], [24].

From this survey, readers can relate the necessity of CR in

VANET and ML in CR-VANET. They can get insight into

the applications of several ML techniques in CR-VANET.

Moreover, few open issues and research directions have been

provided, this will help the readers to do more research in

this field. As we have mentioned, this is the first kind of

such a survey, the readers can get knowledge about ML,

CR, VANET and their amalgamation with several chal-

lenges and issues in a single article. They can recognize the

spectrum scarcity issues for the practical implementation of

autonomous vehicles and know-how ML can be helpful to

solve several challenges associated with the implementation.

C. RELATED WORKS

The areas of ML, CR, VANET, and CR-VANET and their

amalgamations are presented. Several surveys [25]–[50] of

these techniques are available; however, they are either pre-

sented separately or with limited amalgamations (refer to

Figure. 1). To the best of our knowledge, no comprehensive

survey that describes the integration of ML in CR-VANET has

been conducted.

A comprehensive survey ofMLwas conducted in [25]. The

applications of ML in various areas, such as traffic predic-

tion, routing, and classification of different networks, were

discussed. A survey on deep learning was presented in [26].

In [27], Gosavi discussed the basic concept of the applications

of reinforcement learning, which is anML technique. A com-

prehensive survey of ML techniques in CR was conducted

in [28]. Various CR implementations with the use of AI were

presented in [29]. Various applications of ML in CRNs were

discussed in [30]. Comprehensive details regarding the usage

FIGURE 1. Related work and our focus.

of various AI techniques in CRNs were discussed in [22].

The usage of various ML methods in dynamic spectrum

access (DSA) was elaborately described in [15]. The recent

advancement and applications of ML in VANETs were dis-

cussed in [31]. Detailed discussions of various ML methods

used in VANETs were presented in [21], and the applica-

tions of various AI techniques in VANETs were discussed

in [32].

A brief survey of CR was performed in [33]. Here, the fun-

damental concepts of CR and its various steps, taxonomies,

challenges, and issues were discussed. Comprehensive details

on CR were provided in [34], [35]. In [36], a description of

the CR cycle, which consists of four steps of CR processes,

namely, spectrum sensing, analysis, reasoning, and adap-

tation (Section II.C describes these details), was provided.

Various spectrum sensing techniques were surveyed

in [37]–[40]. The details of spectrum mobility and its issues

were discussed in [41]. A survey on spectrum management

was conducted in [12].

A comprehensive survey of VANETs was performed

in [42]. The security, trust, and privacy issues of VANETs

were surveyed in [43]. A tutorial survey of VANETs was

presented in [44], and various routing issues of VANETs

were surveyed in [45]. The motivations of VANET toward a

green environment can be found in [46]. Various approaches

and challenges, along with the open issues of CR-VANETs,

were described in [10]. Several taxonomies, recent advance-

ments, and security and privacy issues were also discussed

in [10]. Various aspects of CR-VANETs were surveyed

in [7], [47]–[50].

The current survey provides a review of ML-based CR-

VANETs, including architectures, applications, taxonomies,

and various networking issues in spectrum sensing, manage-

ment, handover, energy, and security to reduce road accidents

and congestion. Current issues and research directions toward

intelligent CR-VANETs are also outlined.

Figure 1 shows a summary of related work on these tech-

nologies and the position of this paper.
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D. ORGANIZATION OF THIS PAPER

The acronyms used in this paper and their full forms are

listed in Table 2. The remainder of the paper is organized as

follows. Section II provides a basic overview, applications,

and limitations of various types of ML techniques with their

taxonomies. It also elaborately describes VANET and its

relevant issues and presents a detailed overview of CR and

its taxonomies, types, and other important issues. Section III

describes the issues and applications of various ML meth-

ods used in CR-VANET. Section IV outlines the current

TABLE 2. Summary of major acronyms used.

challenges and future research directions, and Section V

concludes this work.

Figure 2 shows a thematic view of the arrangement of this

paper.

II. OVERVIEW OF ML, VANET, AND CR

This section provides a detailed overview of ML, VANET,

and CR. The taxonomies and advantages of these technolo-

gies are also provided.

A. ML

ML, which is a member of the AI family, enables a system

to learn and increase its knowledge and experience with

minimal human involvement. Similar to a human, a machine

or a system can make appropriate decisions based on learned

knowledge, experiences, and data after appropriate learning

by using ML. ML is applied in multidisciplinary sectors.

A few of these applications are listed in Table 3.

TABLE 3. Application fields of ML.

In 1950, Alan Turing’s revolutionary Turing test [51]

inspired the world’s researchers to consider the ML process,

although the term ‘‘machine learning’’ was first coined

in 1959 by Arthur Samuel, who wrote the first computer

learning program [52]. Extensive studies have been con-

ducted since the late 1990s; currently, the world is witnessing

significant developments in ML.

ML has three main categories of learningmethods, namely,

supervised, unsupervised, and reinforcement. Other ML

methods, which are variations of the three major learning

methods, include semi-supervised learning, deep learning,

online learning, transfer learning, and case-based reason-

ing [21]. Figure 3 shows the taxonomy of various ML

approaches.

1) SUPERVISED LEARNING

The most frequently used ML method is supervised learning,

in which a machine learns from the training (or labeled)

dataset, which includes data on examples or observations

tagged with the right answers. The machine is trained using

this training or labeled dataset. The testing dataset is used for
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FIGURE 2. Arrangement of the paper.

testing purposes to predict outcomes based on the training

dataset.

The relation of the input and output in supervised learning

can be written simply as

Y = f (x), (1)

where x and Y denote an input and output variable, respec-

tively. The algorithm trains the system to learn mapping

function f appropriately; thus, for any new data x, the system

can reliably predict the outcome or value of Y. For example,

the basic linear regression (a type of supervised ML) can be

written based on Eq. (1) as:

ŷ = w[0]∗x[0]+ w[1]∗x[1]+ . . .+ w[i]∗x[i]+ b (2)

where w[i] and b are the parameters that would be developed

by training, x[i] is the feature of the data and ŷ is the predicted
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FIGURE 3. Taxonomy of machine learning (based on the discussions of [21], [105], [31]).

value of data. The performance of learning depends on the

size and quality of the training dataset.

Supervised learning is of two types, namely, classification

and regression. In classification, the system learns from the

input consisting of training data, and by using this learning,

it classifies new observation or simply categorizes the labeled

data. These data may be bi-class (for example, whether a

frequency band is vacant or occupied) ormulti-class in nature.

Classification is used in speech recognition, face detection,

handwriting recognition, and other areas.

While classification algorithms are used in discrete space,

regression algorithms are used in continuous space. The

regression algorithms map function f from input variables X

to predict a continuous output variable Y. For example, in lin-

ear regression, a type of regression algorithm aims to fit

with the best line, which goes through the data points. It is

used to forecast or predict weather and risk in finance and

various aspects of economics, trend analysis, drug response

modeling, and other areas.

Classification and regression have several renowned

algorithms. Table 4 presents an overview of the algorithms

and their applications and limitations.

2) UNSUPERVISED LEARNING

In supervised learning, a large amount of data is required to

train the system. In practice, providing the training dataset

is difficult. Unsupervised learning has emerged as a solu-

tion to this situation. The system learns from unlabeled

data, which are uncategorized or unclassified in nature.

The idea is to find similarities or differences in data and

act based on those similarities or differences. Unlabeled

data are sorted based on their similarities and differences.

Hence, in general, unsupervised learning has a more com-

plex job than supervised learning. Unsupervised learning

has been applied in self-driving cars, spectrum sensing in

a distributed CRN, chatbots, facial recognition, social net-

work analyses, market or customer segmentation, and speech

recognition.

Unsupervised learning can be further categorized into two

types, namely, clustering and dimension reduction. The aim

of clustering is to segregate similar samples into clusters.

Data samples are grouped in a way that a group has sim-

ilar samples that are dissimilar to other groups’ samples.

Clustering is used in customer segmentation, separation of

books in libraries, classification of species, and grouping

of similar objects in search engines. Meanwhile, the aim of

dimension reduction is to reduce the number of dimensions

in order to improve the system’s performance and provide

optimal solutions. In short, it reduces the number of random

variables by finding a set of principal variables. Dimension

reduction is used in data summarization and compression,

customer segmentation, trend detection, and analyses of mul-

timedia, biological, and social network data.

Clustering and dimension reduction employ several algo-

rithms. An overview of these algorithms and their usages and

limitations are provided in Table 5.

3) REINFORCEMENT LEARNING

In reinforcement learning (RL), agents (or decision-makers)

select appropriate actions by using mathematical approaches
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TABLE 4. Quick overview of various supervised learning algorithms.

and receive rewards in an unpredictable environment [104].

RL is neither supervised nor unsupervised learning [105]. The

main aim of RL is to exploit and maximize the long-term

rewards to be received in the future. It is an individual learning

process that interacts with the random environment. It is also

considered a trial-and-error learning process; thus, it does not

require any environment model and dataset for training in

many cases. It can learn from the current data and environ-

ment, so it is suitable for real-time applications. For these

reasons, it has been widely used in CRNs. In RL, an agent

or a learner (such as a CR-based vehicle) interacts with the

radio environment (comprising everything outside the agent).

As shown in Figure 4, at each time step t, the agent observes

the state of its surrounding environment stǫS, where S is a set

of possible states. On the basis of state st , the agent selects an

action atǫA, where A is a set of actions. At the next time step

t + 1, the environment transits to a new state st+1, and the

agent achieves a reward rt . The target is to obtain an optimal

FIGURE 4. Standard reinforcement learning method.

policy (agent behavior) π : S → A that can maximize the

reward at state S [105].
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TABLE 5. Quick overview of various Unsupervised learning algorithms.

RL is used in many scenarios, such as in teaching robots,

various schemes of CR (e.g., spectrum sensing and secu-

rity issues), self-driving cars, industrial automation, finance

sector, content optimization, and various applications of

VANETs.

In model-based RL, an agent acts in the Markov deci-

sion process (MDP) and models the environment (given the

reward function and transition probabilities) by using some

experience or supervised learning. The agent learns themodel

and the policy value π that can provide the maximum reward.

It involves minimal interaction between the agent and the

environment. It is capable of rapid convergence to the optimal

solution, and the accuracy of the transition models has a

significant impact on the learning process [106].

In model-free RL (e.g., Q-learning), an agent does not

require to learn a model of the environment (or simply does

not know the MDP) to find the optimum policy for reward

maximization. It acts as direct evaluations [107]; thus, it does

not require prior knowledge on transitions and can be easily

implemented. However, it has a slow convergence to the

optimal solution [106]. Various categories of RL algorithms

are briefly described in Table 6.
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TABLE 6. Quick overview of various reinforcement learning algorithms.
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a: Q-LEARNING

Q-learning, which is the most frequently used type of RL,

is an online algorithm that enables an agent to learn in an

interactive manner with its surrounding environment. The

main aim of Q-learning is to exploit the long-term rewards

to be received in the future. It does not require any envi-

ronment model and dataset for training. For these reasons,

it is the most suitable option for the dynamic CR-VANET

scenario, especially for addressing spectrum sensing issues.

In Q-learning, an agent or a learner (e.g., a CR-based vehicle)

interacts with the radio environment (comprising everything

outside the agent). On the basis of the reward table, the agent

selects the next action (which may be beneficial or harmful),

updates a new value called Q-value for state-action pairs Q

(st , at ), and stores the Q-values in the Q-table. For example,

in CR-VANET scenarios, an action might be choosing and

accessing any frequency band, and the state might be the

location and time of the vehicle. If the sensed frequency band

has interference from PUs, then the agent receives a negative

reward; otherwise, it receives a positive reward.

Specifically, after taking every action, the agent receives

the reward and updates its Q-value based on Eq. (3).

Qnew(state, action)

← (1− α)Qold (state, action)

+α(reward + γmaxQold (next state, all actions))

Q(t+1)(st , at )

← (1− α)Qt (st , at )+ α[r(t+1)(s(t+1), at )

+
max
a∈AQt (s(t+1), a)] (3)

where

α: Learning rate α determines how much the new

Q-value overrides the previous Q-value. The α value

ranges from 0 to 1. A high value of α indicates high

learning speed, which may lead to fast convergence,

although stability can be affected and could thus

cause convergence failure. A low value of α indicates

smooth learning, but the convergence rate can be slow.

γ : The discount factor implies how much importance is

provided to future rewards.

r: The reward received by the agent. It consists of a

short-term reward called delayed reward and a future

reward called discounted reward.

The two policies for taking action are exploitation and

exploration. When the agent selects exploitation (i.e., uses

existing knowledge to select the best possible action), it uses

an optimal policy. When it selects exploration (i.e., learns

more knowledge), it uses a random policy. The agent receives

positive delayed rewards when it selects an appropriate action

for a particular state. A positive value increases the respective

Q-value and vice versa [6]. Therefore, Q-learning aims to

obtain an optimal policy (or agent behavior) π : S → A that

can maximize the reward at state S [105].

The optimal Q-value for a particular state can be written as

V π∗ (st ) =
max
a∈A Qt (s(t+1), a). (4)

Therefore, the optimal policy can be written as

π∗(st ) =
max
a∈A Qt (s(t+1), a). (5)

Evidently, the convergence rate depends on the quality of

the Q-table and the values of α and γ . The more reward an

agent accumulates, the better theQ-table becomes. Therefore,

the convergence speed is increased. However, the issue is that

the Q-learning algorithm learns completely by itself and does

not receive any help from others. For improved performance

and convergence, it must achieve a balanced tradeoff between

exploration and exploitation. Increased exploration provides

enhanced learning (i.e., sacrifices immediate rewards in the

hope for more future rewards) but slow convergence. Mean-

while, increased exploitation provides faster convergence that

may lead to reduced performance.

