
Comprehensive Survey on Dynamic Graph Models

Aya Zaki

Faculty of Computer

and Information Science

Ain Shams University

Cairo, Egypt

Mahmoud Attia

Faculty of Computer

and Information Science

Ain Shams University

Cairo, Egypt

Doaa Hegazy

and Safaa Amin

Faculty of Computer

and Information Science

Ain Shams University

Cairo, Egypt

Abstract—Most of the critical real-world networks are con-
tinuously changing and evolving with time. Motivated by the
growing importance and widespread impact of this type of
networks, the dynamic nature of these networks have gained a lot
of attention. Because of their intrinsic and special characteristics,
these networks are best represented by dynamic graph models. To
cope with their evolving nature, the representation model must
keep the historical information of the network along with its
temporal time. Storing such amount of data, poses many problems
from the perspective of dynamic graph data management. This
survey provides an in-depth overview on dynamic graph related
problems. Novel categorization and classification of the state of
the art dynamic graph models are also presented in a systematic
and comprehensive way. Finally, we discuss dynamic graph
processing including the output representation of its algorithms.

Keywords—dynamic graphs; evolving networks; evolving
graphs; temporal graphs; data management

I. INTRODUCTION

Most real-world networks like social networks [1], [2],
[3], wireless networks [4], transportation networks [5], and
other networks contain a vast amount of information. These
networks are mostly represented by graphs. These graphs
model the network entities and their relations in the form
of vertices and edges respectively. The majority of current
network graph representations rely on static graphs. Such type
of graphs fails to handle the real-time changes of networks.
That’s why there is a significant interest in providing a dynamic
graph model that stores the network historical changes and
gives the ability to query these changes [6].

Temporal Relational Database ”TRD” shares the power
of storing historical changes with dynamic graphs. A lot of
literature on TRD focus on temporal data model and temporal
query language [7], [8], [9], [10], [11], [12], [13]. The two
main basic concepts of TRD are valid time and transaction
time. Valid time represents the time period that indicates when
the fact is true in the real world. Transaction time represents
the time period of storing and removing the fact from the DB.

In this survey, we focus on valid time, where the goal is
to retrieve the graph entities that are valid at any given time
instant. We start off by reviewing the main issues of dynamic
graphs: temporal evolution and dynamic graph queries, as well
as their related terminologies. Then, we present an overview
to categorize the existing dynamic graph models proposed by
other researchers. Finally, we provide a brief survey on pro-
cessing including both: dynamic graph algorithms and output

representation. Fig 1 summarizes our proposed classification
of the accomplished work in dynamic graphs.

The rest of this paper is organized as follows: Section
2 provides an overview about how dynamic graphs evolve
with time. In section 3, we present a study of dynamic graph
queries. Section 4 categorizes the existing dynamic graph
models. Section 5 states the output representations of dynamic
graph algorithms and overviews some of the most important
graph problems. Finally, Section 6 concludes this paper and
discusses the future research plans.

II. TEMPORAL EVOLUTION

Temporal evolution shows how dynamic graphs evolve with
time and the changes that happen to its components. This type
of evolution can be categorized into two categories: topological
evolution and attributes evolution, which will be discussed in
details in the following subsections II-A and II-B.

A. Topological Evolution

A dynamic graph undergoes continuous changes with time
in its structural components: nodes and edges. Such changes
are called topological evolution. Due to the topological evolu-
tion, the graph structure is reshaped based on the following:

. Edge Evolution: dynamic graph changes related to its
edges only. These changes can be represented by the
actions: add edge or remove edge. In some cases, the
evolution of a network is modeled by edge evolution only,
where the network nodes are constant over time [14].

. Node Evolution: dynamic graph changes related to its
vertices only. These changes can be represented by the
actions: add node or remove node. Contrary to edge
evolution, there are no cases where a networks evolution
is modeled by node evolution only.

Most networks that have topological evolution, involve
both edge evolution and node evolution [13]. In these networks,
when a remove node action occurs, both the out and in edges
of the removed node are implicitly removed from the graph
before the removal of the node itself.

B. Attributes Evolution

Dynamic graph continuous changes occur on graphs at-
tributes (i.e., internal attributes of nodes and edges) and do
not affect the graph topology.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

573 | P a g e
www.ijacsa.thesai.org

Topology

Attributes

Single Time

Point

Time Expression

Time Interval

Multiple Time

Points

Node

Centric

System

Centric

What to

query

Time

granularity

Node

granularity

Query

Discrete

Continuous

Sequence of

Snapshots

Whole Graph

Log File

Distributed Graph

over Servers

Models

Notion

of time

Modeling

categories

Temporal

Evolution

Edge

Node

Edge

Node

Topological

Evolution

Attribute

Evolution

Output Representation of

Algorithms

Single Dynamic

Solution

Multiple Static

Solutions

Multiple Dynamic

Solutions

Single Aggregated

Solution

Dynamic Graphs

Fig. 1: Dynamic Graphs

. Edge Attributes Evolution: dynamic graph changes re-
lated to its edges attributes. These changes can be repre-
sented by the actions: add attribute value, remove attribute
value or update attribute value [15].

. Node Attributes Evolution: dynamic graph changes re-
lated to its node attributes. These changes can be rep-
resented by actions similar to edge attributes evolution
[16].

According to this classification, the evolving graphs have
two types: fully evolved dynamic graphs and partially evolved
dynamic graphs. Fully evolved dynamic graphs have both
topological and attributes evolution in edges and nodes. In
contrast, partially evolved dynamic graphs have a partial mix
of them.

III. QUERY

In this section, the query operators that have been proposed
in the literature of dynamic graphs are presented. We provide
a novel classification based on three criterions that will be
detailed in the following subsections.

