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Abstract

Background: Triple-negative breast cancer (TNBC) is a highly heterogeneous group of cancers, and molecular subtyping

is necessary to better identify molecular-based therapies. While some classifiers have been established, no one has

integrated the expression profiles of long noncoding RNAs (lncRNAs) into such subtyping criterions. Considering the

emerging important role of lncRNAs in cellular processes, a novel classification integrating transcriptome profiles of both

messenger RNA (mRNA) and lncRNA would help us better understand the heterogeneity of TNBC.

Methods: Using human transcriptome microarrays, we analyzed the transcriptome profiles of 165 TNBC samples. We

used k-means clustering and empirical cumulative distribution function to determine optimal number of TNBC subtypes.

Gene Ontology (GO) and pathway analyses were applied to determine the main function of the subtype-specific genes

and pathways. We conducted co-expression network analyses to identify interactions between mRNAs and lncRNAs.

Results: All of the 165 TNBC tumors were classified into four distinct clusters, including an immunomodulatory subtype

(IM), a luminal androgen receptor subtype (LAR), a mesenchymal-like subtype (MES) and a basal-like and immune

suppressed (BLIS) subtype. The IM subtype had high expressions of immune cell signaling and cytokine signaling genes.

The LAR subtype was characterized by androgen receptor signaling. The MES subtype was enriched with growth factor

signaling pathways. The BLIS subtype was characterized by down-regulation of immune response genes, activation of cell

cycle, and DNA repair. Patients in this subtype experienced worse recurrence-free survival than others (log rank test,

P = 0.045). Subtype-specific lncRNAs were identified, and their possible biological functions were predicted using

co-expression network analyses.

Conclusions: We developed a novel TNBC classification system integrating the expression profiles of both mRNAs and

lncRNAs and determined subtype-specific lncRNAs that are potential biomarkers and targets. If further validated in a larger

population, our novel classification system could facilitate patient counseling and individualize treatment of TNBC.
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Background
Contrary to their description in previous studies as being

useless transcripts, long noncoding RNAs (lncRNAs) are

emerging as important regulators in gene regulation and

other cellular processes [1–6]. Recent studies have proved

that lncRNAs are tightly correlated with disease processes,

including cancer [4, 7–10]. The roles of lncRNAs in breast

cancer have also been widely researched, and a number of

novel mechanisms have been proposed [1–3, 11]. As with

other cancers, lncRNAs are involved in several develop-

mental and tumorigenic processes of breast cancer. Liu

et al. [2] reported that the lncRNA NIKLA, can directly

interact with the functional domains of signaling proteins,

serving as a class of NF-κB modulators to suppress breast

cancer metastasis. Another lncRNA, BRCA4, was reported

to direct cooperative epigenetic regulation downstream of

chemokine signals, and its expression correlated with ad-

vanced breast cancer [12]. Gupta et al. [13] observed in-

creased expression of the lncRNA, HOTAIR. in primary

breast tumors and metastases, and HOTAIR expression

level in primary tumors was a powerful predictor of even-

tual metastasis and death. Considering the important role

of lncRNAs in breast cancer tumorigenesis and develop-

ment, the study of lncRNAs might aid in understanding

the nature of this malignant disease.

One of the most aggressive breast cancer subtypes is

triple-negative breast cancer (TNBC), which lacks estro-

gen receptor (ER) and progesterone receptor (PR) ex-

pression and human epidermal growth factor receptor 2

(HER2) amplification [14, 15]. TNBC represents ap-

proximately 10–20 % of all breast cancers and has a lar-

ger tumor size, higher grade, more positive lymph

nodes, and poorer prognosis than other subtypes of

breast cancer [16, 17]. Due to the heterogeneity of the

disease and the absence of well-defined molecular tar-

gets, treatment of TNBC remains a clinical challenge.

Differences were observed in the responses of patients

with TNBC to the same adjuvant chemotherapy. Thus,

further classifying this aggressive disease subtype and

treating patients accordingly is a top priority and would

greatly benefit patients.