4) OTHER ML TECHNIQUES

ML has other popular variations, such as transfer learn-

ing, online learning, case-based reasoning, semi-supervised

learning, and deep learning. They can be incorporated into

supervised learning, unsupervised learning, and reinforce-

ment learning. For example, deep-reinforcement learning is

an algorithm where the deep-learning concept is used in

RL; similarly, deep neural network (DNN) is an advanced

version of neural network incorporated with a deep learning

approach [129]. A brief overview of these variant ML meth-

ods is presented in Table 7.

a: DEEP LEARNING

Deep learning is a member of the ML family. This learning

method is based on learning data representations (rather than

task-specific algorithms). In deep learning, learning can be

performed using supervised, unsupervised, and/or RL. It is

inspired by information processing in the human neuron sys-

tem. It has significant advancements comparedwith otherML

methods. Deep learning has been applied in various fields,

such as computer vision, natural language processing, audio

recognition, and various issues in CR-VANETs. A typical

architecture of deep learning is shown in Figure 5. The illus-

tration and discussions were adopted from [21].

Deep learning consists of multiple layers of nonlinear pro-

cessing units, and they are connected in a cascaded form,

as shown in Figure 5. Each layer is used for feature extraction

and transformation, where input data are transformed into

a near-abstract and composite representation. The leftmost

part is the input layer in which every node denotes a dimen-

sion of the input raw data. The subsequent layers are called

‘‘hidden layers’’ (i to l). The rightmost part is the output

layer (m). Each node performs a nonlinear transformation on

the weighted-sum of a subset of nodes in its previous layer.

The nonlinear function can either be a sigmoid function

fS (a) = 1/(1+ e−a) or a ReLU function fR (a) = max (0, a)

The input I and output z relation can be written as

z = f (I , θ) = f (L−1)
(

f (l−2)
(

· · · f (1) (I )
))

(6)
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TABLE 7. Quick overview of Other machine learning approaches.

where L is the layer index and θ is the weight of the neural

network. For an improved output, more hidden layers can be

added (until the optimum value; otherwise, it might cause

overfitting). However, for deeper cases, it requires more time

and entails increased computational complexity.

Several deep architectures, such as DNN, DQN, and CNN,

are available. Section III presents the extensive usages of

these deep or hierarchical learning architectures in various

aspects of CR-VANET scenarios.

B. VANET

1) OVERVIEW OF VANET

Researchers have carried out numerous studies on rapidly

advancing VANETs. With the power of connectivity and
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FIGURE 5. Typical deep learning architecture (DNN) [21].

the advancement of technology, VANET can provide several

enhanced vehicular experiences and applications, such as

road safety, traffic and road conditions, and comfort and

entertainment. VANET is a type of mobile ad hoc net-

work (MANET) that consists of vehicles with high-speed

mobility. VANET emerged from the motivation of the intel-

ligent transportation system (ITS) and wireless access in

vehicle environment (WAVE) [48].

In VANET, vehicles are equipped with sensors, a global

positioning system (GPS), multimedia systems, wireless con-

nectivity, and navigation systems. A vehicle can sense the

surroundings, such as obstacles and objects ahead (e.g., front

vehicles), by using sensors to avoid collisions for emergency

stops or slowdown. It can use immediate information on road

conditions, such as congestion or accidents that occur ahead,

from the network infrastructure. Onboard wireless connec-

tivity with the network can provide users with entertainment

and other social applications on the road. In other words,

VANET provides improved user experience and reduces road

accidents and congestion.

VANET provides network connectivity among vehicles

and pedestrians and to the network infrastructure. The com-

munication in VANETs can be categorized into the following

types [143], and they are illustrated in Figure 6.

a. Vehicle-to-vehicle (V2V) communication takes place

during data exchange from one vehicle to another without

using any infrastructure, and it is mainly used for collision

control and congestion avoidance to enhance vehicular safety

and data relay.

b. Vehicle-to-infrastructure (V2I) or infrastructure-to-

vehicle (I2V) communication and vehicle-to-RSU (V2R) com-

munication occur during data exchange between vehicles

(i.e., onboard unit or OBU) and with infrastructures, such as

BTS, routers, AP, and roadside unit (RSU). Specific traffic

information, such as the location, identification, and speed

restriction (e.g., driving speed is more than the speed limit)

of vehicles, are exchanged. The communication between a

vehicle and an RSU is referred to as vehicle-to RSU or V2R

communication.

c. Infrastructure-to-infrastructure (I2I) communication

takes place during data exchange between network infrastruc-

tures, such as BTS and RSU, for real-time traffic updates and

important information exchange.

d. Vehicle-to-person or vehicle-to-pedestrian (V2P) com-

munication takes place during data exchange between vehi-

cles and pedestrians to ensure their safety on roads.

The other types of communication schemes in the vehic-

ular network include vehicle-to-barrier (V2B) and vehicle-

to-cloud (V2C) communication. V2B is a type of wireless

communication between vehicles and the roadside barri-

ers in VANET. This type of communication is required to

mitigate run-off-road crashes that account for more than

50% of roadside crash fatalities [144]. The functions and

motivation behind V2B and related practical experiments

were provided by [144]. In VANET, V2C is communication

between RSU and the base station with the cloud for various

FIGURE 6. Basic architecture of VANET.
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purposes, such as data analysis, decision making, and traffic

prediction [145].

VANET is an extremely large-scale wireless network that

expands on entire road systems. The network topology of

VANET is extremely dynamic due to the high-speed mobility

of vehicles. For instance, on a highway, in a rural area, and a

congested area, a vehicle moves at a speed of approximately

40 m/s, 25 m/s, and 15 m/s, respectively. The network is

also very dynamic due to a diverse range of applications

with various QoS requirements. Several applications require

immediate data exchange (i.e., very low end-to-end delay and

very high reliability), such as the exchange of road safety

messages, whereas other applications require high through-

put, such as the transmission of infotainment (e.g., video or

audio streaming) messages [21].

2) WIRELESS ACCESS STANDARDS OF VANET

The two wireless access standards for VANETS are ded-

icated short-range communication (DSRC) and wireless

access in vehicular environments (WAVE). DSRC is used

for short-range communication, such as toll collection at toll

plazas, and for V2V and V2R communication. Specifically,

75 MHz bandwidth within the frequency range of

5.85–5.925 GHz is allocated for DSRC by the Federal Com-

munications Commission (FCC). This bandwidth is divided

into seven channels, in which the first three and the last three

channels (these six channels are known as the service channel

or SCH) are used for exchanging safety and non-safety

messages; the middle channel (known as the common control

channel or CCC) is used only for high-priority safety mes-

sages [146]. The first 5 MHz is used as the guard band, and

all channels are 10 MHz [147].

DSRC was specified in 2003, and it is based on the

IEEE802.11a standard for wireless local area networks

(WLANs). DSRCgenerates a large overhead and high latency

due to the high speed of vehicles and the dynamic change in a

network topology. Thus, DSRC is unsuitable for high-speed

VANET. Tomake it adaptable and acceptable, a newmodified

version of DSRC was introduced and is called WAVE; it

consists of two protocol suits, namely, IEEE802.11p and

IEEE 1609 [147].

There are other access technologies for VANET are found

in the literature. Figure 8 provides some examples of those

standards and the descriptions are in the following subsection.

3) OTHER ACCESS TECHNIQUES FOR VANET

a: WI-FI FOR VANET

Wi-Fi is one of the widely used wireless technologies. It is

very much popular due to its low cost, higher data rate,

and easy installation. DSRC and WAVE are specified based

on Wi-Fi technology. However, simple Wi-Fi or WLAN

standards such as IEEE 802.11(a/ac/b/e/g/n) can be used by

VANET as the access technology for V2V and V2I commu-

nications [148]. These techniques are also used for tracking

service of the vehicle. Wi-Fi operates in 2.4 and in 5.4 GHz

FIGURE 7. Some examples of access technologies for VANET.

frequency band with the data rate of 11 Mb/s, 54 Mb/s and

even 1 Gigabit/s (data rate of IEEE801.11b, IEEE801.11a,

and IEEE802.11ac respectively). However, as the number of

vehicles increases, the requirement of the access point will

also increase and that leads to the complexity of the deploy-

ment as well as the cost increment. Moreover, it’s shorter

coverage area (around 100 meters), low user mobility and

slow hand-over lead this standard very challenging to cope

up with the fast-fading condition of the high-speed mobility

in the VANET environment [149].

b: VISIBLE LIGHT COMMUNICATION (VLC) FOR VANET

VLC (IEEE 802.15.7) is a promising technology that can

help solve spectrum scarcity. It generally works at infrared

(IR), visible light, and ultraviolet (UV) bands and spectrum

ranges of 430–790 THz [150]. It has several advantages

comparedwith DSRC’s RF technology; for example, it has no

adverse electromagnetic interference (EMI) effect, possesses

low latency, has additional complementary bandwidth for

RF, and is less susceptible to security breaches [151]. The

applications of VLC in VANET can be found in several V2V

communication types, such as lane change information, V2B,

sensing before any crash, and traffic signaling. It can be

used as an alternative solution of DSRC when overcrowding

occurs [152]. The main disadvantages of VLC in VANET are

as follows: it requires line-of-sight (LOS) communication,

it has a very short range capability, it exerts a shadowing

effect, suffers from interference with direct sunlight, absorp-

tion, and scattering, and depends onweather conditions [151].

c: LTE AND DEVICE-TO-DEVICE (D2D) COMMUNICATION

FOR VANET

3GPP (the third generation partnership program) introduced

LTE for the V2I and the D2D communication for the V2V

communication [153]. LTE is one of the potential wireless

access technologies for VANET. It has a high data rate,

low latency, large coverage area, high penetration rate, and
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FIGURE 8. Wireless Access standards for the VANET.

high-speed terminal support [154]. It can provide high band-

width and required QoS for the infotainment of vehicles

on the road. The main constraints of LTE for VANET are

as follows: it requires infrastructure for communication that

limits the communication only to V2I, (V2V communication

via LTE is unsuitable because of the high latency) and in

a dense area, it faces the challenges of network capacity

issue because vehicles and the traditional application of LTE

create heavy traffic load. Araniti et al. in [154] provided a

detailed discussion on the applicability of LTE in VANET.

Ucar et al. also described the potentiality of using LTE in

VANET in [155].

The D2D works as an ad-hoc approach. It’s reusing gain,

proximity gain and hop gain can increase the spectrum effi-

ciency and also reduces the communication delay [153].

But due to the high-speed mobility and frequent topological

changes, it creates a challenge to get reliable V2V commu-

nications [153]. Therefore, a single communication standard

of VANET cannot meet the complex QoS requirements. For

this reason, mixed multiple communication standards such as

the combination of LTE and D2D for VANET are necessary

to improve communication efficiency [153].

d: MILLIMETER WAVE (mmWave) COMMUNICATIONS FOR

VANET

The above-discussed standards cannot provide high-speed

network connectivity to vehicles due to the high-speedmobil-

ity of the vehicles. LTE or D2D provides not more than

100 Mbps while DSRC provides 3-27 Mbps [154]. On the

other hand, the mmWave can provide more than 1 Gbps

for V2V communications [156]. The bandwidth of mmWave

ranges from 30 GHz to 300 GHz. Recently mmWave based

Giga-V2V (GiV2V) has been attracted to the researchers for

VANET communication. They have found mmWave suitable

for the requirement of the rich data of high definition camera,

LiDAR sensors and so on. This communication standard

has limited range, high penetration loss, and poor diffrac-

tion, interfere with nearby electric poles, cellular towers,

WiFi/cellular hotspots [157].

e: 5G COMMUNICATIONS FOR VANET

Spectrum scarcity, poor scalability and less supportive to

provide the required QoS in a dense network are some of the

main concerns of DSRC. As we have discussed earlier, LTE

is one of the major key technologies that is going to undertake

in vehicular communication. Therefore, it is foreseen that

5G would take place as the successor of LTE for vehicular

communication [158]. 5G adds some additional features to

the network, such as Proximity Service (ProSe), Mobile Edge

Computing (MEC), and Network Slicing. ProSe provides the

location information and the trends in communication; these

provide low latency, enhanced resource utilization, and less

congestion. In VANET, the latency for the safety message

communication should be up to 100 ms (though it is 1 ms

for the AV cases). 5G’s MEC feature can help to get such

low and ultra-low latencies. Management of the network by

logical separation is known as network slicing. As we know,

there aremainly two types of applications are there inVANET

communication: i) safety-related applications, and ii) info-

tainment (non-safety) related applications. For the safety

application, low latency and high reliability are two major

QoS requirements while for the infotainment high bandwidth
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is the QoS requirement. By performing the network slicing,

a vehicular network can be divided into two logical networks,

one for the safety applications and another for the infotain-

ment applications as they have different QoS requirements.

To promote the use of 5G for the vehicular environ-

ment, 5G Automotive Association (5GAA) was established

on 27 September 2016 [159]. They have introduced and

developed Cellular-V2X (Vehicle to everything) (C-V2X)

in which cellular network (like 5G) will be used for the

vehicular communications. They showed that 3GPP-based

cellular technology provides better performance and more

robust radio access than IEEE 802.11p [159]. 5G’s (5G New

Radio (NR)) first specification came as Release 15 of the

3GPP. In its upcoming Release 16 which is scheduled to

be published in June 2020. It has planned and target for

5G V2X which would be the advanced use cases beyond

LTE V2X [160]. They have also planned to release the

enhancement of Ultra-Reliable (UR) Low Latency Commu-

nications (URLLC). Nevertheless, large-scale deployment of

5G C-V2X might take few more years as the technology

needs to be more matured and also it is a matter of large

investment [161].