A. What to query

According to the interest of applications, we classify the
query functionality on dynamic graphs into two classes:

. Topology: includes queries that ask about historical graph
structure. In other words, queries are asking about nodes
and edges of the graph at a previous time. For example,
querying a node neighbors ”retrieve friends of Jon at Oct
10, 2000” [17].

. Attributes: in this class, queries are used to retrieve
a graph components attributes by asking about nodes
attributes or edges attributes at a previous time. For
example, querying the sent packets from node A to node
B ”retrieve packets that are sent from A to B at Oct 10,
2014” [15].

B. Time granularity

Dynamic graph queries differ from static graph queries
because of the inclusion of the time dimension. The time
dimension has several forms, which are classified into four
types as follows:

. Single Time Point: where query is used to ask about
graph historical information valid at a specific time point.
For example ”retrieve the graph structure at Oct 10, 2000
[18].

. Multiple Time Points: this query is asking about retriev-
ing graph historical information that is valid at multiple
time points. For example ”retrieve the graph structure at
every monday between 2000 and 2005 or ”retrieve Jon
friends at Oct 10, 2000 and Dec 24, 2003” [19].

. Time Interval: this type of query has more complex form.
It is asking about graph historical information valid at
an interval of time. For example ”how does the average
number of Jon friends change over [2000, 2005]” [19].

. Time Expression: in which, a boolean expression is
applied over a set of multiple discrete point. For example,
”retrieve Jon friends that are valid at (2000∧¬2001)” [19].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

574 | P a g e
www.ijacsa.thesai.org

C. Node granularity

The third criterion that distinguishes dynamic graph queries
is the node granularity classified into two types:

. Node-Centric Queries: involve one or more graph node
related to a specific node. In other words, these queries
need to access a part of the graph. For example, retrieve
friends of Jon at Oct, 10, 2009 [17].

. System-Centric Queries: are also known as Global
Queries. These queries involve all graph nodes. For ex-
ample, compute the graph diameter at Oct 10, 2008 [19].

IV. MODELS

A dynamic graph model is a mapping Gt = (V,E) that
yields the state of the graph (i.e., the set of nodes and set of
edges) at a given time instant t. Both directed and undirected
dynamic graphs can be represented by most of the existing
discrete and continuous models. In a discrete model, snapshots
are taken periodically at every fixed time period (e.g., every
30 minutes, every day, and every week). This type of model
provides complete accurate mapping at specific time instants
and gives the nearest state (e.g., time-based, changes-based)
at any other instant. On the other hand, the continuous model
keeps track of all changes by representing every one of them.
Therefore, it can map every instant into a completely accurate
valid graph state. In the following subsections, we classify the
relevant literature into four categories, and describe each one
of them.

A. Dynamic Graph Models Categorization

The existing dynamic graph models that were proposed by
other researchers can be categorized into four basic categories:

. Sequence of Snapshot: the graph historical changes are
stored as a sequence of snapshots. Each snapshot rep-
resents the graph state at a single instant of time. The
snapshot consists of a set of vertices V and a set of
edges E. However, the existing models in this category
are discrete.

. Whole Graph: the graph historical changes are stored as
one large graph. The changes (i.e., vertex/edge deletion,
vertex/edge insertion and their attributes updates) are ap-
plied and stored in the same graph. Moreover, each graph
element (i.e., vertex, edge or attribute) is accompanied
with a valid time point or valid time interval according
to its model. Models of this category are either discrete
or continuous.

. Log File: the latest snapshot as well as key snapshots are
kept while the graph historical changes between any two
consecutive key snapshots are stored in a log file. Each
log file is accompanied with its valid time interval. The
existing models in this category are continuous.

. Distributed Graph over Servers: dynamic graph distribu-
tion can be categorized based on two parameters:

. Time: divides the graph historical changes according to
time over a set of servers. Each server is responsible
for a period of time.

. Structure: divides the graph structure (e.g., vertices
distribution) over a set of servers. Each server is
responsible for managing its vertices by storing and
retrieving their historical changes.

This survey discusses distributed graph over servers from
a structural perspective. Thats because the distribution
based on time can be merged with any of the other
categories as an improvement, without affecting the man-
agement (i.e., storing and retrieving) of the used model
of the merged category. In contrast, distribution based on
structure affects the management of the used model of
the merged category.

B. Sequence Of Snapshots

Varieties of this category have been proposed in Rossi’s
model[20], FVF[21], and Yang’s model[14]. This category
models dynamic graphs as a sequence of snapshot G[t1,tn]=
{G1, G2, G3, ..., Gn}. Each snapshot Gi is a static graph that
represents the valid state of the dynamic graph at time point
ti. The snapshot is represented by a triple < Vi, Ei, ti > and
is stored by its time point ti.

Storing sequence of snapshots naively as in Yang’s
model[14], and Rossi’s model [20] would clearly require a
prohibitively large storage. FVF[21] proposes Find Verify and
Fix ”FVF” framework which takes sequence of snapshots that
are produced in a compressed storage model as input. This
compressed storage model stores a set of key snapshots and the
associated set of deltas. The set of key snapshots is intended
to be much smaller than the original set of all snapshots. A
set of deltas stores only changes that are needed to completely
construct a snapshot from its related key snapshot by merging
the key snapshot with the proper delta.

In FVF, the sequence of snapshots is divided into clusters
based on similarities among them. Each cluster has two
representative graphs (G∪ and G∩), where G∩ is the largest
common sub-graph of all snapshots in the same cluster, and
G∪ is the union of the smallest sub-graphs of all snapshots in
the same cluster. FVF needs to access the two representative
graphs of the Gi’s cluster as well as the snapshot Gi itself
for answering a query (e.g., node-centric) on Gi snapshot.
Compressed Storage Models ”SM” have been discussed in
FVF[21] for storing these clusters. However, the most efficient
one is called SM-FVF. It saves four deltas for each cluster C,
which has k snapshots.