Several former studies have achieved significant progresses

in classifying TNBC. By analyzing publically available expres-

sion data for messenger RNA (mRNA), Lehmann et al. [18]

advanced the knowledge of TNBC and classified TNBC into

six subtypes: 1) luminal androgen receptor positive (LAR); 2)

claudin-low-enriched mesenchymal (M); 3) mesenchymal

stem-like (MSL); 4) immune response (M); and two cell

cycle-disrupted basal subtypes, 5) basal-like-1 (BL1) and 6)

basal-like-2 (BL2). In the present study, we refer to this as

the Lehmann/Pietenpol classification. However, a subsequent

study using the Lehmann/Pietenpol classification could not

readily distinguish BL1 and BL2 tumors [19]. Moreover, with

recent developments in high-throughput (gene sequencing)

technology, our knowledge of breast cancer is ever expand-

ing, and a classification based merely on gene expression

levels may be insufficient (for prospective individualized can-

cer treatment). A new classification system based on the inte-

grated expression profiles of mRNAs and lncRNAs might

offer more comprehensive data and identify stable subtypes

and subtype-specific targets.

Collectively, we questioned the possibility and utility

of subtyping TNBCs using whole-transcriptome expres-

sion analysis. By integrating the expression profiles of

both mRNAs and lncRNAs, we successfully classified

165 TNBC tumors into four distinct subtypes, each

displaying unique gene expression and ontology. Fur-

thermore, we identified subtype-specific lncRNAs and

predicted their possible biological functions using co-

expression network analysis. Our novel classification sys-

tem could facilitate individualized treatment for patients

with TNBC if validated in other reliable cohorts.

Methods

Patient recruitment

The present prospective observational study was initi-

ated on 1 January 2011. Patients who were diagnosed

with malignant breast cancer and willing to participate

in the study were recruited. A total of 165 consecutive

patients treated in the Department of Breast Surgery at

Fudan University Shanghai Cancer Center (FUSCC)

from 1 January 2011 to 31 December 2012 were enrolled

according to the following inclusion criteria: 1) female

patients diagnosed with unilateral invasive ductal carcin-

oma with phenotype ER–, PR–, and HER2–; 2) patho-

logic examination of tumor specimens performed by the

Department of Pathology at FUSCC. The ER, PR and

HER2 status was reconfirmed by two experienced pa-

thologists (WTY and RHS) based on immunochemical

analysis and in situ hybridization [20]; 3) patients with-

out any evidence of metastasis at diagnosis; and 4) suffi-

cient frozen tissue for further research. Patients with

breast carcinoma in situ (with or without microinvasion)

and inflammatory breast cancer were excluded. Clinico-

pathological characteristics (including age, menopausal

status, tumor histologic type, tumor size, lymph node

status, histologic grade, ER, PR, HER2, Ki67, and adju-

vant therapies) and local and distant extent of disease

(evaluated by chest computed tomography (CT), bone

scan, abdominal ultrasound, bilateral mammography,

breast ultrasound or magnetic resonance imaging (MRI))

were collected [21].

Follow up of patients in the cohort was completed on

31 December 2014. The median length of follow up was

13.9 months (interquartile range, 8.6–21.1 months). Our

definition of recurrence-free survival (RFS) events in-

cluded: the first recurrence of invasive disease at a local,

regional, or distant site; the diagnosis of contralateral
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breast cancer; and death from any causes. Patients with-

out events were censored at the last follow up.

All tissue samples included in this study were obtained

with approval of the independent ethical committee/in-

stitutional review board at Fudan University Shanghai

Cancer Center Ethical Committee, and each patient

signed an informed consent form.

Sample preparation and microarray experiment

Tumor tissues were macro-dissected to avoid the influ-

ence of stromal tissues (<10 %). The percentage of

tumor cells was confirmed to be 90 % or more in all

breast cancer specimens. Total RNA was isolated from

165 frozen TNBC samples using the Rneasy Plus Mini

Kit (Qiagen, Valencia, CA, USA). The purity and quantity

of total RNA were estimated by measuring absorbance at

260 nm (A260) and 280 nm (A280) with RNase-free water

as a blank control, using a NanoDrop 2000 spectropho-

tometer (Thermo Scientific, Wilmington, DE, USA). Only

when the ratio of A260/A280 was within 1.9–2.1, were the

extracted RNAs deemed as pure and suitable for future

experimentation. Microarray analysis was performed using

the Affymetrix Human Transcriptome Array 2.0 (HTA

2.0) GeneChips (Affymetrix, Santa Clara, CA, USA) as

previously described [22].