Cellular networks (LTE/ 5G) have some advantages over

DSRC such as higher bandwidth, large coverage area, and

higher data rate. However, cellular networks have some draw-

backs compared to the DSRC standard. They are given below

[161], [162]:
• V2X communication in DSRC is a peer to peer commu-

nication, it does not need any intervention of a network

operator, but in the cellular network, it needs.

• In a cellular network, data is sent through the uplink

and downlink channels to reach their destinations, but

in DSRC, data can be sent directly to the destinations.

• DSRC can operate in any place by sending messages

directly into the air, but for the cellular system, it needs

the network coverage.

• In terms of cost, DSRC is much cheaper than the cellular

network.

• In a cellular network, along with V2X communication,

there are other competitor users (such User Equipment,

UE or mobile users) to share the bandwidth, but in

DSRC, it is completely dedicated to the vehicular com-

munication.

f: BLUETOOTH FOR VANET

Bluetooth is one of the most popular standards for short-

range communications. Many developments have done since

its invention. The latest version of Bluetooth is known as

Bluetooth 5, which operates in 2.4 GHz to 2.4835 GHz

as same as the previous versions but with a higher speed

of 2Mb/s and a wider range of 200 meters [163]. As it

operates in the same 2.4 GHz ISM (Industrial Scientific &

Medical) band of Wi-Fi, Bluetooth uses frequency hopping

(FH) technique to avoid the signal congestion. Bluetooth

Low Energy (BLE) technique was specified in Bluetooth 4

but it remains in its latest version. Bluetooth can be used

as the access technology for the VANET [164]. Bluetooth

technology is mainly used in intra-vehicle applications such

as for infotainment applications, phone calls and navigation

service and so on. Due to some features such as low cost,

low power consumption, robust and low delay of this matured

technology, it can also be used for V2V and V2I communi-

cation [165]. However, the low data rate and the low range

of communication are two major constraints of Bluetooth for

the deployment in VANET environment.

g: SATELLITE COMMUNICATIONS FOR VANET

Another potential access technology for VANET is the satel-

lite radio. It has a very wide coverage area. In general, it can

be used for broadcasting purposes and as the backup tech-

nique if the cellular network cannot cover the area. Satellite

radio’s S-band operates in 2.3 GHz and Ku bands in 12 GHz

and 18 GHz range. Satellite augmentation can be used to

improve the GPS system’s performance or it be used for the

V2V communication [166]. Other applications of satellite

are reported as sensor data exchange, control center commu-

nication, vehicle tracking, real-time communication, safety

related information exchange and so on [167]. SafeTRIP is

one of the successful projects where satellite radio was used

for VANET communication [167]. Satellite radio has higher

bandwidth (90 MHz), wide coverage range, and higher scala-

bility, but it faces severe delay and large antenna size require-

ments. These issues lead to unsuitability for the VANET

environment, especially for the safety message exchange.

It can be used with the integration of other techniques such

as 4G/5G or LTE.

Table 8 shows the comparisons of the access techniques

discussed earlier.

Nevertheless, more researches need to be carried out in

these areas, especially in the combination of the standards

into a single platform (several standards to compensate each

other). CR is one of the major techniques to enable such

integration. It is discussed in the next section.

C. CR

This innovative concept was presented by J. Mitola in [5].

Later, S. Haykin extended the concept with the excellent

insight of CR, which serves as an intelligent wireless commu-

nication system, in [170]. The first standard of CR in wireless

communication is IEEE802.22.

Basically, CR is an intelligent wireless communication

system in which a transceiver can intelligently adapt to

the surrounding radio environment. The limited spectrum

resource is efficiently utilized in CR. The main concept of

CR is to use the under-utilized frequency bands opportunis-

tically by changing the transmission parameters learned in

the surrounding environment. The learning or CR process

includes obtaining information on communication parame-

ters and detecting any unused spectrum by sensing the envi-

ronments. Appropriate utilization of the spectrum is achieved

by adaptive and dynamic reconfiguration of the transmission

VOLUME 8, 2020 78069



M. A. Hossain et al.: Comprehensive Survey of ML Approaches in CR-Based VANETs

TABLE 8. Comparison of some of the wireless access technologies for VANETs.

parameters, such as transmission power, SNR value, and

modulation scheme [171].

CR consists of software defined radio (SDR) technology.

SDR is a communication system in which software is used

instead of conventional hardware such as mixers, filters,

amplifiers, modulators/demodulators, detectors, etc [172].

An important concept of CRN is the spectrum hole. It is

a band of frequencies allocated to PUs (i.e., users who are

authorized and assigned to use certain licensed channels);

however, at a certain time and in a specific location, this band

may not be used by PUs. In CRNs, the SUs (i.e., users who

use unlicensed bands and temporarily unused or underutilized

licensed bands) can utilize the spectrum hole. When any

PU uses back the spectrum hole, the SUs must release the

respective frequency bands.

CR enables SUs to sense the spectrum holes or the unoccu-

pied spectrum (or vacant spectrum), select the best available

frequency band, coordinate with other users and the spectrum

requirement, adjust to the current situation, and vacate from

the frequency band when PUs reclaim it. Then, the SU must
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FIGURE 9. Cognitive radio cycle [redrawn from [36] ].

sense for other unoccupied licensed bands, and the process

goes on. This CR cycle is illustrated in Figure 9.

Sensing the radio environment includes obtaining infor-

mation, such as channel characteristics, available spectrum,

power consumption, and local policies. Through spectrum

sensing and analysis, the SU detects the spectrum holes (or

white spaces) or the unoccupied portions of the licensed

spectrum and utilizes these holes. Through sensing, the SU

also gains knowledge of the interference level, by which

the SU can ensure that interference does not harm the PUs

when they start using the same spectrum holes. By proper

spectrum management and handoff activity, the SU selects

the best possible frequency bands and routes to achieve QoS

requirements. When the PU uses its frequency bands again,

the SUsmust release the occupied licensed bands and identify

other available bands. The last phenomenon is known as

‘‘spectrum mobility.’’

1) SPECTRUM SENSING

Spectrum sensing (SS) is the process of obtaining spectrum

usage information in a specific time, frequency, and location

by observing the surrounding radio environment. The main

task of SS is channel selection and vacant primary spec-

trum identification. Spectrum sensing is performed via three

primary approaches, namely, cooperative, non-cooperative,

and interference-based detection [173]. They are described

as follows:

a: COOPERATIVE SS (CSS)

It is also known as primary receiver detection; it is a type of

SS where SUs or CR users share their spectrum information

with each other to obtain a combined decision, which is

more accurate than an individual decision [174]. CSS can

be classified into three categories, namely, centralized CSS,

decentralized CSS, and relay-assisted CSS. CSS provides

improved sensing performance but requires the exchange of

extra overheads that result in energy inefficiency and extra

time in sensing. CSS information becomes obsolete rapidly

due to mobility and rapid changes in the environment.

b: NON-COOPERATIVE SS

Here, every SU individually performs SS and decides the

presence or absence of the PUs’ activities in a frequency

band. It is also known as primary transmitter detection.

Non-cooperative detectionmethods include energy detection,

matched filter detection, cyclostationary feature detection,

wavelet-based detection, and covariance matrix-based detec-

tion [173]. Non-cooperative detection methods incur a small

overhead; however, they depend on the network infrastruc-

ture, which may not be available at all places and may

be affected by noise, interference, and the problem of

hidden PUs.

c: INTERFERENCE-BASED DETECTION

FCC imposes a threshold value of interference to PUs.

CR users must limit their transmission power, along with

estimated noise power, to conform to the threshold value

of the interference temperature level [38]. In many cases,

measuring the interference temperature and comparing it with

others is practically infeasible.

2) SPECTRUM ANALYSIS AND DECISION

After sensing and learning about the vacant primary spec-

trum, the best frequency band is selected based on interfer-

ence, path loss, wireless link error, and link-layer delay [33].

3) SPECTRUM SHARING

Spectrum sharing is the management of spectrum distribution

among CR users by maintaining QoS. Spectrum sharing has

several classifications. On the basis of spectrum utilization,

it can be classified as unlicensed and licensed. All users have

the same priority in unlicensed spectrum sharing, whereas

PUs have higher priority than SUs in licensed spectrum

sharing. SUs can access both types of spectrum sharing only

when PU is absent. Spectrum sharing can also be classified

as centralized and distributed. A central node controls spec-

trum allocation and access in centralized spectrum sharing,

whereas every single node controls the same in distributed

spectrum sharing. Cooperative and non-cooperative are other

types of spectrum sharing used in CR.

Spectrum sharing based on access technology is of three

types.

a: INTERWEAVE SPECTRUM SHARING (ALSO KNOWN AS

OPPORTUNISTIC SPECTRUM ACCESS (OSA))

The SUs find spectrum holes that are not occupied by the

PUs and then use the vacant frequency bands restrictively.

Thus, the co-existence of PUs and SUs is not allowed here.

The SUs must vacate the frequency bands as soon as the PU

reappears [175].

b: UNDERLAY SPECTRUM SHARING

The SUs are allowed to use licensed frequency bands together

with the PUs as long as the SUs’ signal power remains below

the predefined acceptable threshold value of interference
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FIGURE 10. Taxonomy of the applications of ML in CR-VANET.

temperature at the receivers of all PUs. In general, the SUs

utilize spread spectrum techniques to keep their trans-

mission power lower than the interference temperature

threshold [175].

c: OVERLAY SPECTRUM SHARING

PUs and SUs can transmit over the same spectrum simultane-

ously on the condition that the SUs must help the PUs’ trans-

mission via cooperative communication, such as cooperative

relaying or coding techniques [176].

4) SPECTRUM MOBILITY

To ensure seamless communication, the SUmust switch from

one frequency band to another vacant band. This spectrum

switching is known as spectrum mobility. It is required when

the PU reappears in a frequency band and the link becomes

broken (e.g., a usermoves out of the transmission range due to

mobility). Spectrum handoff and connection management are

the two main processes in spectrummobility. Several handoff

strategies, such as non-handoff, pure reactive handoff, pure

proactive handoff, and hybrid handoff, are available. CR tech-

nology can adapt to the surrounding radio environment by

adjusting the operating parameters, such as carrier frequency,

transmission power, and modulation scheme [5].

VANET provides a wide range of applications, such as

road safety, congestion control, self-driving, ubiquitous con-

nectivity, and entertainment. CR is expected to become an

integral part of VANET in the coming years for solving the

spectral scarcity issue due to the rapidly increasing number of

vehicles. Various challenges and obstacles must be addressed

by this promising combined technology. ML is expected to

be applied in this amalgamation to solve such challenges and

issues.

III. APPLICATIONS OF ML IN CR-VANET

ML can be used to address several issues of CR-VANET, such

as ensuring road safety and reducing congestion, improving

security and privacy, and enhancing routing and infotain-

ment. This section discusses such applications of ML in

CR-VANET. Figure 10 shows the taxonomy of the applica-

tions of ML in CR-VANET.

Figure 11 shows how ML can be used in a CR-VANET

scenario. Except for DSRC, which is allocated for VANET,

other frequency bands (or channels) from TV, cellular, or

Wi-Fi networksmay be freely used by vehicles. Every vehicle

must obtain information on vacant channels. Suppose that n

channels are available in TV networks, and m and p channels

are available in Wi-Fi and cellular networks, respectively.
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FIGURE 11. Machine learning is incorporated into cognitive radio-based VANET.

A car must sense the spectrum to identify the best available

vacant channel. For example, after sensing all the channels in

the spectrum, a car user finds that the k th channel is the best

possible vacant channel. Thus, this channel is selected and

used for data exchange in this car. Figure 11 also shows that

different data requirements are needed by different vehicles.

Several vehicles need to exchange real-time data, such as data

on GPS, radar, camera, LIDAR, and sonar, whereas other

vehicles need to exchange entertainment data or safety mes-

sages. Hence, different data types have different QoS require-

ments, such as safety messages that need to be exchanged

without unacceptable delay. In summary, multiple vehicles

on the road have different types of QoS requirements and

exchange different volumes of data.

Sensing all these channels every time is highly ineffi-

cient because it consumes much time and energy. ML can

be applied here for fast and improved cognitive processes.

By using ML, the car can learn about the vacant channel at

a specific place and time and hence does not need to sense

all the channels again when it passes the same area at the

same time. This approach reduces network overhead, delay,

and energy consumption. ML also helps adjust CR-VANET

based on the heterogeneous QoS requirement, the data vol-

ume requirement, and the priority of various data types.

A vehicle may provide wrong information to other vehicles

or pretend to be PU. This security issue can be solved by

using ML. In a minimally congested zone, a vehicle can

obtain ubiquitous connectivity for infotainment. However,

in a seriously congested zone, a vehicle may not obtain

the required information due to bandwidth scarcity; conse-

quently, road accidents could occur. For example, a vehicle

that is in front must send an immediate safety message to

the vehicle behind it. However, the bandwidth is scarce, and

the message is not sent; as a result, accidents occur. ML can

accelerate such action by vehicles. The movement patterns

of pedestrians can also be learned to avoid accidents. ML is

the best tool to learn such patterns. Moreover, a vehicle

can take the best route from the source to the destination,

thereby avoiding congested roads, by determining the pat-

tern of traffic conditions. ML can be used here for fast and

improved decision making. Further details on these issues

will be discussed in the following subsections.

Several issues (shown below) should be addressed in

CR-VANET.

A. ML IN SPECTRUM SENSING AND MOBILITY

MANAGEMENT IN CR-VANET

This subsection discusses the usage of ML for spectrum

sensing and spectrum mobility management in CR-VANET.