. First, D(G∩, GP∩): the needed edges to be inserted or
deleted from GP∩ to get G∩, where the GP∩ is the G∩

of the previous cluster.
. Second, △(G∪, G∩): the set of edges that exists in G∪

and does not exist in G∩.
. Third, △(G1, G∩): the set of edges that exists in G1 and
does not exist in G∩.

. Finally, D(Gi, Gi−1), ∀ 2 < i < k: the needed edges to
be inserted or deleted from Gi−1 to get Gi.

Resulted storage of one cluster can be computed as in (1).

SM − FV F (C) = {D(G∩, GP∩),△(G∪, G∩),

△(G1, G∩), D(Gi, Gi−1), ∀2 < i < k}[21] (1)

The SM-FVF compressed model has no redundancy among
delta files of the same cluster, but it has redundancy among
delta files of different clusters. This redundancy is ignored
relatively to the naive model which has a lot of redundant

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

575 | P a g e
www.ijacsa.thesai.org

data among its sequence of snapshots. A downside of this
compressed model is that it needs to access [G1∩, G(i−1)∩]
for constructing G∩i

. Therefore, it is suitable for queries that
need to be applied over the whole sequence of snapshots. We
suggest replacing the delta file D(G∩, GP∩) of each cluster
i with a delta file that contains Gi∩ edges and vertices for
improving queries that need to access only one snapshot or
few snapshots.

Evaluating a snapshot Gt is straight forward procedure in
sequence of snapshots category. It is done by either finding
the exact time point t or the nearest time point to it in order
to return its associated pair < V,E > in the naive model or
by constructing it in the compressed model.

In conclusion, the compressed model in FVF[21] is more
efficient with regard to the used storage than the naive
model described by Yang[14], and Rossi[20]. However, the
naive model is faster than the compressed model in query
performance due to the consumed construction time in the
compressed model.

C. Whole Graph

In this category, dynamic graphs is modeled as one large
graph G[t1,tn] = < V[t1,tn], E[t1,tn] >, where V[t1,tn] and
E[t1,tn] are set of all vertices instances and edges instances
respectively. Alternatives of this category have been proposed
in koloniari’s model1 [22], Huo’s model[23], [24], TPM[25],
FSDNs[15], and Evo-graph[16].

Dynamic graphs in this category can be basically repre-
sented as a two sets methodology: vertices set and edges set
as models presented by koloniari in [22], and Huo in[23],
[24]. Each element of the edges set and the vertices set can
be represented as a triplet < srcID, desID, [ts, te] > and
< vID, {att}, [ts, te] > respectively, where the accompanied
interval [ts, te] represents only one valid interval. This method-
ology has downsides in its storage by storing the same ele-
ment multiple times with different valid time intervals which
happens in case of an element existence and re-existence.
Alternatively, the temporal provenance model ”TPM” [25]
provides another representation of the two set methodology.
Each vertex of the vertices set can be either entity instance
with a triplet < vID, {att}, ts > or timed folder/path node
with a triplet < vID, {att}, (ts, d) >. Timed folder node and
timed path node are containers that are used for storing queries
results. Each edge of the edges set represents a relationship
between two vertices and it does not have any time notion.
Fig. 2 provides more information about vertices and edges
notions of the TPM (i.e., the relation types as well as the
entities types). TPM suffers from a number of drawbacks
regarding to storage that are concluded a follows:-

. TPM Stores redundant vertices. For example, when an
entity starting connection with another entity, new two
vertices are created corresponding to them with new IDs
and the same data.

. Some results of queries are stored also in the same graph
as Path/Folder nodes which increase the graph size.

The two set methodology drawbacks are avoided in Fixed
Schedule Dynamic Networks ”FSDNs”[15]. The paper pro-
poses a data structure that allows storing only the new valid

time interval deduced from the re-existence rather than re-
storing the whole elements. The data structure consists of
set of vertices, where every vertex element is a triplet <
vID, I, {Neighbor} >. The vertex contains a set of its valid
time intervals I as well as a set of its neighbors. Each neighbor
is a triplet < nID, I, att >, where the set I represents valid
time intervals of this neighbor’s connection. This data structure
has downsides regarding to its storage by storing each edge
twice (i.e., once at each end point vertex). However, in both
methodologies, element intervals do not intersect.

Furthermore, there are models in the whole graph category
that not only store the historical changes of dynamic graphs
but also, store the types of changes themselves like Evo-
graph [16]. The Evo-graph model states the vertices versions
of dynamic graphs and the types of changes themselves that
produced these versions. Evo-graph consists of two intercon-
nected components: data-graph and change-graph. Data-graph
comprises all vertices versions of the actual data. Each data
vertex version is a pair< vID, {att} > and is connected
to another data vertex by data-graph edge. The change-graph
contains the change types that produce new vertices’ versions
in data-graph as shown in Fig. 3. Each change-graph vertex is a
triplet < vID, changeType, timeStamp > and is connected
to another change vertex by a change-graph edge. Evo-graph
components are connected by evolution edges. An evolution
edge connects two data-graph vertex versions (i.e., before and
after a change operation) with a change-graph vertex (i.e., the
change operation itself). The Evo-graph model suffers from
a number of drawbacks, the main of such drawbacks can be
summarized as follows:-

. It is not applicable for all graph networks due to its
structure

. Regarding to storage, the same vertex is stored several
times using any type of change except the update type as
shown in Fig. 3.

Retrieving a snapshot Gt in the whole graph category
is costly because the search space is the whole graph. The
snapshot is evaluated by traversing the whole graph elements
to capture its valid elements only at time t. The valid element
at time t is an element whose time point is t or its time interval
contains t. Huo’s model [23], [24] proposes a temporal parti-
tioning for improving time point query performance. However,
the node-centric query is efficient in FSDNs[15] due to its data
structure, where a node is selected then the search is expanded
to its neighbors list.