The mRNA-lncRNA-based TNBC subtyping and the

Lehmann/Pietenpol classification

We performed k-means clustering and consensus clustering

to determine the optimal number of stable TNBC subtypes.

Cluster robustness was assessed by consensus clustering

using agglomerative k-means clustering (1,000 iterations),

with average linkage on the 165 TNBC profiles using the

2,535 most differentially expressed genes (SD >0.65) (Gene

Pattern version 3.2.1, http://www.broadinstitute.org/cancer/

software/genepattern/). The optimal number of clusters

was determined from the empirical cumulative distribution

function (CDF), which plots the corresponding empirical

cumulative distribution, defined over the range, and from

calculation of the proportion increase in the area under the

CDF curve [18]. In addition, we considered the number of

patients in each subtype. If there were fewer than five

patients in one subtype, we deemed the classification as un-

stable. Thus, the optimum number of clusters moved to

the minor number.

The Lehmann/Pietenpol classification system was

established by analyzing 587 TNBC gene expression pro-

files from 21 publicly available datasets [18]. The authors

have developed a web-based subtyping tool for classify-

ing TNBC samples based on their collected gene expres-

sion meta-data [23]. Using this web-based algorithm [23]

(http://cbc.mc.vanderbilt.edu/tnbc/), we obtained sub-

types of our samples in the Lehmann/Pietenpol classifi-

cation system. Spearman’s correlation analysis was used

to assess the relationship between the Lehmann/Pietenpol

classification system and our novel system.

Gene Ontology (GO) and pathway analysis

GO analysis was applied to analyze the main function of

the subtype-specific genes according to the GO database,

which is the key functional classification of the National

Center for Biotechnology Information (NCBI). The ana-

lysis can organize genes into hierarchical categories and

uncover the gene regulatory network based on biological

process and molecular function [24–26]. Meanwhile,

pathway analysis was used to determine the significant

pathways of the differential genes according to the Kyoto

Encyclopedia of Genes and Genomes database (KEGG)

[27]. The Pearson chi-square test and Fisher’s exact test

were used to select the significant pathway.

Co-expression network analysis

To identify interactions between mRNAs and lncRNAs,

we constructed co-expression networks [28]. We pre-

processed the data using the median expression value of

all transcripts and then screened for differentially

expressed lncRNAs and mRNAs among subtypes. For

each pair of genes analyzed, we calculated the Pearson

correlation and chose pairs (only lncRNA-mRNA) with

significant correlation in order to construct the network

(P <0.05). To make a visual representation, only those

with the strongest correlation (correlation coefficient ≥0.95)

were included in the renderings. The co-expression

networks were drawn using Cytoscape 2.8.2 [29],

which is open-source software for integration, analysis

and visualization of biological networks.

Statistical analysis

All analyses were performed according to the reporting

recommendations for tumor marker prognostic studies

(REMARK) for prognostic and tumor marker studies, and

the respective guidelines of microarray-based studies for

clinical outcomes. Frequency tabulation and summary

statistics were used to characterize the data distribution.

Student’s t test was utilized to compare continuous vari-

ables, and the Pearson chi-square test was employed for

the comparison of categorical variables. Survival curves

were constructed using the Kaplan–Meier method and

compared between subtypes with the log rank test. Sur-

vival analyses were performed using SPSS 20.0 (SPSS Inc.,

Chicago, IL, USA). All tests were two-sided, and P <0.05

was regarded as significant, unless otherwise stated.

Microarray data

Microarray data have been deposited into the Gene Ex-

pression Omnibus (GEO) database (http://www.ncbi.nlm.

nih.gov/geo/) [GEO:GSE76250].
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Results
Transcriptome profiling of TNBC reveals four stable

molecular subtypes

According to the inclusion criteria, a total of 165 TNBC

samples qualified for the present study. To identify global

differences in transcriptome profiles in TNBC subtypes,

we performed k-means clustering on the most differen-

tially expressed mRNAs and lncRNAs (SD >0.65). All 165

TNBC tumors were classified into four stable clusters

(Figs. 1 and 2). The robustness of the classification was an-

alyzed by consensus clustering involving k-means cluster-

ing by resampling (1,000 iterations) randomly selected

tumor profiles (Fig. 1). Clinical and pathological character-

istics of patients with TNBC are presented according to

the four subtypes (Table 1).