1) SPECTRUM SENSING

Only 75 MHz bandwidth is allocated for VANET. The same

allocation applies to European countries. Japan has allo-

cated 10 MHz bandwidth for ITS in 700 MHz bands along

with 10 MHz for DSRC at 5.8 GHz bands. An advantage

of CR-VANET over other traditional CRN is that it has

a DSRC channel in which stable CCC can be formed for

sharing spectrum sensing information among vehicles [18].

Nevertheless, this bandwidth is insufficient to accommodate

the huge demand for growing VANETs. Dynamic spectrum

access (DSA) of CR is a promising solution to overcome

spectrum scarcity. Several TV channels are currently under-

utilized, such as ultra-high frequency (UHF) that ranges
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between 300 and 3 GHz and very high frequency (VHF)

that ranges between 30 and 300 MHz, due to the aggres-

sion of the digital TV. Therefore, FCC allows these TV

white spaces (TVWS) to be used by SUs (i.e., vehicles)

through CR (e.g., IEEE802.22) when these channels are

not in use. Wi-Fi’s 2.4 and 5.8 GHz are the two other

options for unlicensed users. However, the coverage range is

small, and they are unsuitable for vehicles moving at more

than 20 m/s [177]. FCC also proposed Citizens Broadband

Radio Service (CBRS) to overcome spectrum scarcity issues.

CBRS is a three-tiered spectrum-sharing scheme for the

3550–3700 MHz band [178].

Several studies on CR-VANET have dealt with TVWS and

Wi-Fi signals for DSA [179]. Figure 11 shows the typical

CR-VANET scenario. Vehicles can communicate with each

other or with RSU by using the dedicated DSRC link or

TVWS, Wi-Fi, or even cellular network links with the help

of CR.

Figure 12 shows some of the challenges of SS in

CR-VANET where ML can be applied. One of the challenges

of CR-VANET is that channel availability depends on the

presence of PUs and vehicle speed. The functions, such as

spectrum sensing and spectrum switching, occur frequently

in CR-VANET. Therefore, spectrum availability can change

dynamically, and spectrum sensing must be performed con-

tinuously to detect spectrum holes. The network environment,

which is characterized by wireless propagation channels,

network topologies, and traffic dynamics, for a vehicle, can

change rapidly due to high-speed mobility. ML can be used

to learn about the network environment so that rapid changes

would not cause any problem to vehicles. Several Bayesian

models (e.g., hidden Markov models), RL, DNN, or artificial

neural networks can be used for vehicles’ adaptation to the

dynamicity of the complex environment [180], [171].

FIGURE 12. ML can be applied to tackle the challenges of spectrum
sensing in CR-VANET.

A vehicle might need to exchange reliable safety-critical

messages that are strictly delay-sensitive. Meanwhile, a vehi-

cle might exchange entertainment data that are delay-tolerant.

Here, priority is provided to the first vehicle. In sum-

mary, different vehicles have different QoS requirements.

ML approaches can be applied to determine the requirements

of services by vehicles and provide priority in spectrum

sharing accordingly.

Another challenging issue in spectrum sensing is security

threats or attacks. Various security attacks, such as jamming,

SS data falsification, primary user emulation, or bias attacks,

affect spectrum sensing in CR-VANET. Further details on

these attacks and their mitigations are described in the fol-

lowing subsection III.B. ML methods are useful in detecting

malicious attacks and contribute to mitigation [6]. Another

challenge in SS is the dynamicity of PU activities that affect

the performance of spectrum sensing [19]. The high-speed

mobility of vehicles and PU spectrum occupancy activities

exert considerable effects on the probability of detection.

ML can be a powerful tool to model PU activity and solve

these issues. The authors in [181] used deep learning to

predict PU activities. This learning is utilized by the SUs for

appropriate spectrum sensing, which reduces the false detec-

tion of PUs’ presence. In CSS, several vehicles provide sens-

ing information to the fusion center, to the RSU, or to other

vehicles. Appropriate synchronization should exist between

these sensing data. The three types of fusion techniques are

as follows: (i) hard fusion (AND rule, OR rule, etc.), (ii) soft

fusion (maximum ratio combining), and (iii) learning-based

fusion. Learning-based fusion by using ML outperforms

other fusion techniques due to the rapid adaptation to the

environment and high predictive capability [182]. In the same

study, the authors used K-means clustering, Gaussian pro-

cess, SVM, and weighted KNN learning methods to imple-

ment CSS. They found that learning-based fusion is better

than conventional CSS. Therefore, ML can be very useful

in synchronizing various sensing results provided by several

vehicles.

ML can be utilized to provide dynamic information

exchange with minimum overhead and delay and for

real-time resource allocation (RA) with low complexity.

Instead of sensing the entire available channel, a portion

of the channel can be sensed to find the spectrum hole,

thereby providing energy efficiency to the network. By using

ML, a vehicle can learn the portion to be sensed even with-

out sensing the channel that can be accessed opportunis-

tically [183]. ML reduces the spectrum sensing time and

increases the probability of PU detection while reducing the

probability of false alarm (inaccurately assuming the pres-

ence of PU). Through collaboration, vehicles can exchange

spectrum availability information to improve their spectrum

knowledge. ML can help proliferate this learning as well.

Several studies were conducted on spectrum sensing in

CR-VANETs by using ML methods. The authors in [15]

discussed the use of variousML approaches in spectrum sens-

ing issues of CR-VANETs. They discussed RL, case-based

reasoning, SVM, and ANN in terms of spectrum sensing

along with several challenges and opportunities.

In [183], the authors showed how ML can be used to

obtain energy-efficient spectrum sensing. When the number

of channels is sensed, more time and energy are required.

In full sensing (without using ML), CR senses every target
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channel on a random basis. In restricted sensing, CR only

senses the best available channels learned using RL, thereby

providing enhanced bandwidth efficiency. Minimum sensing

is a scheme in which sensing can be stopped if the avail-

able spectrum is fully partitioned by learning. Here, after

1900 events, the total energy consumption was only approx-

imately 1.72% of the full sensing scheme, assuming that

energy consumption increases with the number of channels

sensed.

In [18], the authors used data mining with historical data

and ML approaches of the Dirichlet process for spectrum

sensing in CR-VANETs. They used AP at the start and end of

the road to collect and update sensing data from vehicles for

improved spectrum sensing. In [66], a Bayesian classifier was

used for centralized spectrum sensing, and in [97] and [184],

non-parametric Bayesian was used for efficient cooperative

spectrum sensing. Game theory approaches were utilized

in [185] and [186] for the channel selection issue. In [177], the

author proposed an architecture by using RL and case-based

reasoning for VANET to enable automatic learning of the

radio environment by vehicles. By using several ML tools,

the authors in these studies obtained very good performance

in spectrum sensing as evidenced by a high probability of PU

detection and low probability of false alarm.

In [187], the authors used deep Q-learning to design an

optimal data transmission scheduling scheme in CR-VANET

for minimizing transmission costs. They used cache mem-

ory for the decision. Their scheme’s convergence took place

after 13,000–20,000 iterations at 28 m/s vehicle speed.

Morozs et al. [188] proposed a scheme that integrates dis-

tributed Q-learning and CBR to facilitate several learning

processes running in parallel. The RLmethod was considered

for the CR network with RF energy harvesting in [189]. The

proposed scheme was used for optimum switching between

the transmit mode, energy harvesting mode, and receiving

mode of the SUs. (To know more about energy harvesting

and related technologies, refer to [190]). In [191], the authors

proposed a two-stage learning algorithm to reduce the chan-

nel sensing period. They used RL and the Bayesian method

for learning. Their algorithm selected the best spectrum by

using RL and multi-armed bandit and then identified the

interval duration between two sensing operations by using the

Bayesian method. They aimed to reduce the overall sensing

time by determining how much time can be skipped without

sensing the channel again for any PU presence.

Table 9 summarizes these studies and other relevant

research.

2) SPECTRUM MOBILITY MANAGEMENT

Spectrummobility management, which refers to the spectrum

handoff or stay-and-wait phenomenon, is one of the major

tasks in CR-VANET. Spectrum handoff means that the SU

has to switch to another vacant spectrum to release the cur-

rently using spectrum when any PU appears or reappears.

Stay-and-wait refers to the situation in which the SU pauses

its transmission for a moment until the condition improves

again [192].

For a smoother transmission of safety and non-safety

messages, appropriate spectrum mobility management is

required. It also has to have a long-term impact on net-

work performance. Several challenging issues (e.g., handoff

in dynamic radio environment or handoff in multiple radio

access networks) can be tackled using ML. In [193],

the authors focused on spectrum adaptation (SUs’ trans-

mission behavior adjustment, such as packet transfer rate)

and spectrum handoff. For the spectrum adaptation issue,

they used the raptor codes. For the handoff issue, they used

transfer ML in which a learned node teaches or transfers

its knowledge to the learning node. This transfer learning

reduces the learning time and increases the converge rate.

They used transfer actor-critic learning (TACT) for this issue.

Here, a ‘‘student’’ or learning SU learns from the ‘‘teacher

or expert’’ SU regarding the spectrum decision. In [192],

the authors used TACT for spectrum mobility management.

They obtained better results compared with the results of

the traditional Q-learning approach. Their primary goal was

to design an intelligent spectrum handoff and stay-and-wait

decision for rate-less multimedia transmissions in dynamic

CRN. They calculated the channel utilization factor to gain

knowledge on channel quality and used CDF-enhanced raptor

codes to adapt to dynamic channel conditions.

B. ML IN THE SECURITY ISSUES OF CR-VANET

Security is one of the most serious concerns in CR-VANET.

Wrong information provided by a malicious vehicle or com-

promised RSU to legitimate vehicles causes severe damages.

For example, wrong information does not allow a vehicle

to perform an appropriate projection of the vehicles ahead

and might cause accidents. A vehicle can provide wrong

information regarding the presence of PU to other vehicles for

the exclusive use of the spectrum. A pedestrian might obtain

inaccurate information from the vehicle, make an inappropri-

ate decision, and eventually face an accident. Several types

of attacks occur in CR-VANET scenarios. Similar to other

networking systems, the security issues of CR-VANET can

be classified into the following major areas [195], [196]:

1) Confidentiality: Communication should be secret, and

only the sender and genuine receiver should understand the

message. Third-party users cannot intercept or understand the

message.

2) Authentication: The identification of legitimate users is

ensured.

3) Authorization or access control: It controls the rights,

privileges, and access domain of users.

4) Non-repudiation: The sender cannot deny sending the

message, and the receiver cannot deny receiving it.

5) Data integrity: The message sent by the sender should

not be altered.

6) Network availability: The network and its services

should always be available for users.
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TABLE 9. ML for spectrum sensing in CR-VANETs.
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TABLE 9. (Continued.) ML for spectrum sensing in CR-VANETs.
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7) Privacy: Private and confidential data should not be

available to the public.

Alexandros et al. in [197] surveyed several security threats

in CR and CRN and their mitigation techniques. The authors

in [6] described numerous security threats encountered in the

CR environment. They reviewed the usages of RL to solve

these security issues. Layerwise taxonomies and descriptions

of various security aspects of CRN were presented in [198].

Engoulou et al. provided state-of-the-art security issues and

challenges in VANET in [196]. Various routing-related secu-

rity issues were surveyed in [199].

Other survey studies based on the security issues of

VANET are available, such as [200], [201], and [202].

A summary of several important security threats identified

in the literature on the CR-VANET scenario is presented

in Table 10. Several attacks are found only in CR, others are

only in VANET (indicated in the table), and a few occur in

both networks.

Figure 13 shows a typical scenario of PUEA in the

CR-VANET scenario. For example, the TV spectrum is used

by a vehicle for DSA purposes if no DSRC is available.

An attacker wants to use this vacant TV spectrum selfishly.

For this reason, it pretends to be a PU and sends a similar

signal of PU to the SUs. The vehicles or the SUs consider this

the presence of a PU and then release the spectrum to avoid

interference. After the legitimate SUs release the spectrum,

the attacker grabs the chance to use this vacant TV spectrum

selfishly.

FIGURE 13. PUEA in CR-VANET.

ML can play a crucial role in mitigating these security

issues. The pattern of the attacks or the attackers can be

detected using ML. In [16], the authors proposed a two-level

authentication of PUs and used SVM to train the system to

detect the PUEA attacker. Li and Peng [17] used an unsuper-

vised ML approach to solve PUEA and SSDF attacks. They

assigned an adaptive identity value for identifying each SU

to overcome the identification error and increase reliability.

A malicious traffic detection technique that uses an AI-based

jamming detector was proposed in [204]. The authors used

deep learning to ensure malicious-free cooperative awareness

message (CAM) communication.

To mitigate jamming attacks, learning about the radio

channel model and the methods used for jamming is required.

Otherwise, it becomes a challenging and complex task.

According to previous observations, a user can learn an opti-

mal policy by usingML to address such a challenge. In [220],

the authors proposed a 2D anti-jamming communication

scheme for CRN. In their scheme, an SU exploits the spread

spectrum and user mobility to address this attack. They used

deep Q-network or learning (DQN) to enable an SU to learn

the optimal frequency hopping policy and decide whether to

leave the jamming area. In [221], Xiao et al. formulated

the power interaction between two SUs and a jammer as

an anti-jamming transmission game. Given that the learn-

ing process of Q-learning is slow, they used Q-learning and

‘‘win or learn fast’’ principle with the hill-climbing principle

(WoLF-PHC), which is a multi-agent scenario of Q-learning,

to mitigate the jamming problem with the help of the relaying

concept. The authors in [222] discussed the exploitation of the

MDP model and the Q-learning algorithm to solve jamming

attacks. They also emphasized on the Q-learning algorithm

to make it achieve rapid convergence. Another approach

was found to accelerate the learning speed of Q-learning

as a jamming mitigation technique in CRN in [223]. The

authors usedQV learning (a value function-basedQ-learning)

and SARSA to replace minimax-Q learning (a variation of

Q-learning). Q-learning was also used to mitigate jamming

attacks in [224], [225].