In temporal partitioning, the whole graph time interval is
distributed over partitions. For example, given n time instants
and the fact that each partition can have m time instants, then
[n/m] partitions will be generated. Edges and vertices that have
overlapped time intervals over more than one partition will be
duplicated in these partitions. While this duplication allows
time point query to access one partition rather than accessing
the whole graph, it increases the TPM storage size. On the
other hand, this portioning makes the small time interval query
access two partitions in the worst case. Therefore, Huo in
[24] applies overlapped partitioning for improving the perfor-
mance of the small interval query and reducing the number
of accessed partitions. However, the overlapped partitioning
consumes more storage (i.e.., 50% overlapping will lead to
100% redundancy).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

576 | P a g e
www.ijacsa.thesai.org

Fig. 2: Temporal Provenance Model notions [25]

Fig. 3: Effect of snap change operations on the Evo-graph [16]

In conclusion, it is found that FSDNs[15] is the most
efficient model in the used storage but, Huo’s model [23], [24]
is the most efficient model in query performance due to the
overlapped partitioning.

D. Log File

The main idea of this category is based on materialization,
which is a process of storing a set of dynamic graph snapshots
and delta log files between them. Varieties of this category have
been presented in Koloniari’s model2[19], [17], Khurana’s
model [18], and Chronos[26]. This category models dynamic
graphs as G[t1,tn=crr] = < Gtcrr , L,M >, where Gtcrr is a
snapshot that represents the current dynamic graph state, L is
a set of log files L = {L1[ts1 ,te1]

, L2[ts2 ,te2]
, ..., Ln[tsn ,ten]},

each representing the historical changes, which occurred dur-
ing its associated time interval [tsi , tei] and M is set of
materialized snapshots, each representing dynamic graph state

at the beginning of a log file.

Materializing snapshots has three types [19]:

. Time-based: the duration between any two consecutive
materialized snapshots is constant.

. Operation-based: the number of historical changes of any
log file is constant [18].

. Similarity-based: similarities between any two consecu-
tives snapshots do not exceed a threshold value [19] [26].

The details of each type are summarized in TABLE. I showing
the advantages and the disadvantages of each of them.

The vital issues of the log-file category are: storing the
materialized snapshots and structuring the log files. Firstly,
materializing snapshots raises a problem of how the model
can efficiently store them considering their growing number.
Chronos[26] stores each materialized snapshot as a block at
the beginning of its corresponding log file. Koloniari [19],

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

577 | P a g e
www.ijacsa.thesai.org

TABLE I: Materialization types comparison

Time-based Operation-based Similarities-based

Advantage The overhead for deciding a new snapshot mate-

rialization is minimal.

The overhead for deciding a new snapshot mate-

rialization is minimal. - The threshold value is defined by the user

so, the materialized snapshots redundancy

ratio is acceptable by the user.

- It balances between the redundancy ratio

and the log file size.

Disadvantage When the changes of a dynamic network do not

occur uniformly, time periods that have many

changes produce a very big log file size and time

periods that have few changes produce a very

small log file size. The big file size leads to an

increase in the construction cost.

Big redundancy between materialized snapshots

for example [19]:-

- When a file contains changes and their

reverse, the two bounded snapshots have

a lot of redundancy.

- When a file contains changes of specific

graph elements (edges, vertices), the two

bounded snapshots have a lot of redun-

dancy.

High overhead for deciding a new snapshot mate-

rialization because of computing snapshots simi-

larities periodically.

[17] provides the naive solution of storing the materialized
snapshots as a sequence of snapshots. The two mentioned
strategies materialize snapshots commonalities in a redundant
manner as they store the whole materialized snapshot every
time. This redundancy can be avoided using the graph pool
component proposed in Khuranas model[18].

The Graph-pool component has two parts: overlaid snap-
shots and Graph-ID bit mapping. Graph-pool stores all snap-
shots elements (e.g., edges, vertices and attributes of them) in
one large graph, in a compact manner. It stores each different
element only once associated with a mapping string that maps
the element to its related active snapshots including both
materialized snapshots and retrieved historical snapshots. For
processing a snapshot of the graph-pool, Graph-ID bitmapping
stores for each overlaid snapshot s the following information:-

. Snapshot ID.

. Bits’ indices: they provide the indices of bits that repre-
sent the s snapshot at all elements mapping strings. For
example, each materialized snapshot is represented by 1
bit in the mapping string to decide if the element of the
mapping string is related to the materialized snapshot or
not.

. Dep-ID: the overlaid historical snapshot marks the used
materialized snapshot in construction as dependent. That
happens when the size of the commonality between the
historical snapshot s and the used materialized snapshot
is large relative to the materialized snapshot size. This
prevents traversing the whole graph-pool elements for
setting the corresponding bits of the historical snapshot.

While this compression eliminates the stored materialized
snapshots redundancy by storing each different element only
once, it leads to processing overhead on the graph-pool.
The overhead comes from traversing the whole graph-pool
elements for overlaying a new snapshot or deleting an existing
one. For example, when a snapshot is pulled to memory, it is
overlaid on the graph-pool edge by edge and node by node
(i.e., it traverses the whole graph-pool elements to fill its
related bits in the mapping string). The graph-pool periodically
deletes the unnecessary snapshots when there is no query load
or when memory is needed for a better storage management.
The snapshot deletion is accomplished by traversing the whole
graph-pool elements to reset its corresponding bits’ indices

of each element’s mapping string. A graph-pool element is
removed, when its mapping string contains only one snapshot
that will be deleted. Removing those unnecessary elements of
the graph-pool decreases the used storage.