To understand the nature of each subtype in our system,

GO and pathway analyses were performed to determine

the top GO and canonical pathways associated with

TNBC subtypes. Each subtype, presenting distinct regula-

tor activation and inhibition patterns, was characterized

based on the results. The results were correlated with the

distribution of the Lehmann/Pietenpol subtypes in our

new classification system, which we named the FUSCC

classification. Detailed GO and pathway analysis results of

each subtype are presented in Additional file 1: Table S1.

Cluster A: the immunomodulatory (IM) subtype

In concordance with the Lehmann/Pietenpol classification,

the IM subtype presented unique GOs and pathways in-

volving immune cell process. These processes included

cytokine signaling (cytokine-cytokine receptor interaction),

immune cell signaling (T-cell receptor signaling pathway,

B-cell receptor signaling pathway), antigen processing and

presentation, chemokine signaling pathway, and immune

signal transduction pathway (NF-κB signaling pathway).

The most upregulated gene functions were tightly con-

nected with immune functions, such as immune response,

T cell co-stimulation, and innate immune response. The

genes involved in the most significantly upregulated func-

tions are also involved in the immune response process

(CCR2, CXCL13, CXCL11, CD1C, CXCL10, and CCL5),

which further confirmed the major role of functions re-

lated to immunity in this subtype.

Cluster B: the luminal androgen receptor (LAR) subtype

The LAR type displayed unique GOs, which were highly

enriched in hormonally regulated pathways. Androgen

and estrogen metabolism, steroid hormone biosynthesis,

porphyrin and chlorophyll metabolism, and peroxisome

proliferator-activated receptor (PPAR) signaling path-

ways were significantly elevated in this subtype. Al-

though these tumors were confirmed to be TNBC by

immunohistochemical analysis, the gene expression pro-

filing demonstrated an upregulated estrogen signaling

pathway. These results suggested this subtype might re-

spond to anti-androgen and traditional anti-estrogen

therapies. Thus, to be consistent with previous studies,

we classified this as the LAR subtype [18, 30].

Cluster C: the mesenchymal-like (MES) subtype

This cluster displayed a variety of unique GOs and involved

pathways. Enriched pathways in this subtype included

extracellular matrix (ECM)-receptor interaction, focal adhe-

sion, and transforming growth factor (TGF)-beta signaling

pathway, and processes linked to growth factor signaling

pathways (ABC transporter and adipocytokine signaling

Fig. 1 The identification of novel subtypes of triple-negative breast cancer. a Consensus clustering displaying the robustness of classification.

b Consensus empirical cumulative distribution function (CDF) of all given cluster numbers. c Plot of delta area changes with number of clusters
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pathway). Moreover, the MES subtype had low levels of

genes related to cell proliferation. The decreased prolifera-

tion involved the process of cell division (CCNE2, PARD6B,

CDCA2, KIF2C, SKA1, NEK2, CDK1, CDC6), mitotic cell

cycle (NDC80, CENPW, MAD2L1, CENPI, CCNB1,

CENPF, CCNA2), mitotic prometaphase (MAD2L1,

NCAPG, SGOL1, KIF18A, PLK1), and mitosis (ASPM,

HELLS, KIF11, NUF2). The major subtype of the Lehmann/

Pietenpol classification in this cluster was MSL (Figs. 2

and 3). Altogether, we named this cluster the MES subtype.

Cluster D: the basal-like and immune-suppressed (BLIS)

subtype

For this subtype, the top GOs were enriched in cell div-

ision and cell cycle related pathways (mitotic cell cycle,

mitotic prometaphase, M phase of mitotic cell cycle, DNA

replication, and DNA repair). The enhanced expression of

genes associated with proliferation, such as CENPF, BUB1,

PRC1, further supported the highly proliferative nature of

this subtype. Meanwhile, genes involved in immune re-

sponses (immune response and innate immune response),

immune cell signaling pathways (T cell co-stimulation, T

cell receptor signaling pathway, B cell activation, and den-

dritic cell chemotaxis) and complement activation pro-

cesses were significantly downregulated. Previous survival

analysis indicated that patients in the BLIS subtype experi-

enced worse RFS compared to other patients. This finding

is in concordance with the highly proliferative and

immune-suppressed nature of these tumors.