RL can be used to solve security issues related to the

cooperation in CRN, such as Byzantine attack, SSDF, and

CCDA. The authors in [226] used RL to teach each CR

user to autonomously decide with whom to cooperate by

learning cooperator behavior. The RL algorithm defines the

appropriateness of the available cooperators and selects the

most suitable ones to cooperate with. In [227], a reputation

scheme was proposed with the help of the RL algorithm and

on-policy Monte Carlo method to avoid malicious users.

In VANET, an attacker can inject wrong information

(it may be spectrum-related or routing-related). The attacker

can also compromise the roadside sensors to inject faulty

data to legitimate vehicles. As a result, vehicles might mis-

calculate the safe spacing among them, which and eventually

leads to accidents. For example, as illustrated in Figure 14,

the attacker injects malicious code to the sensors to compro-

mise them. As a result, these sensors and the attacker send

the wrong message to the bus. The bus miscalculates the

safety spacing and might cross the safety spacing with the

ambulance, eventually colliding with it.

Several studies, such as [228], were performed to solve this

issue. The authors focused on wrong message detection and

proposed to impose a fine onmisbehaving vehicles. However,

in these algorithms, the attackers’ actions are assumed stable.

This is unsuitable for practical implementation. ML can be

used by the vehicle to learn about the attackers’ actions based

on their time-varying observations [229]. The pattern of the
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TABLE 10. Various security threats in CR-VANET [6], [203].
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TABLE 10. (Continued.) Various security threats in CR-VANET [6], [203].

FIGURE 14. Security attack in CR-VANET scenario.

attacks can be tracked by using ML. Therefore, if any similar

situation occurs, the attack can be easily detected. Similarly,

the attacker’s history can be recorded; therefore, if the same

vehicle sends any messages, detecting and discarding such

messages would be easy. The authors in [210] proposed an

ML approach to classifying various misbehavior in VANET.

They used concrete and behavioral features of each vehicle

that transmits safety messages. Their designed framework

was used to differentiate a malicious vehicle from a legitimate

one. Their scheme can be adopted to solve several security

issues, such as Sybil, position forging, and identity spoofing

attacks. They analyzed the features of vehicles, such as their

geographical position, accepted range with respect to RSU,

speed deviation, received signal strength, packet drop and

capture ratio, and error rate. Another misbehavior detection

scheme using the ML method was introduced in [230]. The

authors used the feed-forward back-propagation ANN clas-

sification method in their proposed scheme. Zhang and Zhu

proposed a privacy-preserving ML-based collaborative intru-

sion detection system (PML-CIDS) architecture [231].

This approach enables vehicles to collaboratively exchange

information and share knowledge to detect the misbehavior

of malicious vehicles. Tomitigate several malicious attacks in

VANETs, SVM was used in [77]. The developed framework

can determine the boundary between malicious and legiti-

mate vehicles. The authors modeled contextual information,

such as velocity, temperature, and altitude, as SVM’s feature

vector. The authors in [232] used KNN and SVM to detect

and classify the misbehavior of malicious vehicles. Another

misbehavior detection approach using SVM was proposed

in [233]. An IDS was developed by using ANN and fuzzified

data to detect black hole attacks [234]. The system, which can

detect misuse and anomaly, utilizes features extracted from

the trace file as auditable data.

In [235], the authors proposed a collaborative secu-

rity attack detection mechanism by using multi-class SVM

to detect various types of attacks dynamically. In their

scheme, a group of vehicles analyzes the incoming flow

and sends flow information to the controller, which trains

the multi-class SVM in a centralized manner. Subsequently,

the controller creates an SVM classifier and directs it to

all vehicles. As a result, the vehicles can classify the types

of attacks from the new incoming flow. This approach

can protect against any attack. In [206], the authors used

supervised learning to mitigate DoS or DDoS attacks. They

employed two open-source network intrusion detection sys-

tems (NIDS), namely, Bro and Corsaro, and two supervised

ML approaches, namely, classification and regression tree

(CART) decision tree and naive Bayes classifier. Aneja et al.

proposed a hybrid IDS using ANN as a classification engine

and a genetic algorithm as an optimization engine for feature

subset selection to mitigate flooding attacks [236]. Yang et al.

proposed a Sybil detection scheme based on mobility similar-

ities among vehicles by using threeML classificationmodels,

namely, naive Bayes classifier, SVM, and decision tree [237].
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They extractedmobility features from vehicle trajectories and

trained to differentiate the attacker from an honest vehicle.

To counter location forgery, they utilized base stations (BS)

as the location certifiers.

In [238], the authors used hotbooting (a type of transfer

learning) policy hill climbing (PHC, a model-free RL tech-

nique for the mixed-strategy game) based unmanned aerial

vehicles (UAVs) to relay messages of vehicles to mitigate

jamming attacks in VANET. A location verification sys-

tem using DNN was proposed in [239] to mitigate several

routing falsification attacks, such as position forging attack,

wormhole, and gray hole. The authors proposed their scheme

based on time of arrival (ToA) measurements from several

verifying BS in vehicular networks. Another study [240]

used swarm algorithms of AI to detect several routing-related

security threats. In [241], a physical layer rogue edge detec-

tion (RED) scheme was proposed by using a Q-learning-

based authentication system to mitigate MITM attacks. The

authors used ambient radio signals and the received signal

strength indicator (RSSI) of packets, by which they modeled

the RED process as a dynamic spoofing detection game.

Here, Q-learning was used to enable a vehicle to achieve

the optimal authentication policy. Security is one of the most

serious concerns and challenges in the CR-VANET scenario

because spectrum sensing and data transmission attacks can

occur simultaneously. CR-VANET is more vulnerable than

CRN and VANET individually. Therefore, the combined mit-

igation policy should be considered. A very small error or

minor mistake can lead to a massive accident. A vehicle

might collide with another vehicle just because of wrong

message reception or when compromised. ML can be used

with CR-VANET to alleviate several security threats. It can

be utilized to identify malicious vehicles, the misbehavior of

vehicles, and the pattern of attacks and for original and fake

message identification.

Table 11 summarizes several of the works mentioned

above.

C. ML IN ROAD SAFETY

This subsection discusses various road safety aspects where

ML can be applied to ameliorate the overall performance.

Figure 15 shows various applications of ML to ensure road

safety.

VANET is mainly applied to reduce road accidents and

fatalities. Every year, approximately 1.25 million people die

due to road accidents. A report showed that around 90% of

these accidents is due to human errors (speeding, not detect-

ing the risk, slow response of drivers, abrupt lane change,

drowsiness, and so on). Therefore, 90% of road accidents

can be avoided by using several intelligent vehicle assistant

technologies [242].

A total of 60% of road accidents can be avoided if the

driver receives the safety message even before 0.5 seconds

of the accident [243]. ML has significant contributions to

advanced driver assistance systems (ADAS) for the AV

system. Intelligent vehicles using ML can inform the driver

FIGURE 15. Various usages of ML to ensure road safety.

or warn of severe dangerous situations prior to an accident.

Safety messages might not be exchanged due to the shortage

of DSRC. Therefore, dynamic spectrum access is required to

allocate an emergency spectrum for safetymessage exchange.

The integration of CR and VANET plays a crucial role in

reducing road accidents. However, the CR process (sensing,

selecting, adapting, and mobility) should be rapid to ensure

on-time safety message reachability. In this regard, ML is

the best candidate to ensure such QoS for safety messages.

Falsified information, jamming, and other security issues also

lead to road accidents. ML is the optimal counterpart to tackle

these security threats (discussed in the last subsection) and

eventually contributes to reducing road casualties.

1) BARRIER DETECTION, CRUISE, AND LONGITUDINAL

CONTROL

Obstacle detection is one of the essential elements to reduce

road accidents. The position of obstacles or any other front

or back vehicles can be measured by using various sensors

(RADAR, LIDAR, and camera) embedded into cars, roadside

sensors, and GPS. A collision can be avoided if a safe space

exists between vehicles. By gathering data from these sources

and by using ML, a warning message can be sent to the driver

or vehicle (for AV) for emergency braking or slowing down

(or steering to the left or right) if any barrier or obstacle is

encountered.

Figure 16(a) shows that vehicle A senses its surroundings

for obstacle detection. If A speeds up, then it would collide

with C; if it suddenly brakes, then it would collide with B.

Besides, it cannot go left or right due to other obstacles. In this

scenario, the speed of A should be balanced to provide a

warning message to B and keep a safe distance from it.

ML is useful in training vehicles in these scenarios.

In [244], the authors proposed a general framework for

robust on-road pedestrian and vehicle detection, recognition,
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TABLE 11. ML to mitigate security threats in CR-VANET.
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TABLE 11. (Continued.) ML to mitigate security threats in CR-VANET.
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TABLE 11. (Continued.) ML to mitigate security threats in CR-VANET.

FIGURE 16. (a) Barrier detection, (b) emergency braking, (c) lane changing, and (d) signal detection.

and tracking based on a deep learning approach. For their

framework, they initially produced a robust disparity map

under various driving conditions by using the adaptive U-V

disparity algorithm (refer to [245] for details on U-V dis-

parity). After detection, they classified obstacles into vehi-

cles, pedestrians, and unknown objects by using the tile

convolution neural network. Then, another deep learning

algorithm was developed to track detected obstacles in the

consequent frame. Dairi et al. in [246] proposed a detection

scheme by using a stereovision-based method for an urban

vehicular network. They used a deep-stacked auto-encoder

(DSA) model with the KNN classifier to accurately and

reliably detect the presence of obstacles. They utilized three

real-life datasets, namely, the Malaga stereovision urban

dataset (MSVUD), the Daimler urban segmentation dataset

(DUSD), and the Bahnhof dataset. Another comprehensive

work is [247]. Here, the authors proposed a learning-based

driving event classification method by using decision trees

and linear logistic regression to detect obstacles.

Figure 16(b) shows that vehicle C detects a pedestrian in

front; thus, it needs to perform emergency braking. However,

if C presses the brake, it would collide with A and A with B.

Therefore, C should send a warning message to A to slow

down or to brake, and similarly, A should send the message

to B. These emergency braking and warning message transfer

should be performed first. This situation can be trained to

the vehicles by using ML. As a result, they receive an auto-

matic warning message to brake or to slow down. In [248],

Chae et al. used DQN to design a system for autonomous

braking. Their system automatically decides whether to apply

the brakewhen facing the risk of an accident by using obstacle

information obtained by sensors. In their proposed system,

the reward is achieved when the vehicle eliminates the danger

as early as possible.

Adaptive cruise control (ACC) is a system where the vehi-

cle’s speed and acceleration are maintained automatically.

This is done based on the obstacle ahead or to keep a safe

distance from the front vehicle. Initially, the system sends a

warning message to the driver (for the driving vehicle), and

if the driver takes no action, then it automatically adjusts the

speed. For a driverless vehicle, the entire process is executed

automatically. In [249], a cooperative ACC (CACC) system

with the help of RL was proposed. The authors emphasized

on V2V communication to exchange the safety message

for ACC. They used RL to design a controller for the safe

longitudinal following of a front vehicle. Another CACC

work is found in [250]. Here, the authors used supervised

learning (trained with real driving data) and actor-critic RL
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(in this RL, the value function and action policy are approxi-

mated and suitable for problemswhere themodel information

is minimal; it is also known as neural dynamic programming)

to obtain an adaptive system. Zhu et al. proposed an adaptive

longitudinal control method by using actor-critic RL in [251].

2) LANE CHANGING ASSESSMENT

Another reason for road accidents is uncontrolled lane chang-

ing and keeping. This lateral control is highly required in

road safety. Figure 16(c) shows that car A should change lane

from the current lane to the left to maintain its speed and

avoid collision with C. In the autonomous car system, this is

performed by assessing the obstacles surrounding the car and

other vehicles’ position, speed, acceleration rate, and steering

torque. A vehicle might have to change its lane to free that

lane for an ambulance or emergency vehicle. Further details

on this issue can be found in [252].

Several studies have found that variousML approaches can

be used to train vehicles in terms of lane changing. In [253],

the authors used DQN to train a vehicle to handle speed,

overtaking, and lane change decisions. They compared their

work with the reference model consisting of IDM (used for

modeling the longitudinal dynamics of a vehicle) andMOBIL

(used for lane changing decision) models and found that their

work is better. Kim et al. used ANN and SVM to design an

algorithm for the accuracy improvement of the classification

of the lane change intention of a driver [254]. They used

various onboard sensors for the basicmeasurements. In [255],

SVM was used to classify the driver’s intention of lane

changing. The authors in [256] compared the accuracy per-

formance of various supervised learning approaches, such as

SVM, naive Bayes, logic regression, nearest neighborhoods,

decision trees, extra trees, and random forest classifiers,

in lane changing modeling.

3) MITIGATING SECURITY ISSUES

A security vulnerability is one of the major reasons for road

accidents, especially in autonomous smart vehicles. A vehicle

might be affected by wrong information due to various secu-

rity attacks. As a result, it might take inappropriate decisions

(inability to detect obstacles, a miscalculation in longitudinal

and lateral control, and dangerous lane changing) that lead to

severe road casualties. ML can play a significant role in miti-

gating the security threats that affect road safety. Section III.B

has discussed these security threats and the usages of ML for

their mitigation.