Secondly, it is important to examine the log file structure
to decrease the construction time, since the log files store
the graph historical changes and they are used in snapshots
reconstruction. A log file can be structured as storing all graph
historical changes according to their occurrence time as in
Koloniaris model [19]. This needs much construction time
for traversing all changes of the log file till the target time.
Alternatively, Khurana [18] proposed a delta-graph component
that isolates topological evolution from attributes evolution as
well as any other type that can be defined by the user. The
isolation improves the construction performance by specifying
the target evolution type. chronos [26] also isolates the log
file’s historical changes, but it isolates nodes evolutions from
edges evolutions (e.g., edges files and vertices files). It stores
the historical changes after the materialized part block in a
locality layout for a better performance, which speeds up the
reconstruction time of a specific vertex or edge at a particular
time t.

The vertex file structure as well as the edge file structure
is similar. For example, an edge file in Chronos [26] stores the
vertices identifiers in its headers. For every vertex, the edge
file stores a detail block. A detail block starts by listing all
edges of its vertex at the beginning of the associated time
interval. Then it stores a list of changes to this vertex edges
(i.e., add edge, delete edge and update edge). This structure
enforces constructing the corresponding materialized snapshot
before constructing the target snapshot itself.

The Delta-graph component[18] is a directed graphical
structure, which is maintained as a weighted graph and is
stored in memory. It is used for managing the log files and
reconstructing snapshots with the lowest possible number of
historical changes. Delta-graph provides multiple hierarchies
for improving the reconstruction phase; each is corresponding
to an evolution type. Every hierarchy contains statistics about
the log files but not the actual data [18]. However, the actual
files content are stored on disk. The lowest level nodes of the
delta-graph are corresponding to the materialized snapshots.
The edges between the leave nodes represent the log files

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

578 | P a g e
www.ijacsa.thesai.org

that are needed to construct two consecutive snapshots from
each other. However, each interior node has k children and
is corresponding to a graph that is constructed by applying
a differential function {intersection, skewed, balanced, empty
....} over its children. The edges between the interior nodes
represent the files that are needed to construct a child node
from its parent node. Moreover, the highest level node (root)
is not corresponding to a graph. Each hierarchy can have a
different differential function. While delta-graph component
improves the performance of the reconstruction phase by
isolating the evolution types, it stores overhead files for the
interior edges.

Khuranas model [18] suffers from two drawbacks related
to storage and performance because of the overhead induced
by its delta-graph, and graph-pool components respectively.
First, the storage overhead is caused from saving the files of
the delta-graph edges connecting between the interior nodes.
These files do not store the correct graph historical changes
as mentioned previously. From our study, we deduce that, the
number of these files can be computed as in (2).

Numberoffiles = k ∗ Σ
(logkn)−1
i=1 ki (2)

(k: delta-graph arity, n: # of nodes of the lowest level) logk n is

the delta-graph levels number and Σ
(log

k
n)−1

i=1 ki is the number
of the delta-graph interior nodes.

Furthermore, the graph-pool stores at most k snapshots
for every delta-graph level during constructing it (i.e., when
a delta-graph level completes its k snapshots, it constructs
their parent. Then graph-pool deletes them).Also each graph-
pool element stores at most two overhead bits for every
unrelated snapshot in its mapping string. Second, the models
performance is affected by the processing over head required
by the graph-pool to traverse all the graph-pool elements in
order to overlay or delete a single snapshot, even though, some
of the graph-pool elements may not exist in the snapshot to
be overlaid or deleted. From our study, we deduce that, there
is a relation between the storage and performance of khuranas
model as presented in TABLE. II.

TABLE II: Storage and performance behaviors based on Pa-
rameter

Prameter Storage performance

- Log file size (L) increased

↑

graph-pool size de-

creased ↓

snapshot construction cost

increased ↑

- delta-graph arity (k) in-

creased ↑

graph-pool size in-

creased ↑

of delta-graph level de-

creased ↓ and snapshot con-

struction performance de-

creased ↓

- # of isolated delta-graphs

increased ↑

delta-graph size in-

creased ↑

snapshot construction per-

formance decreased ↓

Sometimes the retrieved historical snapshots need to be
stored for analytical processing or processing in general. These
snapshots can be stored in a compact manner like Khurana’s
model [18] in which, they are saved in graph-pool with the
materialized snapshots. This needs much time for processing
as mentioned before. Chronos [26] proposed a model for
storing the retrieved snapshots, which pays attention to time
locality. This enhances snapshots processing performance. The

model consists of two arrays: vertex-array, and edge-array.
The vertex-array groups the vertex’s versions across all the
snapshots placing multiple versions of the same vertex one
after the other. The edge-array groups the edges with source
vertex or destination vertex. Every edge-array element contains
{edge Id, target-node Id, a mapping string: which contains one
bit for each snapshot as a flag, and the corresponding weight of
each related snapshot (i.e., w0

ij represents the weight of edge

eij at snapshot 0)}. While this structure decreases the number
of cash miss during processing, which improves processing
performance, it has redundancy among every vertex versions
in the vertex-array.

In Chronos [26] the log file structure as well as the pro-
posed model of the retrieved historical snapshots is compatible
in locality layout design. To increase locality benefit, Chronos
proposed a Locality-Aware Batch Scheduling ”LABS” that
makes processing execution aligned with the underlying layout
design [26]. LABS enables accessing the edge-array once
for all snapshots rather than accessing N times one for each
snapshot. LABS improves the parallelization and incremental
computations performance, for more details check the follow-
ing paper [26].