Association between the FUSCC classification and the

Lehmann/Pietenpol classification system

In the Lehmann/Pietenpol classification system [18],

TNBCs were classified into seven subtypes (BL1, BL2,

Fig. 2 A heat map shows the relative expression of the top differentially expressed RNAs (SD >0.65) in each subtype. Top Gene Ontology (GO)

and canonical pathways of each subtype are shown (left). Upward-pointing arrow upregulated function, downward-pointing arrow downregulated

function. FUSCC Fudan University Shanghai Cancer Center, IM immunomodulatory, LAR luminal androgen receptor, MES mesenchymal-like, BLIS

basal-like and immune suppressed, BL basal-like, M claudin-low-enriched mesenchymal, MSL mesenchymal stem-like, ECM extracellular matrix,

TGF transforming growth factor
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LAR, M, IM, MSL, and UNS), whereas according to the

FUSCC system, TNBC tumors were divided into four stable

subtypes. We then investigated to what extent the FUSCC

subtypes based on integrated mRNA-lncRNA expression

were associated with the mRNA-based Lehmann/Pietenpol

classification (Fig. 2). In Spearman’s correlation analysis, we

found that the two classification systems were significantly

associated with each other (P = 0.039). Further analysis of

the distribution of the Lehmann/Pietenpol subtypes in the

FUSCC classification system revealed that our subtype IM

was nearly identical to the Lehmann/Pietenpol IM type;

our subtype LAR mainly contained the LAR type; our sub-

type MES included all six of the Lehmann/Pietenpol sub-

types, with the MSL and M subtypes accounting for the

Table 1 Clinicopathological characteristics of the four TNBC subtypes based on the FUSCC classification criteria

FUSCC subtypes

Characteristics Number IM LAR MES BLIS P

(total = 165) n = 28 n = 29 n = 55 n = 53

Age, y 0.024

≤50 68 14 (50.0) 6 (20.7) 20 (36.4) 28 (52.8)

>50 97 14 (50.0) 23 (79.3) 35 (63.6) 25 (47.2)

Menopause 0.160

Yes 101 16 (57.1) 23 (79.3) 33 (60.0) 29 (54.7)

No 64 12 (42.9) 6 (20.7) 22 (40.0) 24 (45.3)

Tunor size, cm 0.409

≤2 cm 58 14 (50.0) 12 (41.4) 15 (27.3) 17 (32.1)

>2 cm 104 13 (46.4) 17 (58.6) 39 (70.9) 35 (66.0)

Unknown 3 1 (3.6) 0 (0.0) 1 (1.8) 1 (1.9)

Tumor grade 0.311

≤ II 32 4 (14.3) 9 (31.0) 13 (23.6) 6 (11.3)

> II 104 17 (60.7) 17 (58.6) 33 (60.0) 37 (69.8)

Unknown 29 7 (25.0) 3 (10.3) 9 (16.4) 10 (18.9)

Ki67, % 0.286

<14 8 0 (0.0) 0 (0.0) 3 (5.5) 5 (9.4)

≥14 156 28 (100.0) 29 (100.0) 51 (92.7) 48 (90.6)

Unknown 1 0 (0.0) 0 (0.0) 1 (1.8) 0 (0.0)

Positive lymph nodes 0.019

0 86 8 (28.6) 13 (44.8) 28 (50.9) 37 (69.8)

1-3 29 6 (21.4) 5 (17.2) 10 (18.2) 8 (15.1)

> 3 50 14 (50.0) 11 (37.9) 17 (30.9) 8 (15.1)

Chemotherapy 0.642

Taxane-based 124 21 (75.0) 22 (75.9) 42 (76.4) 39 (73.6)

Non-taxane-based 27 5 (17.9) 3 (10.3) 11 (20.0) 8 (15.1)

Unknown 14 2 (7.1) 4 (13.8) 2 (3.6) 6 (11.3)

Radiotherapy 0.038

Yes 50 16 (57.1) 9 (31.0) 14 (25.5) 11 (20.8)

No 103 11 (39.3) 20 (69.0) 37 (67.3) 35 (66.0)