4) DRIVER VIGILANCE MONITORING

One of the main causes of road accidents is the distraction of

drivers. Appropriate intelligent driver vigilance monitoring

is mandatory to secure roads. In this monitoring system,

cameras and embedded sensors are used to monitor real-time

facial expressions of drivers. The data are processed to assess

drivers’ emotions (stress, anger, etc.) or whether or not

they are sleepy On the basis of this assessment, an intel-

ligent vehicle takes appropriate actions (may send warning

messages, slow down the car, or slowly park on the roadside

safely) [257]. ML is a tool to train vehicles regarding drivers’

vigilance monitoring. Similar to [258], the authors used

SVM with Hu invariant moments to design a real-time eye

detection method. This method can assess whether or not the

driver focuses on the road (by judging eye movements and

openness). If the driver is not focused, then the vehicle would

send an alarm to the driver. Ding et al. proposed a method to

detect drivers’ postures by using pressure sensor data and the

SVM classifier [259]. They placed pressure sensors between

the driver and the driver’s seat to collect data. The method can

assess a driver’s movement and activities (whether or not the

driver is drowsy or inattentive to driving) by classification.

In [260], an SVM-based drowsiness prediction method was

proposed. The authors used eyelid-related parameters to

design their prediction models.

5) ROAD SIGN AND TRAFFIC SIGNAL IDENTIFICATION

Appropriate identification of road signs and traffic signals is a

key issue in road safety. If the detection is inaccurate, then the

vehicle will take inappropriate actions that lead to accidents.

Therefore, accurate identification and exact action based on

road signs or signals are crucial to ensure road safety. For

example, as shown in Figure 16(d), if car A cannot detect the

red signal and does not stop, then it would collide with B.

Then, car C has to detect the speed breaker in front of it to

avoid any casualty. For AVs, road signs and traffic signals

must be appropriately learned; otherwise, severe accidents

would occur.

In [261], the authors used ANN for real-time traffic sign

classification and identification. They classified signs into

different shapes (triangle, square, etc.) and colors. Then,

based on the shape and color combination, they classified

signs into different classes, such as danger, information,

obligation, or prohibition. After appropriate sign detection,

it sends an alert to the driver or vehicle to take the appro-

priate action. A convolutional neural network (CNN, a deep

learning method) was used to recognize traffic signs in [262].

In [263], a traffic light and sign detection mechanism were

designed. The authors used modified CNN in their real-time

experiments and a mini-batch selection mechanism to train

vehicles on a traffic light and sign datasets simultaneously.

6) SAFETY MESSAGES AND QoS

These accident reduction schemes are dependent on safety

message exchange. If a message does not reach the driver

or the system, then the vehicle cannot operate at all. For

example, if the vehicle does not receive any safety message

from the front vehicle to slow down or to stop, then it will

collide with it and result in casualties. Safety messages are

of two types, namely, alarm and beacon; such messages

must be reliable and have very low latency. For safety mes-

sage exchange, the latency must be less than 100 ms [264].

However, in high-traffic situations or serious traffic conges-

tion in urban areas, the allocated DSRC might be exhausted.

Therefore, the CR concept was introduced. Under this

VOLUME 8, 2020 78085



M. A. Hossain et al.: Comprehensive Survey of ML Approaches in CR-Based VANETs

condition, a vehicle searches for a vacant spectrum and

accesses this spectrum opportunistically. Therefore, CR with

VANET plays a very significant role in accident reduction.

A vehicle must execute the CR process in a fast mode because

the message latency is very low. The timely delivery of safety

messages is a challenging task in VANETs due to vehicles’

high-speed mobility and random traffic environments. ML is

an effective tool in this regard. We have discussed the roles

of ML in spectrum sensing issues in Section III.A. We have

observed that several ML methods are used for fast spectrum

sensing so that a vehicle would receive the spectrum rapidly

and can communicate without any delay. We now focus on

other issues related to safety messages and the roles of ML in

such.

In [13], the authors addressed safety and QoS concerns

in a V2I scenario. They used DQN that learns an energy-

efficient scheduling policy from inputs corresponding to the

characteristics and requirements of vehicles located within

the range of an RSU. Aside from having road safety and

acceptable QoS, their policy is expected to prolong the life-

time of battery-powered RSU. In [265], the authors pro-

posed a data collection protocol by using the distributed

Q-learning algorithm. They used the relaying technique in

their proposed scheme. Unnecessary network overhead can

cause congestion in the radio network of VANET. Therefore,

message exchange methods should use reduced overhead and

communication costs. A clustering-based learning algorithm

was proposed to ensure such a low communication cost and

network overhead in [266].

7) DATA CONGESTION

On roads, especially in urban areas, the presence of many

vehicles creates data congestion. Data congestion occurs, par-

ticularly at the intersection points of roads. Network conges-

tion occurs when all channels are occupied in a highly dense

network; as a result, packets are lost and face delay, which

eventually degrades the network performance. An appropri-

ate congestion control mechanism is required to overcome

this problem. In [90], the authors proposed an ML-based

congestion control mechanism. They used RSU to control

congestion with the proposed hybrid centralized and local-

ized strategy by using a k-means algorithm. Their mechanism

was used to cluster the messages used in VANETs. The

parameters included the size, duration, type, and directions of

the messages and the distance between the vehicles and RSU.

The authors in [187] used deep Q-learning to propose a data

transmission scheduling strategy forminimizing transmission

costs and delays. They considered the CR spectrum, vehic-

ular caching, the link between various transmission modes,

the vehicle’s mobility, and the QoS requirement.

8) VEHICLE’s HEALTH MONITORING

Accidents sometimes occur due to the system failure of

vehicles. Several subsystems of a vehicle can fail at any

time and can lead to accidents. These subsystems include

fuel, ignition, exhaust, braking, and cooling systems [269].

For example, if the braking system suddenly fails while a

vehicle is on the move, then a fatality might take place. If the

driver can monitor the braking system early or is notified of

the fault of the system early, then he could avoid the accident.

Therefore, an appropriate vehicle health monitoring system is

required. The system must have the ability to detect, correct,

and predict failure and provide an appropriate messaging

system.

A fault detection, prevention, and correction mechanism

can be designed using several sensors and ML. In [269], the

authors presented a vehicle monitoring and fault predicting

system. For fault detection, they used four classifiers, namely,

decision tree, SVM, random forest, and KNN. To collect

the data, they utilized various sensors in a Toyota Corolla

car. A driver can know about the internal conditions of sys-

tems and becomes aware of any future failure by using the

system. An engine fault detection mechanism was proposed

in [270] by using the Hilbert–Huang transform (HHT) and

the SVMML approach. Engine faults can be detected by ana-

lyzing the current performance, lubricating oil, vibration, and

noise.

Table 12 summarizes the papers mentioned in this

subsection.

D. ML TO REDUCE TRAFFIC CONGESTION

We have discussed the impacts of traffic congestion. It does

not only affect the economy but also our daily social lives.

It cost approximately $305 billion in 2017 in the U.S.

alone [3]. Approximately 4.8 billion hours are wasted cumu-

latively, and 1.9 billion gallons of fuel are wasted glob-

ally [271]. It increases the stress level of drivers, thereby

leading to road accidents. VANET has emerged as a solution

to reduce the level of congestion, and CR is an integral part

of it. Therefore, CR-VANET greatly affects traffic jam reduc-

tion. ML is a potential candidate to enhance the performance

of all aspects of CR-VANET. Figure 17 shows the areas

of CR-VANET where ML can be applied to reduce traffic

congestion.

FIGURE 17. Applications of ML for congestion reduction.
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TABLE 12. Summary of the usages of ML to ensure road safety.
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TABLE 12. (Continued.) Summary of the usages of ML to ensure road safety.
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TABLE 12. (Continued.) Summary of the usages of ML to ensure road safety.

1) TRAFFIC FLOW PREDICTION

Retrieving live traffic information has become easy with the

help of ITS and the advancements of the Internet of Things

(IoT). Live and stored historical data can help predict traffic

flow,which is h important for congestion reduction. They also

help reduce fuel consumption and carbon emission. ML is a

proven tool to achieve high prediction accuracy in real-time

environments. In [272], the authors used big data and the
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deep learning (deep-layered hierarchical NN) approach for

traffic flow prediction. They utilized stacked autoencoders to

determine generic traffic flow features and the greedy layer-

wise algorithm for training purposes. They compared the

results with those of other supervised learning approaches,

such as SVM, backpropagation NN and random walk fore-

casting model, and radial basis function NN. They claimed

that their proposedmethod provides better results than others,

with over 90% forecasting accuracy.

In [273], Ide et al. designed a model for traffic flow

prediction. They correlated LTE data traffic with vehicu-

lar traffic to design their model. After the analysis, they

identified Poisson regression trees as the best candidate for

traffic flow prediction. The online learning weighted SVR

approach was proposed for short-term freeway traffic flow

prediction in [274]. In [275], the authors proposed a deep

learning method for traffic speed prediction. They used CNN

in its proposed scheme. A Bayesian model was adopted to

design a model for traffic flow prediction and used it for

experimentation in the urban area of Beijing [276].

2) ROUTING AND LOAD BALANCING

Routing and load balancing of traffic is another solution to

reduce traffic congestion. The VANET environment, despite

its challenges, has advantages, such as a depiction of potential

patterns of everyday traffic. By using ML, these patterns can

be further exploited to establish a proper routing of traffic and

for load balancing to reduce traffic congestion.

Road traffic conditions can be determined by using and

analyzing satellite images, GPS measurements, various sen-

sor data, and drivers’ cell phone data. As a result, a driver can

be informed about road traffic and can avoid congested roads.

Deep RL can be used to analyze these data.

Berkeley Laboratory scientists, in collaboration with UC

Berkeley, used deep RL to achieve congestion-free roads.

Their traffic congestion reduction project was known as Con-

gestion Impact Reduction via Connected and AV-in-the-loop

Lagrangian Energy Smoothing (CIRCLES). This project was

based on the open-source software framework called ‘‘Flow.’’

Their aim was to reduce traffic jams and save energy. ‘‘Flow’’

trains vehicles to learn about the behavior of the front and

back vehicles and take appropriate actions. They have another

project called ‘‘DeepAir,’’ in which they used deep RL and

satellite imaginary to estimate air quality impact (wind speed,

pressure, precipitation, and temperature). This project pro-

vides an insight into the sources of pollutants and helps

design appropriate routing and load balancing of traffic [277].

In [278], the authors used Q-learning and ANN to assess

policies regarding the maximum driving speed allowed on

highways so that traffic congestion is avoided. They consid-

ered traffic prediction in their scheme.

3) SMART PARKING

In many situations, an inappropriate parking system causes

serious traffic congestion, especially in crowded urban areas.

A driver takes a long time to park due to the lack of knowledge

regarding the parking space; as a result, a long queue is

created. On average, vehicle users spend 7.8 minutes for

parking purposes. This leads to approximately 30% of the

traffic flows in cities and this causes traffic congestion espe-

cially in peak hours [279]. Moreover, inappropriate parking

hampers normal traffic flow. Therefore, appropriate parking

management is required to alleviate traffic congestion.

Existing manual methods for parking management

are inefficient, time-consuming, and annoying. Therefore,

researchers have selected various ML approaches to achieve

a smart and effective parking system. ML-based parking

systems provide accurate and real-time parking information

without the need for expensive infrastructure. Automated

smart systems such as the Parking Guidance and Informa-

tion (PGI) system integrated with the ML can alleviate such

issues. Camera and sensor-based systems are widely studied

in the literature. Incorporating ML with these systems would

provide more accurate, robust and faster detection for the

free and occupied parking lot [280]. ML is also capable

of offering predictions of parking occupancy in advance.

ML provides more accurate parking occupancy forecasts, this

gives improved parking guidance for the vehicle users and

reduces the time needed for the parking purpose.

A parking guidance and information (PGI) system was

designed by using deep CNN and binary SVM classifiers

in [281]. The authors used public datasets (PKLot) with

variations of illuminance and weather conditions. In PKLot,

12,417 images of three parking sites are available, thus gen-

erating 695,899 segmented parking spaces that are labeled

in the package. Deep CNN was also used in [282] to detect

vacant parking spaces. In [283], the authors proposed an

illegal vehicle parking detection system by using deep learn-

ing. They utilized the single shot multibox detector (SSD)

to design their detection model. Their system analyzed the

state of tracked vehicles to determine whether a vehicle

is illegal or not. A visual parking lot occupancy detection

system was proposed by using CNN in [284]. The system

only requires smart cameras; hence, it is simple and cost-

effective. The authors performed experiments on PKLot and

their dataset (now publicly available). A Bayesian framework

was designed to detect vacant parking spaces in [285]. The

proposed plane-based method adopts a structural 3D parking

space model, which has abundant planar surfaces.

4) ADVANCED TOLL SYSTEM

Traffic congestion is a regular phenomenon at tolling sta-

tions. A long queue is created due to the manual and/or

slow tolling system, thereby leading to traffic congestion.

Therefore, the tolling system can be developed by using

advanced techniques, such as IoT and ML. Another approach

to reducing traffic congestion is to implement a congestion or

cordon fee (i.e., every vehicle is charged a toll when it uses

the specified cordon or road of an urban area where traffic

congestion is very high). For example, Singapore has intro-

duced electronic road pricing to charge vehicles when they

enter a certain cordon, and London charges vehicles operating
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within the Congestion Charge Zone [286]. To obtain a smarter

congestion fee system, the authors in [286] used the RL

algorithm to model a distance-based dynamic tolling system.

In their model, no specified toll station is available to collect

tolls; instead, roadside sensors are used. Here, vehicles can

freely enter the toll lane at any point. The toll is calculated

based on the vehicle’s entry location and is controlled by the

tolling system.

For automated toll collection, vehicles need to be appro-

priately classified and verified. This task is challenging,

especially for heterogeneous vehicular traffic environments.