Evaluating a snapshot Gt in the log file category is accom-
plished by construction using the corresponding log file and
the corresponding materialized snapshot, which is very costly.
In Chronos model[26], constructing the corresponding mate-
rialized snapshot is required before constructing the historical
snapshot itself. However, in the materialized graph sequences
of Koloniari’s model2 [19], the materialized snapshot is re-
trieved, and then the needed snapshot is constructed directly.
Moreover, Koloniari provides partial reconstruction in [17] for
constructing the target sub-graph rather than constructing the
whole snapshot in case of node-centric query, which improves
the node-centric query performance. In [18], it uses delta-graph
component to construct the target snapshot as follows:

. A temporary node is created between the corresponding
two nodes of the selected materialized snapshots.

. The corresponding edges log files of the created node are
estimated.

. Dijkstra’s shortest path algorithm is applied on delta-
graph.

. Finally, the historical changes of the resulted path with
the lowest cost from the root to the temporary node is used
to reconstruct the target snapshot. This path contains the
minimum number of changes that are needed to construct
the target snapshot.

The edge cost represents its file size, which depends on the
query evolution type (e.g., topological, node attributes,... etc).
For retrieving more than one snapshot, rather than applying
Dijkstras shortest path algorithm multiple times for finding the
path with the lowest cost of every target snapshot, it computes
the lowest-weight steiner tree that connects the root and the
added temporary nodes.

As a conclusion, it is found that Khurana’s model[18] is
more efficient than the other two models regarding to the
used storage of the materialized(or historical) snapshots in
memory. However, Chronos’s model [26] is faster than the
other two models regarding to processing phase over the
retrieved historical snapshots because of LABS. On the other

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

579 | P a g e
www.ijacsa.thesai.org

hand, Khurana’s model [18] is the fastest in the snapshot
reconstruction phase.

E. Distributed Graph over Servers

Dynamic graph vertices in this category are divided over a
set of servers S. Each server is responsible for managing (i.e.,
storing and retrieving) its vertices historical changes. Varieties
of this category have been proposed in G∗[6], MG∗[27], and
Kineograph[28], where the vertices are assigned to servers
based on their hash-value.

The two main issues of the distributed graph over servers
category are: the way of assigning vertices to servers, and the
way of storing historical changes at each server. Primarily, the
current existing criterion that controls the decision of assigning
vertices to servers raises servers communication problem. So,
it is important to consider a new vertices distribution technique,
which decreases assigning connected vertices pairs to different
servers.

The second issue of this category is representing the
historical changes in a server efficiently taking into account
the continuous growing. The historical changes of a server can
be represented by any of the previously mentioned categories.
For example, every server can represent its historical changes
as a sequence of snapshots like Kineograph [28]. A snapshot
consists of a set of vertices and provides topological evolution
only, where each vertex is accompanied with an adjacent
list that representing the vertex outing edges. Storage wise,
Kineograph is not efficient as it stores a lot of redundancy
among the stored sequence of snapshots. This redundancy is
avoided in G∗ [6]. G∗ provides compact graph index ”CGI”,
which is compressed data structure for storing the historical
changes of the server’s sub-graph as a sequence of snapshots in
a compact manner. Each snapshot in G∗ model is represented
as a triplet < Id, {att}, vertexSet >. The compression
comes from storing every vertex version only once. G∗ rep-
resents a vertex version as a vertex location pair ”VL-pair”
< vertexID,Disk Location > that map each vertex Id to
the vertex version location on-disk, where the vertex version
actual data is stored. To accomplish this compression idea, G∗

combines every common set of vertices versions over snap-
shots in one map index. After that, it associates every map to
its relevant snapshots. This architecture enables computations
sharing across snapshots, which accelerates query processing.
For example, when processing is applied on a vertex version,
the obtained results are shared with all the other snapshots
containing this version.

However storing data on disk requires many disk access,
G∗ proposes a schema for the on-disk data to minimize the
number of disk access by grouping the vertex and its outing
edges as one unit. Therefore, loading and storing a vertex and
its outing edges occur at the same time. Every vertex version is
stored as V(graph.Id, Id, att1, att2,..., edgeSet), where edgeSet
are the vertex outing edges. Moreover, every edge schema is
E(graph.Id, vertex.Id, des.Id, att1, att2,...). one more gain of
this schema is that it enables a vertex versions to share their
attributes commonalities as mentioned in G∗ [6].

Due to the continuous increase in snapshots number, G∗

has update time overhead in CGI. The overhead comes from
finding the commonalities between the newly added snapshot

and the stored snapshots to keep storing each vertex version
only once. G∗ proposes a split CGI as an enhancement by
splitting the CGI to a set of CGIs using a threshold value
of the maximum update time. In the split CGI, each CGI is
responsible for a set of snapshots. Therefore, the split CGI has
redundancy among CGIs. CGI is better than the split CGI in
the used storage. On the other hand, the split CGI is better
than CGI in the performance.

MG∗, a modified model of G∗, efficiently solved the
update overhead problem [27]. MG∗ represents the historical
changes of every server as represented in the log file category.
Every server materialized snapshot in MG∗ is represented by
the CGI data structure and the vertices actual data are stored
on disk using the same schema of G∗ [6]. The in-between
historical changes of the materialized snapshots are stored as
log files with fixed size for bounding the construction time.
The MG∗ stores the historical changes in a temporary list,
to reduce the number of writing them to disk from O to one
time instead (i.e., O is number of events that will be stored
in the log file). According to such modification, in the update
process, the MG* only appends the historical changes to the
temporary list, consuming almost no time in comparison to
G∗. Moreover, the total used memory of MG∗ is better than
that of G∗, where the difference is order of magnitude. That is
because MG∗ transfers a huge part of the historical changes
from memory to disk in the form of log files.