Unknown 12 1 (3.6) 0 (0.0) 4 (7.3) 6 (11.3)

Follow up, month

Median 13.9 14.7 12.4 14.3 12.6

IQR 8.6–21.1 10.0–22.4 8.6–19.0 10.6–21.5 8.0–18.4

RFS events 22 5 4 4 9

BLIS basal-like and immune suppressed, FUSCC Fudan University Shanghai Cancer Center, IM immunomodulatory, IQR interquartile range, LAR luminal androgen

receptor, MES mesenchymal-like, RFS recurrence-free survival
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majority; and our subtype BLIS mainly contained the

Lehmann/Pietenpol BL1 and M types (Fig. 3).

Survival analysis of patients in the four subtypes

We conducted survival analysis to explore correla-

tions between the four subtypes and RFS. Kaplan–

Meier survival analysis showed that there was no

significant difference in RFS between the four sub-

types (Fig. 4a). However, when we analyzed the data

by comparing one subtype with the others, we found

that patients in the subtype BLIS experienced worse

RFS than the remaining patients with TNBC (Fig. 4b,

log rank P = 0.045).

Identifying subtype-specific lncRNAs and their co-expressed

mRNAs

We identified differentially expressed lncRNAs in each sub-

type by comparing the expression intensity of lncRNAs in

one specific subtype with the others. Differentially upregu-

lated lncRNAs are as shown in Fig. 5. In the IM subtype,

the most upregulated lncRNA was ENST00000443397,

which was tightly correlated with five mRNAs (Fig. 5a).

LncRNA ENST00000447908 was highly expressed in the

LAR subtype, and ten mRNAs were significantly associated

with it (Fig. 5b). In the MES subtype, expression of lncRNA

NR_003221 was increased, and it was positively related with

two mRNAs and negatively associated with one mRNA

(Fig. 5c). LncRNA TCONS_00000027 was also a novel

Fig. 3 Interaction analysis of the Lehmann/Pietenpol and Fudan University Shanghai Cancer Center (FUSCC) classifications. X-axis shows the

subtypes of the new system. Circle size varies in proportion to the number of samples. MSL mesenchymal stem-like, LAR luminal androgen receptor,

M claudin-low-enriched mesenchymal, IM immunomodulatory, BL basal-like, MES mesenchymal-like, BLIS basal-like and immune-suppressed

Fig. 4 Kaplan-Meier plot and logrank test compared recurrence-free survival (RFS) in different subtypes according to the Fudan University Shanghai

Cancer Center (FUSCC) classification. a Difference in RFS among four subtypes. b RFS in patients with the basal-like 1 (BL1) subtype compared to other

subtypes. IM immunomodulatory, LAR luminal androgen receptor, MES mesenchymal-like, BLIS basal-like and immune-suppressed
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lncRNA that was highly expressed in the BLIS sub-

type; nine mRNAs were significantly correlated with

it (Fig. 5d). For these four lncRNAs, we further vali-

dated their subtype-specific expression in a cohort of

breast cancer cell lines and TNBC samples using quantita-

tive real-time PCR (Additional file 2: Figure S5, S6).

On further in situ hybridization, we validated that

lncRNAs TCONS_00000027 were highly expressed in

TNBC samples (Additional file 2: Figure S7). Several

other subtype-specific lncRNAs and their basic infor-

mation are listed in Additional file 2: Figures S1-S4.

Discussion

In the present study, we established a novel TNBC classifi-

cation system, the FUSCC classification, by integrating the

expression profiles of both mRNAs and lncRNAs. TNBC

samples can be clearly classified into four subtypes

according to our system: IM, LAR, MES, and BLIS. Each

subtype has its own unique transcriptome profile. Further-

more, we filtrated out several subtype-specific lncRNAs

and predicted possible functions of these lncRNAs in

TNBC biological processes by analyzing the co-expression

network between lncRNAs and mRNAs. To the best of

our knowledge, the present study is the first to develop a

novel TNBC classification system based on the transcrip-

tome profiles of both mRNAs and lncRNAs in a large

TNBC cohort.