The authors in [287] used SVM to classify vehicles and

k-means to cluster vehicle signatures (where the class

labels of vehicles are unavailable). Their methodology had

four phases, namely, signal denoising, signal segmentation,

feature extraction, and classification.

5) ADAPTIVE TRAFFIC SIGNAL CONTROL

Traffic congestion occurs due to the inefficient control of

traffic signals. To reduce congestion, an adaptive and intel-

ligent traffic signal mechanism is required. Gao et al. [288]

proposed a deep RL algorithm that automatically extracts

useful features from raw and live traffic data (position, speed

of vehicles, vehicle queue length, etc.) and learns the optimal

policy for adaptive traffic signal control. They used machine-

crafted features instead of human-crafted ones.

In [289], an intelligent traffic light control system based on

Q-learning and neural networks was proposed to determine

signal light times to minimize total delays in an isolated

intersection. The authors used detectors to calculate current

traffic at an intersection and extended or terminated the green

time based on this information. In [290], the authors proposed

a scheduling scheme for traffic signals in multi-intersection

vehicular networks by using Q-learning and feedforward

neural networks for value function approximation. A similar

workwas presented in [291] by usingQ-learning. The authors

also implemented their algorithms on open-source Java-based

software called Green Light District (GLD).

Table 13 summarizes the papers mentioned in this

subsection.

E. ML IN RESOURCE ALLOCATION IN CR-VANET

The number of vehicles is increasing rapidly. Substantial

amounts of messages should be exchanged because several

new services and features are added regularly. However,

the allocated resources (time, frequency, etc.) are limited.

An appropriate resource management system is required to

accommodate such a massive number of vehicles and their

services with the minimum required QoS. ML has great

potential to perform this RA job for CR-VANET.

Learning RA strategies directly by gathering experiences

from the dynamic environment is more practically suit-

able and effective than traditional heuristic-based schemes.

Concerning the research question, ‘‘Can systems learn to

manage resources on their own?’’, the answer can be found

in [292], in which an experiment was conducted using deep

RL and DNN.

In [293], the authors used DQN to formulate the RA strat-

egy as a joint optimization problem for CR-VANET. They

jointly addressed three underlying resources enabling vehic-

ular applications, namely, networking, caching, and comput-

ing, to enhance the performance of vehicular networks. Their

proposed framework used the ideas of information centricity,

which originated from information-centric networking. Their

framework could enable dynamic adaptation of networking,

caching, and computing resources to satisfy the QoS of dif-

ferent services of VANETs. The same work was extended

in [294] with more analysis.

The cumulative energy consumption by the information

and communication technology industry reached 616 TWh

in 2013, and it is predicted to grow to 910 TWh by 2020;

the annual carbon emission is expected to reach 235 Mto

by 2020 [190]. We already discussed the spectrum short-

age issue. Energy- and spectrum-efficient RA strategies are

required. Zhou et al. [295] proposed an RA scheme for

real-time performance with a simple implementation method.

They designed their system by using DNN, and they pre-

sented a training method to train neural networks. In [296],

the authors considered the input and output of the RA algo-

rithm as an unknown nonlinear mapping. If it is learned

accurately and effectively by using DNN, then real-time RA

is possible and requires only a few operations. An interesting

DNN-based hierarchical predictive RA scheme was proposed

in [297]. Prediction can be made based on the mobility and

traffic load related to user behavior. The end-to-end predic-

tion method accelerated the performance of under-utilized

networks by predicting behavior-related information from

historical data.

In [298], a DQN-based decentralized RA mechanism was

presented for V2V communication. In this work, each V2V

link is regarded as an agent and can make its own decisions

to find the optimal spectrum and power for transmission. The

proposed scheme did not require any global information for

the agent, needed a minimal transmission overhead, and over-

came the issue of the latency constraints of V2V messages.

These advantages are difficult to achieve in traditional RA

schemes where ML was not used.

V2I or V2R links require appropriate RA schemes that can

tackle the inherent challenges of heterogeneous demands for

resources and strict QoS requirements. The work in [299]

focused on these issues. They used MDP in the RA scheme,

in which the resources allocated for the long term are mini-

mized. They also provided a state-of-the-art vehicular cloud

model that combines resources from individual devices and

systems in VANET and traditional cloud.

F. ML IN SPECTRUM-AWARE ROUTING IN CR-VANET

VANET routing is used to select the best path between the

source and destination vehicle through a set of other nodes

(might be other vehicles, RSU, and so on); thus, the message
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TABLE 13. (Continued.) Summary of the usage of ML to reduce traffic congestion.

can be transferred with the best QoS (minimum allowed

latency, maximum possible throughput, etc.)

This routing is required especially for vehicular safety

message exchange where the end-to-end delay must be less

than the threshold value and the reliability must be high. The

VANET network is changed frequently because the mobility

of vehicles is high. This rapid change in network topology

causes a delayed transfer of messages and data losses. The

traditional routing protocol cannot cope with the dynamicity

of VANETs. Therefore, robust and adaptive routing protocols

should be. available for VANET [300]. More details on the

routing in VANET can be found in [301], [45].

Software defined network (SDN) is the blessing technol-

ogy for the CR-VANET. SDN is a technology that canmanage

the whole network efficiently and transform the complex

network architecture into a simple andmanageable one [302].

Non-SDN supports only vendor-specific policies and offers

no flexibility for dynamic network environment but SDN is

capable of these. A network administrator can control traffic

from a centralized control console without having to touch

individual switches, routers or other devices in SDN. Due

to SDN, the control of the routing processes in CR-VANET

become very easy.

For CR-based routing, the routing modules must be aware

of the surrounding radio environment. The cooperation

between routing modules and spectrum awareness must be

strong. The routing of CR depends on how spectrum informa-

tion is gathered. The routing engine is providedwith spectrum

information in three ways, as follows [303]: i) by the external

entities or database, ii) locally by each SU, and iii) hybrid

(a mixture of i and ii).

The routing in CRN is highly dependent on the entire

CR cycle and the behavior of PUs. It is also influenced by

QoS metrics, such as nominal bandwidth, throughput, delay,

and energy efficiency, with path stability and the presence of

PUs [303].

For example, if the activity of PU is from moderate to low,

then the topology of the SUs is relatively static. As a result,

maximum QoS is achieved. On the contrary, the sudden

arrival or re-arrival of PUs causes unexpected route failure.

Instant rerouting is required for seamless communication.

Therefore, the routing of CRN should be dynamic, adaptive,

and intelligent. ML can be used to find the vacant spectrum

rapidly and can predict the PU’s behavior (when the PU is

absent or when it reappears). These tasks are necessary for a

stable and effective routing protocol for CRN. To determine
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FIGURE 18. Routing in CR-VANET.

the various types of CR routing with their features, advan-

tages, and disadvantages, interested readers should refer

to [303], [304].

CR-VANET is dynamic in nature, and route selection is

one of its biggest challenges. Finding the spectrum hole and

high speed of vehicles is among the major issues considered

for selecting the routing protocol in CR-VANET.

Therefore, routing protocols specifically for VANET or

routing protocols for CRN are not directly applicable to

CR-VANET cases. Unstable and inappropriate routing leads

to delay in the network, thereby reducing the overall per-

formance of the network. To ensure stable routing, which

provides improved QoS and energy efficiency by reducing

end-to-end delay, ML tools can be used in CR-VANETs.

Figure 18 shows a typical routing situation. By using a

routing mechanism, the source selects the path SU1→SU2→

SU4→SU6→SU9→SU10 as the best path because it has

high bandwidth, low delay, low presence of PU, and high

reliability. The route SU1→SU3→SU8→SU10 has a small

number of hops and high throughput, but it is avoided because

it is prone to the presence of PUs. On the contrary, due to

the high-speed mobility of SU4, it might stay out of the

range of SU2 for the transmission because the best route

might fail. In this case, the best alternate route might be

used, i.e., SU1→SU2→SU5→SU8→SU10. In summary, the

overall routing in CR-VANET is different from traditional

VANET or CR routing. Therefore, this CR-VANET routing

is challenging to tackle.

In [305], the authors proposed an SDN-based routing

protocol by using the belief propagation algorithm for

CR-VANETs. They found that their routing protocol is more

stable and performs better than the traditional routing pro-

tocol for CR-VANETs. In this scheme, two vehicles can

only communicate when they have agreed to use the same

vacant channel. This scheme considers spectrum sensing and

routing simultaneously. To solve the routing issue, the authors

in [306] used a clustering technique that improves the net-

work by reducing the excess routing overheads. It is also used

to obtain a stable network because it reduces the effects of

the dynamicity of channel availability. The authors designed

a cluster-based routing protocol using RL and named it

SMART. The authors in [307] used the RL algorithm to

design a routing scheme (they called it weighted cognitive

radio Q-routing or WCRQ-routing) for CRN. They investi-

gated the effects of various attributes of RL, such as reward

function, trade-off between exploitation and exploration, and

convergence rate.

Experiments to validate VANET routing studies are diffi-

cult to conduct in real-life scenarios due to the high cost and

risk involved. Therefore, to model and simulate the VANET

environment, several mobility models were proposed.

Prominent mobility models for VANETs include random

waypoint, random walk, Manhattan grid, freeway, reference

point group, and Gauss–Markov mobility models [300].

G. ML IN INFOTAINMENT IN CR-VANET

Infotainment refers to information and entertainment

broadcasting. In VANET, value-added services, such as enter-

tainment and advertising, are provided along with the safety

message communication. Live streaming video communi-

cation, for example, is not only used for entertainment/

advertising but also accident management. By watching the

live video of an accident case, traffic police or rescuers can

make robust and effective decisions. Meanwhile, passengers

can enjoy online services. For example, they can use any

social media, video streaming websites, and navigation sys-

tems. Roadside companies can send an advertisement to vehi-

cles to market their products or services. Nearby authorities

can also provide warning or safety instructions directly to

vehicles. Real-time parking navigation information can be

obtained from a nearby parking lot. The potential services

of VANET can also be applied to road entertainment or

gaming between vehicles. Besides, other user services, such

as LIDAR, OBU’s sensors, and GPS, should exchange a sub-

stantial amount of data. Figure 19 displays such a situation,

where a car or the car user can simultaneously experience

such services.

The current standards of VANET are WAVE and DSRC

that suffer from large packet delay and spectrum scarcity.

To overcome these issues, DSA of the vacant license
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FIGURE 19. Infotainment in CR-VANET.

spectrum provides a promising solution. Several channels

and relay node selection (intermediary vehicle(s)) mecha-

nisms should be available for smooth infotainment services.

Some data include delay tolerance and non-tolerance.

Therefore, various applications have various QoS require-

ments. ML methods can be applied to train vehicles to learn

the surrounding radio environment for the spectrum informa-

tion, the diverse QoS requirement, and the best candidate for

relaying appropriate infotainment services.

In [308], the authors proposed a channel selection mecha-

nism for video transmission. They prioritized safety applica-

tion messages and selected the best DSRC and CR channels

for smooth video transmission. They selected the CR channel

in which the PU activity is minimal. They also chose a subset

of strategic nodes (rather than selecting all) for rebroadcasting

the content. Q-learning or DQN can be applied to acceler-

ate the performance of this proposed mechanism. A vehicle

would be trained usingML on the behavior of the PU to select

the best channel and suitable nodes for the rebroadcasting.

The quality of the transmission for infotainment depends

on channel selection, RA schemes, schedules, appropriate

routing, and traffic prediction capability. The previous sec-

tions and subsections discussed the applications of various

ML methods on these dependencies. From such discus-

sions, we conclude that ML is a promising tool to provide

the best infotainment experiences to users. The authors

in [187] proposed a data scheduling method by formulating

an MDP model to analyze the transmission performance

of CR-VANET. They considered CR, states of vehicular

caching, a correlation between various transmission modes,

mobility of vehicles, and QoS data requirements. In their

proposed optimal data transmission schedule scheme, they

used the deep Q-learning method and the vehicle’s caching

to minimize the overall transmission costs.

In [309], the authors proposed a content-aware and

on-demand clustering technique for video streaming in

VANET. Here, vehicles with the same video requirement

and mobility features are clustered. The authors constructed

an overlay tree based on the relation between supply and

demand of the videos in the VANET scenario. Various ML

clustering techniques (e.g., k-means or Dirichlet process) can

be integrated into their approach to enhancing performance.

ML-based video admission control and resourcemanagement

algorithms were proposed in [310]. The authors developed

a scheme by using ML that can extract the quality-rate

characteristics of unknown H.264-encoded video frames.

They used unsupervised feature learning with supervised

classification techniques. Then, they were able to estimate

the QoE parameters that characterize each video. In [311],

the authors proposed a framework called cognition-based net-

works (COBANETS) that includes cognitive network nodes

with an infrastructure for learning. They used modified DNN

(called generative DNN or GDNN) and RL to develop the

learning tool, by which the quality-rate characteristics of

video flows were estimated and QoE-aware RA schemes

were exploited.

The medium access control (MAC) standard for V2V com-

munication is IEEE 802.11p (a member of IEEE802.11 or

WLANs family). V2V is an ad hoc-based communication

technique for vehicles in VANETs. VANETs’ vehicle density

varies from sparse to hundreds, and all of them are contending

for limited channel access. An appropriateMAC is required to

cope with this situation, especially for a dense urban network.

In [312], the scalability problem of the IEEE 802.11p MAC

protocol was discussed. The authors used the RL algorithm

to modify MAC for IEEE802.11p to solve such issues. Their

proposed MAC was claimed to reduce the packet collision

probability and bandwidth wastage.

IV. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

CR-VANET is a promising field for future research. ML

is another potential area for research. Several works in the

area include CR-VANETs, ML in VANETs, and ML in CR;

however, studies on ML in CR-VANETs are few. Therefore,

researchers should explore this area. This section presents

several open issues and future research challenges.