A snapshot Gt is evaluated in the distributed graph over
server category by instructing each server to retrieve its part at
time point t, then the master server returns the aggregation of
the retrieved parts as the final results. Even though, models in
this category have the same flow of retrieving a snapshot, they
have different performance due to the different ways of repre-
senting the historical changes in the corresponding servers. For
example, Kineograph has the best performance in this category
due to its naive structure. On the other hand, MG∗ has the
worst performance due to the snapshot construction phase.
However, MG∗ provides completely accurate snapshots, thus,
it produces completely accurate results of queries as it stores
all historical changes. In contrast the other two models do not
guarantee complete accuracy of the retrieved snapshots.

F. Dynamic Graph Models Summary

For each previously mentioned model, we present a sum-
mary of the remaining dynamic graph properties that are
considered independent from the category to which the model
belongs to, as shown in TABLE III.

To provide a full overview of the discussed dynamic graph
models in this survey, TABLE IV summarizes these models
based on five criterions: retrieving performance of a snapshot
Gt, update performance of a historical changes unit, existing
redundancy, used memory storage, and used disk storage. The
evaluation of each criterion is denoted by five levels: Very-
Low, Low, Medium, High, and Very-High.

V. DYNAMIC GRAPH ALGORITHMS OUTPUT

REPRESENTATION

Because of the addition of time parameter to dynamic
graphs, algorithms on dynamic graphs are more complicated

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

580 | P a g e
www.ijacsa.thesai.org

TABLE III: Dynamic graph models properties.

Model Type Graph Type What to Query Evolution

Dynamic graph Model Discrete Cont Directed Undirected Topology Attribute Topological Attribute

node edge node edge

FVF model X X X X X X

Rossi’s model X X X X X X

Yang’s model X X X X

koloniari’s model1 X X X X X

Huo’s model X X X X X X X X

FSDNs model X X X X X

TPM model X X X X X X X

Evo-graph model X X X X X X X

Koloniari’s model2 X X X X X X

Khurana’s model X X X X X X X X X

Chronos model X X X X X X X X X

G∗ model X X X X X X X X X

MG∗ model X X X X X X X X X X

Kineograph model X X X X X X

TABLE IV: Dynamic graph models performance.

Dynamic graphs Model Retrieve performance of Gt Update Performance Redundancy Memory Storage Disk Storage

FVF model High High Low Medium Low

Rossi’s model Low Low Very-High High -

Yang’s model Low Low Very-High High -

koloniari’s model1 High Low Medium High -

Huo’s model Medium Low Medium High -

FSDNs model High Low Very-High Very-High -

TPM model High Low Medium Medium -

Evo-graph model High Low Very-High Very-High -

Koloniari’s model2 High Low Medium Medium Low

Khurana’s model High Medium - Low Low

Chronos model Very-High Low Medium Medium Medium

G∗ Server Medium High Low Medium Medium

MG∗ Server High Low Very-Low Low Medium

Kineograph Server Low Low High High -

G∗ model Low Medium Low Medium Medium

MG∗ model Medium Very-Low Very-Low Low Medium

Kineograph model Very-Low Very-Low High High -

compared to algorithms on static graphs. Therefore, the output
representation of dynamic graph algorithms is different.

Since static graph elements have no validation time, static
algorithms of the same problem can produce the same output
elements given the same input elements. On the other hand, the
added time parameter on dynamic graphs introduces multiple
validation times to dynamic graph elements. The validation
time of each element belongs to the dynamic graph time
interval. Furthermore, dynamic graph algorithms of the same
problem cannot produce the same output elements given the
same input elements because of the way of handling the
time parameter. On light of such difference, we introduce a
novel classification for dynamic graph output representation,
assuming that the dynamic graph time interval is [ti, tj], where
i < j as follows:

. Single dynamic solution: results from applying a dynamic
graph algorithm only once over a dynamic graph, where
its elements are valid at time interval [ti, tj]. This solution
elements have different validation times, which belong to

the time interval [ti, tj] [14][15][29][30].
. Multiple static solutions: this type of output results from
applying a static graph algorithm once at each snapshot
of the sequence of snapshots that are valid at time interval
[ti, tj]. All elements of each solution are valid at single
time point [21].

. Multiple dynamic solutions: this type is similar to the
first type with a little difference. While dynamic graph
algorithm is also applied once on a dynamic graph, the
output is a set of dynamic solutions. Each solution is valid
at a sub-interval, wich belongs to the time interval [ti, tj].
Furthermore, each solution is the optimal solution during
its sub-interval time [23].

. Single aggregated solution: this output is obtained by
applying an aggregation function over a set of static or
dynamic solutions. Also, it is considered as a second stage
after getting the solutions set by the second or the third
type of the output representation at the first stage [23].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

581 | P a g e
www.ijacsa.thesai.org

VI. CONCLUSION AND FUTURE WORK

In the real world, networks continuously evolve with time
and need to be stored in a dynamic graph that handles such
intrinsic property. The contribution of this survey is to provide
a complete and thorough overview of dynamic graphs and its
related problems, and conclude and compare the prominent
work done on this topic. We accomplished our goal by ex-
plaining the related terminologies of dynamic graph temporal
evolution and query operators. The survey also proposes a
novel categorization of the existing dynamic graph models
while discussing the main issues of each category. Another
novel classification, regarding the output representation of
dynamic graph algorithms, is also presented.

Hence, we can provide a comprehensive toolbox for a
generic dynamic graph model. We suggest a toolbox for a
dynamic graph model that contains the following properties:-

. The dynamic graph model should keep continuous evo-
lutions.

. Support directed and undirected structure.

. No redundancy in the stored data.

. Support temporal evolution with its both types: topolog-
ical and attributes.

. Support all types of query’s attributes: time granularity,
what to query and node granularity.

. Has a good query processing performance.

. The model structure should allow developing dynamic
graph algorithms easily.