Several novel findings were revealed in our in-depth

transcriptome analysis. First, considering the expanding

roles of lncRNAs in tumorigenesis and disease develop-

ment, we integrated the expression profiles of both

mRNAs and lncRNAs in an attempt to comprehensively

understand the heterogeneic nature of TNBC. By clus-

tering TNBC samples into four unique subtypes, the

Fig. 5 Subtype-specific long noncoding RNAs (lncRNAs) and analysis of their co-expressed messenger RNAs (RNAs). Table shows details of the

lncRNAs. The highest expression group was selected as the reference. Student’s t test, ***P <0.001. IM immunomodulatory, LAR luminal androgen

receptor, MES mesenchymal-like, BLIS basal-like and immune-suppressed, MSL mesenchymal stem-like
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FUSCC classification is more simplified than the former

Lehmann/Pietenpol system, but we could also recognize

some overlaps between the two systems. In the Lehmann/

Pietenpol classification, TNBC patients were assigned to

six different subtypes according to the combined analysis

of 14 publically available RNA profiling datasets [18].

However, subsequent study using the Lehmann/Pietenpol

system did not readily distinguish BL1 and BL2 tumors

[19]. In our present study, tumors with a basal property

were classified into only one subtype (BLIS) that incorpo-

rated almost all of the BL1 and BL2 subtypes from the

Lehmann/Pietenpol classification. The BLIS subtype is

associated with genes involved in proliferation and im-

munosuppression. Moreover, in the survival analysis, we

observed a worse survival outcome for this subtype com-

pared with other subtypes. The results are concordant

with those of a previous study in which patients with the

same property (basal-like immune-suppressed) had the

worst outcome among patients with TNBC [30]. Further-

more, almost all of the BLIS tumors were in the group at

high risk of relapse according to the TNBC prognostic sig-

nature that we developed (unpublished data). Collectively,

these results suggest the aggressive nature of BLIS tumors.

Thus, if these results are further validated in other larger

populations or prospective cohorts, more aggressive treat-

ment should be tailored for this group of patients.

In the study of Reiche [11], differentially expressed

lncRNAs were identified with relation to cancer-related

protein-coding genes. This suggests a tight connection

between lncRNA and mRNA. Through bioinformatics

analyses, we identified several subtype-specific lncRNAs

that will be functionally investigated in the future. By

analyzing co-expression networks, mRNAs that are

highly correlated with the subtype-specific lncRNAs

were identified. For example, lncRNA NR_003221 in the

MES subtype is positively correlated with mRNA CNN1

and SELP, but negatively correlated with mRNA ADH1B.

SELP encodes selectin P, which could mediate the inter-

actions between endothelial cells and leukocytes. A study

has shown that high selectin P expression is associated

with metastasis of small cell lung cancer [31]. Together

with chondroitin sulfate proteoglycan 4, selectin P can

bind to highly metastatic breast cancer cells and removal

of selectin P ligand could reduce metastatic lung

colonization [32]. ADH1B encodes alcohol dehydrogenase.

Decreased expression of ADH1B gene has been proved to

be associated with disease progression in human colorec-

tal cancer [33]. Taken together, we hypothesize that

lncRNA NR_003221 may play a role in cancer develop-

ment by promoting cell metastasis.

Our study has several limitations. First, the new classi-

fication has not yet been validated in other cohorts. Due

to the limited data on lncRNA expression in TNBC, we

did not validate the system in publicly available datasets.

Second, even though GO and pathway analyses were per-

formed, the nature of each subtype was not thoroughly

clarified, and in particular, lacked support from functional

experiments. Third, the follow-up time of the prospective

observational study was relatively short, and may have re-

sulted in the marginal difference in survival (BLIS vs.

others). Further updating the follow-up data might help

clarify the association between subtypes and survival out-

come. Last, compared with other available technology,

such as RNAseq, the HTA2.0 cannot identify novel

lncRNAs. Therefore, our future work will focus on updat-

ing the follow up of the cohort, recruiting independent co-

horts to validate the FUSCC classifier and investigating

the functions of novel lncRNAs in each subtype.

Conclusions
We have developed a novel TNBC subtyping system,

assigning TNBC patients to four distinct subtypes by in-

tegrating both mRNA and lncRNA expression profiles.

In addition, we revealed a number of novel subtype-

specific lncRNAs that help elucidate the nature of each

subtype. Once further validated in a larger population,

the subtype system could facilitate individualized treat-

ment of TNBC.
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