A. ADVANCED SPECTRUM SENSING AND MOBILITY

MANAGEMENT ISSUES

The application of ML in these issues has been discussed

in Section III.A. However, substantial work should still

be conducted. For example, most current studies focus on

TVWS, but in reality, other radio access networks or RANs

(Wi-Fi, WiMAX, LTE, or 5G) are available and coexist in

overlapping.

These RANs have different characteristics and attributes.

In CR-VANET, vehicles should have the capability to per-

form two or more non-safety message (audio or video)

transmission simultaneously. However, selecting the optimal

network for spectrum handoff is a challenging job for a

vehicle. The authors in [313] proposed multiple-attribute

decision-making (MADM) methods to solve these issues.

However, the use of ML accelerates the performance of

the method. Therefore, adaptive ML-based algorithms and

frameworks are required to solve these issues. For the best
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spectrummanagement, multiple MLmethods can be merged.

For example, CBR, deep learning, and RL can be merged to

perform the SS job in a dynamic manner.

For CR-VANET cases, vehicles or SUs have high-speed

mobility, but in most of the cases, the PUs are considered sta-

tionary devices or nodes. The simultaneous mobility effects

of SUs and PUs should be considered for improved and realis-

tic results. Interferences occur due to PUs and SUs’ activities.

Shadowing or the hidden terminal problem is another issue

for spectrum sensing. Therefore, further work is required

to alleviate such an interference and shadowing problem by

using ML.

B. SLOW CONVERGENCE OF RL

For CR-VANET, the RL algorithm, especially Q-learning,

is the most suitable because it does not require any environ-

mental model or training dataset and has high adaptability

to the dynamic environment. However, the main problem of

Q-learning is its slow convergence. A longer time is needed

for learning purposes. To solve this issue, researchers have

suggested combining Q-learning with other ML schemes,

such as CBR. Prolonged learning time for vehicles is unac-

ceptable. This issue can be a potential topic. The slowness

of Q-learning is due to its inherent functionalities. It learns

everything by itself without taking any help. It faces a tradeoff

between exploration and exploitation. To obtain rewards, fur-

ther exploration is needed, and as a result, it consumes much

time. Transfer learning is an interesting learning method.

It can be applied to reduce the learning time of Q-learning.

In this transfer learning (such as TACT, teacher-student

learning approach, or docitive learning approach), a vehicle

can learn about the surrounding radio environment from

other vehicles that have already learned about this envi-

ronment [193]. For example, a vehicle requires 1000 iter-

ations to learn one maximum-rewarded state-action value.

Meanwhile, the state–action pair value for the maximum

reward is already known. If this vehicle can transfer this pair

value knowledge to the previous vehicle, then it could skip

those 1000 iterations. To learn the same Q-value, it does not

need to iterate every vehicle. Transferring and sharing can

accelerate learning and provide fast convergence. A vehicle

might transfer wrong or false learning to the new learning

vehicle. As a result, this learning vehicle would bemisguided.

Therefore, security issues regarding this transfer learning

should be explored.

C. OTHER COMBINED SECURITY ISSUES TO BE SOLVED

Along with the individual security threats in CR and VANET,

other combined security threats (e.g., JSSDT attacks) should

be investigated. For the infotainment issue, several studies

were conducted based on V2V communication. Here, ensur-

ing privacy is one of the major challenges. Most security

mitigation techniques are based on learning from experiences

(e.g., by exploiting the attacker’s behavior). Therefore, these

techniques cannot solve the zero-day attack (newly invented

attack, not stored or experienced previously by the network or

vehicles). This zero-day attack can be solved by using clas-

sifiers, such as SVM or naïve Bayes, and an expert-labeled

dataset[314]. Further studies are required to implement this

approach in the CR-VANET scenario.

When using RL, most previous studies considered a small

state space, but in reality, the state space is large and dynamic.

Multi-agent RL faces the curse of dimensionality (increases

the state-action pairs exponentially). As a result, performing

functions, such as determining malicious attacks, becomes

slow. More work is required to solve ‘‘the curse of dimen-

sionality’’ issue so that attack mitigation can be improved.

Several attackers also use ML to design their attacks [6].

Highly sophisticatedML algorithms are required to fight such

attacks.

MLs are vulnerable to adversarial attacks. In this type of

attack, the ML models are fooled by malicious input. For

example, if a fake toxic traffic sign is placed on the road,

an AV might perform misclassification. The human driver

might consider the sign as a ‘‘no overtaking’’ sign, and the

AV might view it as a ‘‘speed limit’’ sign. This misclassifi-

cation could lead to the cause of fatal road accidents [315].

This type of adversarial attacks can occur in three stages,

namely, training, testing, and model deployment. The three

categories to defend against this attack are modifying data,

modifying models, and auxiliary tool usage [316]. To know

more about this attack, the last reference is recommended.

This attack is new and highly threatening to the usage of MLs

in CR-VANET. Therefore, extensive studies must be carried

out in this field.

D. INTELLIGENT AND ACCURATE AVs

In Section III.C, we discussed several vehicular safety-

related issues that can be solved with the help of ML.

We focused on AVs’ smart services, such as ADAS,

barrier detection, road sign detection, and lane changing,

using ML. Several companies work with autonomous or

driverless vehicle systems and their intelligence services.

Examples include Waymo (formerly known as the Google

self-driving project) [317], Tesla’s Autopilot [318], and

UBER’s driverless car project [319]. Although they have

revealed the excellent performance of self-driving vehicles by

using variousML approaches, they still facemany challenges.

Their vehicles are still not as intelligent as human drivers.

Several casualties have been reported due to these self-driving

vehicles. A fatal incident occurred at Tesla in May 2016 in

Florida; the driver was killed while the car was in autopilot

mode. The incident was due to wrong detection (the car’s

sensor system failed and could not differentiate between the

white bright sky and a large white truck) [320]. UBER’s self-

driving car killed a pedestrian woman in March 2018 because

it could not detect the pedestrian [321]. The reason for these

incidents was the lack of detection accuracy.

Therefore, increased accuracy is needed for real-life

experiments. The algorithms, such as DNN or CNN,

used for detection purposes must be highly robust to

fast-paced vehicles. Highly effective debugging, testing, and
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FIGURE 20. UAV-based detection system.

verification techniques should be developed using several

ML algorithms.

For the high-speed mobility of vehicles, the processes

of detection and taking appropriate actions after detection

are challenging (especially because these processes must be

performed instantly, i.e., without any delay). Moreover, most

AVs use onboard cameras for barriers or pedestrian detection.

Therefore, it can predict only those barriers or pedestrians

that can be captured by the cameras. Unmanned aerial vehicle

(UAV)-based, drone-based, or satellite-based imagery can be

used to detect any barrier (any other vehicle or obstacle) or

pedestrian in advance or can be adopted in curved road areas

where the vehicle’s visibility might be obstructed. For exam-

ple, in Figure 20, the left-side car is unable to see the pedes-

trian and the right-side vehicle in advance. The high-speed

instant detection and taking an inaccurate action might lead

to an accident. Now, suppose that a UAV captures images

of the pedestrian and vehicles and obtains GPS values of

these. After capturing the images andGPS values, it sends this

information to the vehicular clouds for processing. After swift

processing, the cloud sends a warning message to the left-

side car that a pedestrian and a car are located in front. After

obtaining this warningmessage, the car becomes cautious and

takes appropriate actions (slowing down or changing its lane).

These detection processes would become more effective and

accurate if Drone2Map (an app that processes raw images

captured by drones or UAVs into precise information by using

cloud-basedmapping and analysis tools, such as ArcGIS) and

TensorFlow tool (an open-source ML library) is used with

CNN and regional CNN. These techniques can also be used

for the smart parking system. UAVs or drones can also be

adopted to provide spectrum information to nearby vehicles.

As a result, these vehicles are not required to undergo CR

processes. These areas require further exploration.

E. SIMULATION TOOLS, TESTBEDS, AND DATASETS FOR

ML IN CR-VANETS

Real-life experiments on CR-VANET are complex, risky, and

expensive. Nevertheless, a complete testbed for CR-VANET

and ML remains lacking. Thus, most studies found in the

literature are based on simulations. However, suitable sim-

ulation tools that can provide several features (e.g., spectrum

sensing, mobility models, traffic classification or regression,

or applying any other ML) in an integrated form are lacking.

The three main parts of ML-based CR-VANET simulation

are traffic simulation, network simulation, and data analysis.

Several separate traffic simulators are available for traffic

simulations, namely, network simulators for network simu-

lations and VANET simulators for both traffic and network

simulations. Figure 21 displays the simulation tools used for

traffic simulations, network simulations, and data analysis.

ML and data analysis tools are used for ML in the

CR-VANET perspective. For traffic data and mobility pat-

terns, various traffic simulators, such as SUMO and MOVE,

are used [322].

To add the CR features in VANET to VANET network

simulation, various network simulators can be utilized, such

as NS2/3, NetSim, and OMNet++ [323]. Other simulators,

such as Veins and TraNs, are used for both traffic and network

simulations. Several tools are employed for ML and data

analysis, such as Python’s ML libraries, TensorFlow, and

MATLAB’s ML toolbox. This discussion indicates that for

experimenting with ML in the CR-VANET scenario, two

or three tools should be used. This arrangement is complex

and difficult. Therefore, a single simulation and ML plat-

form is required. Moreover, numerous practical features of

CR-VANET (such as security, Doppler effects, interference

level, and shadowing issue) should be added in the simulation

tools.
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FIGURE 21. Simulation tools for ML in CR-VANET.

Few testbeds are available for CR experiments, such as

USRP-N210 (or other versions) [334], GNU radio (a free

open-source software development tool for SDN) [335], and

VT-CORNET [336]. These testbeds can be used for sta-

tionary cases or along with a vehicle to obtain spectrum

information on real-life scenarios [340]. These testbeds are

utilized for the CR perspective only. The data captured by

these testbeds are ultimately analyzed using software or data

analysis tools. Other testbeds for CR and CR-VANET include

Virginia Tech’s CORNET [341], cognitive cars testbed [337],

ORBIT [338], andUCLA’s C-VeT [339]. Building a complete

testbed for ML, CR, and VANET is still an open issue.

Several real-life datasets are available individually for CR and

VANET. Table 14 presents several datasets used for CR and

VANETs along with the simulation tools and testbeds. These

individual datasets are for CR and VANETs. The real-life

implementation of CR-VANET by using ML requires many

combined datasets. Moreover, a dataset varies from place to

place (due to different policies, requirements, etc.). There-

fore, further experiments on dataset generation are required

for realistic studies.

F. INTEGRATION WITH BLOCKCHAIN TECHNOLOGY

Blockchain, which was introduced by Satoshi Nakamoto in

2008, was invented to serve as a public transaction ledger of

the cryptocurrency called ‘‘bitcoin’’ (also known as virtual

currency) [342]. It provides a distributed peer-to-peer net-

work where non-trusting members can interrelate with each

other without a trusted third party but in a strictly secured

manner. Although this technique was intended only for finan-

cial transactions, it is currently used in several areas, such

as network security. This technique can also be applied with

ML-based CR-VANET. A few works are available on these

integrated techniques. For example, in [343], the authors used

a permissioned blockchain approach to reach a consensus in

distributed SDN-based VANET. To overcome the existing

drawbacks of the permissioned blockchain, they used deep

Q-learning. In [344], Dai et al. used blockchain technology

and Q-learning to secure VANETs. In their proposed frame-

work, OBUs in VANET help each other mitigate possible

attacks.

In permissioned blockchain, resource caching is a cru-

cial issue. Future work with virtual caching resources can

be performed to overcome the drawbacks of blockchain

technology. This technology and deep learning can bemerged

TABLE 14. Simulation tools, datasets, and testbeds for CR and VANET.

to solve several aspects of CR-VANETs, such as creating

strong trust management to reduce falsification or other

attacks. Blockchain is used as the decentralized database,
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TABLE 15. MLs covered in this paper.
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and ML is adopted to process the data. This approach pro-

vides more trusted and reliable results. In general, ML and

blockchain can help each other and can accelerate their

individual performance. For example, ML can be utilized to

provide energy efficiency, rapid computation, and security to

blockchain technology. Meanwhile, blockchain can alleviate

the flaws of ML, such as providing data and model reliability

and tracing the decision-making process of machines (for fur-

ther improvement). Therefore, working with this blockchain

technology in ML-based CR-VANETs is essential.

V. CONCLUSION

VANET has emerged as a solution to ameliorating road

safety and traffic congestion, supporting infotainment, and

improving the QoE of users. CR was proposed to alleviate

the spectrum scarcity issue caused by the exponential growth

of VANETs. Therefore, CR-based VANETs or CR-VANETs

were considered major research domains in recent years.

ML has become an integral part of CR-VANETs to ease

complexities and enhance network performance. The amal-

gamation of ML in CR-VANETs is still at its infancy, but it

has great potential to be used in the near future. This survey

presented the applications of ML in emerging CR-VANETs.

An overview of VANETs and CR was provided. Various

ML tools and their taxonomies, applications, and limitations

were presented. The usages and recent advancements of ML

methods in various aspects of CR-VANETs, such as spectrum

sensing, resource allocation, security, and routing, were dis-

cussed. The roles ofML in reducing road accidents and traffic

congestion were elaborated, and several aspects of the usages

of ML in AVs were described. Using ML tools to leverage

the benefits of CR-VANETs was also explained. Many other

scopes need to be explored given that these fields are still in

the preliminary stage. Several of these scopes, open issues,

and future research trends were discussed in this paper.

APPENDIX

Table 15 shows theML algorithms used in this study and their

corresponding topics and reference numbers.
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