REFERENCES

[1] R. L. Breiger, ”The analysis of social networks”, na, 2004, pp. 505-526.

[2] K. Musia, P. Kazienko,” Social networks on the internet”, World Wide
Web, vol. 16, pp. 31-72, 2013.

[3] S. Wasserman, K. Faust, ”Social network analysis: Methods and appli-
cations”, Cambridge university press, vol. 8, Nov 1994.

[4] M. J. Neely, E. Modiano, C. E. Rohrs, ”Dynamic power allocation and
routing for time-varying wireless networks”, Selected Areas in Commu-
nications, IEEE Journal, vol. 23, pp. 89-103, 2005.

[5] E. Khler, K. Langkau, M. Skutella, ”Time-expanded graphs for flow-
dependent transit times”, In AlgorithmsESA, Springer Berlin Heidelberg,
pp. 599-611, Jan 2002.

[6] A. G. Labouseur, et al, ”The g* graph database: efficiently managing
large distributed dynamic graphs”, Distributed and Parallel Databases,
Springer, pp. 1-36, 2014.

[7] A. Bolour, T. L. Anderson, L. J. Dekeyser, H. K. T. Wong, ”The role
of time in information processing: a survey”, ACM SIGART Bulletin, pp.
28-46, Apr 1982.

[8] J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass, ”Temporal
databases: theory, design and implementation”. Redwood City: Benjamin-
Cummings, 1993.

[9] C. J. Date, H. Darwen, N. Lorentzos, ”Temporal data and the relational
model”, Elsevier, 2002.

[10] G. zsoyolu, R. T. Snodgrass, ”Temporal and real-time databases: A
survey”, Knowledge and Data Engineering, IEEE Trans on, vol. 7, pp.
513-532, Aug 1995.

[11] B. Salzberg, V. J. Tsotras, ”Comparison of access methods for time-
evolving data”, ACM Computing Surveys (CSUR), vol. 31, p.p 158-221,
Jun 1999.

[12] R. Snodgrass, I. Ahn, ”A taxonomy of time databases”, In ACM Sigmod
Record, ACM, vol. 14, pp. 236-246, May 1985.

[13] R. T. Snodgrass, ”Tsql2 tutorial”, In The TSQL2 Temporal Query
Language, Springer, US, pp. 33-47, Jan 1995.

[14] Y. Yang, J. X. Yu, H. Gao, J. Pei, J. Li, ”Mining most frequently
changing component in evolving graphs”, World Wide Web, Vol. 17, pp.
351-376, May 2014.

[15] B. B. Xuan, A. Ferreira, A. Jarry, ”Computing shortest, fastest, and fore-
most journeys in dynamic networks”, International Journal of Foundations
of Computer Science, vol. 14, pp. 267-285, Apr 2003.

[16] G. Papastefanatos, Y. Stavrakas, T. Galani, ”Capturing the history and
change structure of evolving data”, In Proc. of the 5th Int. Conf. on
Advances in Databases, Knowledge, and Data Applications, pp. 235-241,
2013.

[17] G. Koloniari, E. Pitoura, ”Partial view selection for evolving social
graphs”, In Proc. of the First International Workshop on Graph Data
Management Experiences and Systems, ACM, p.9, Jun 2013.

[18] U. Khurana, A. Deshpande, ”Efficient snapshot retrieval over historical
graph data”, In Proc. of the 9th IEEE Int. Conf. Data Engineering (ICDE),
IEEE, pp. 997-1008, Apr 2013.

[19] G. Koloniari, D. Souravlias, E. Pitoura, ”On graph deltas for historical
queries”, In WOSS, Feb 2013.

[20] R. A. Rossi, B. Gallagher, J. Neville, K. Henderson, ”Modeling dynamic
behavior in large evolving graphs”, In Proc. of the 6th ACM Int. Conf.
on Web search and data mining, ACM, pp. 667-676, Feb 2013.

[21] C. Ren, E. Lo, B. Kao, X. Zhu, R. Cheng, ”On querying historical
evolving graph sequences”, Proceedings of the VLDB Endowment, vol.
4, pp. 726-737, 2011.

[22] G. Koloniari, K. Stefanidis, ”Social search queries in time”, In PersDB,
2013.

[23] W. Huo, V. J. Tsotras, ”Efficient temporal shortest path queries on evolv-
ing social graphs”, In Conference on Scientific and Statistical Database
Management, SSDBM, vol. 14, p.38, Jun 2014.

[24] W. Huo, ”Query processing on temporally evolving social data”, PhD
dissertation, University of California, Riverside, 2013.

[25] S. M. R. Beheshti, H. R. Motahari-Nezhad, B. Benatallah, ”Tem-
poral Provenance model (TPM): model and query language”, CoRR,
abs/1211.5009, Nov 2012.

[26] W. Han, and et al, ”Chronos: a graph engine for temporal graph
analysis”, In Proc of the 9th European Conf. on Computer Systems, ACM,
p. 1, Apr 2014.

[27] A. Zaki, M. Attia, D. Hegazy, S. Amin, ”Efficient distributed dynamic
graph system”, In Proc. of the 7th Int. Conf. on Intelligent Computing
and Information System, IEEE, pp. 667-676, 2015.

[28] R. Cheng, and et al, ”Kineograph: taking the pulse of a fast-changing
and connected world”, In Proc. of the 7th ACM European Conf. on
Computer Systems, ACM, pp. 85-98, Apr 2012.

[29] M. A. Sakr, R. H. Gting, ”Group spatiotemporal pattern queries”,
GeoInformatica, vol. 18, pp. 699-746, Oct 2014.

[30] S. Huang, J. Cheng, H. Wu, ”Temporal graph traversals: definitions,
algorithms, and applications”, CoRR, abs/1401.1919, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

582 | P a g e
www.ijacsa.thesai.org

