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Abstract. We introduce the concept of comprehensive triangular decomposition
(CTD) for a parametric polynomial system F with coefficients in a field. In broad
words, this is a finite partition of the the parameter space into regions, so that
within each region the “geometry” (number of irreducible components together
with their dimensions and degrees) of the algebraic variety of the specialized
system F (u) is the same for all values u of the parameters.

We propose an algorithm for computing the CTD of F . It relies on a proce-
dure for solving the following set theoretical instance of the coprime factoriza-
tion problem. Given a family of constructible sets A1, . . . , As, compute a family
B1, . . . , Bt of pairwise disjoint constructible sets, such that for all 1 ≤ i ≤ s the
set Ai writes as a union of some of the B1, . . . , Bt.

We report on an implementation of our algorithm computing CTDs, based on
the RegularChains library in MAPLE. We provide comparative benchmarks
with MAPLE implementations of related methods for solving parametric polyno-
mial systems. Our results illustrate the good performances of our CTD code.

1 Introduction

Solving polynomial systems with parameters has become an increasing need in several
applied areas such as robotics, geometric modeling, stability analysis of dynamical sys-
tems and others. For a given parametric polynomial system F , the following problems
are of interest.

(P1) Compute the values of the parameters for which F has solutions, or has finitely
many solutions.

(P2) Compute the solutions of F as functions of the parameters.

These questions have been approached by various techniques including comprehensive
Gröbner bases (CGB) [22,23,14,13,17], cylindrical algebraic decomposition (CAD) [4]
and triangular decompositions [24,25,6,7,10,9,20,19,26,5]. Methods based on CGB, or
more generally Gröbner bases, are powerful tools for solving problems such as (P1),
that is, determining the values u of the parameters such that, the specialized system
F (u) satisfies a given property. Methods based on CAD or triangular decompositions
are naturally well designed for solving Problem (P2).

In this paper, we introduce the concept of comprehensive triangular decomposition
for a parametric polynomial system with coefficients in a field. This notion plays the
role for triangular decompositions that CGB does for Gröbner bases. With this concept
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at hand, we show that Problems (P1) and (P2) can be completely answered by means of
triangular decompositions.

Let F be a finite set of polynomials with coefficients in a field K, parameters U =
U1, . . . , Ud, and unknowns X =X1, . . . , Xm, that is, F ⊂K[U1, . . . , Ud, X1, . . . , Xm].
Let K be the algebraic closure of K, and let V(F ) ⊂ K

d+m
be the zero set of F . Let

also ΠU be the projection from K
d+m

on the parameter space K
d
. For all u ∈ K

d
we

define V(F (u)) ⊆ K
m

the zero set defined by F after specializing U at u.
Our first contribution is to show how to compute a finite partition C of ΠU (V(F ))

and a family of triangular decompositions (TC , C ∈ C) in K[U, X ] such that for each
C ∈ C and for each parameter value u ∈ C the triangular decomposition TC special-
izes at u into a triangular decomposition TC(u) of V(F (u)) given by regular chains.
Moreover, each “cell” C ∈ C is a constructible set given by a family of regular systems
in K[U ]. We call the pair (TC , C ∈ C) a comprehensive triangular decomposition of
V(F ), see Section 5.

This is a natural definition inspired by that of a comprehensive Gröbner basis [22] in-
troduced by Weispfenning with the additional requirements proposed by Montes in [14].
From each pair (C, TC), we can read geometrical information, such as for which param-
eter values u ∈ C the set V(F (u)) is finite; we also obtain a “generic” equidimensional
decomposition of V(F (u)), for all u ∈ C. The notion of CTD is also related to the bor-
der polynomial of a polynomial system in [26] and the minimal discriminant variety of
V(F ) as defined in [12] for the case where K is the field of complex numbers.

Example 1. Let F = {vxy + ux2 + x, uy2 + x2} be a parametric polynomial sys-
tem with parameters u > v and unknowns x > y. Then a comprehensive triangular
decomposition of V(F ) is:

C1 = {u(u3 + v2) �= 0} : TC1 = {T3, T4}
C2 = {u = 0} : TC2 = {T2, T3}

C3 = {u3 + v2 = 0, v �= 0} : TC3 = {T1, T3}

where

T1 = {vxy + x − u2y2, 2vy + 1, u3 + v2}
T2 = {x, u}
T3 = {x, y}
T4 = {vxy + x − u2y2, u3y2 + v2y2 + 2vy + 1}

Here , C1, C2, C3 is a partition of ΠU (V(F )) and TCi is a triangular decomposition
of V(F ) above Ci, for i = 1, 2, 3. For different parameter values u, we can directly
read geometrical information, such as the dimension of V(F (u)).

By RegSer [19], V(F ) can be decomposed into a set of regular systems:

R1 =

⎧
⎨

⎩

ux + vy + 1 = 0
(u3 + v2)y2 + 2vy + 1 = 0

u(u3 + v2) �= 0
, R2 =

⎧
⎨

⎩

x = 0
y = 0
u �= 0

,
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R3 =

⎧
⎪⎪⎨

⎪⎪⎩

x = 0
vy + 1 = 0

u = 0
v �= 0

, R4 =

⎧
⎪⎪⎨

⎪⎪⎩

2ux + 1 = 0
2vy + 1 = 0
u3 + v2 = 0

v �= 0

, R5 =
{

x = 0
u = 0 .

For each regular system, one can directly read its dimension when parameters take cor-
responding values. However, the dimension of the input system could not be obtained
immediately, since there is not a partition of the parameter space.

By DISPGB [14], one can obtain all the cases over the parameters leading to different
reduced Gröbner bases with parameters:

u(u3 + v2) �= 0:{ux+(u3v+v3)y3+(−u3+v2)y2, (u3+v2)y4+2vy3+y2}
u(u3 + v2) = 0, u �= 0:{ux + 2v2y2, 2vy3 + y2}

u = 0, v �= 0:{x2, vxy + x}
u = 0, v = 0:{x}

Here for each parameter value, the input system specializes into a Gröbner basis.
Since Gröbner bases do not necessarily have a triangular shape, the dimension may
not be read directly either. For example, when u = 0, v �= 0, {x2, vxy + x} is not a
triangular set.

In Section 5 we also propose an algorithm for computing the CTD of parametric
polynomial system. We rely on an algorithm for computing the difference of the zero
sets of two regular systems. Based on the procedures of the TRIADE algorithm [15]
and elementary set theoretical considerations, such an algorithm could be developed
straightforwardly. We actually tried this and our experimental results (not reported here)
shows that this naive approach is very inefficient comparing to the more advanced algo-
rithm presented in Section 3. Indeed, this latter algorithm heavily exploits the structure
and properties of regular chains, whereas the former is unable to do so.

This latter procedure, is used to solve the following problem. Given a family of
constructible sets, A1, . . . , As (each of them given by a regular system) compute a
family B1, . . . , Bt of pairwise disjoint constructible sets, such that for all 1 ≤ i ≤ s the
set Ai writes as a union of some the B1, . . . , Bt. A solution is presented in Section 4.
This can be seen as the set theoretical version of the coprime factorization problem,
see [2,8] for other variants of this problem.

Our second contribution is an implementation report of our algorithm computing
CTDs, based on the RegularChains library in MAPLE. We provide comparative
benchmarks with MAPLE implementations of related methods for solving parametric
polynomial systems, namely: decompositions into regular systems by Wang [19] and
discussing parametric Gröbner bases by Montes [14]. We use a large set of well-known
test-problems from the literature. Our implementation of the CTD algorithm can solve
all problems which can be solved by the other methods. In addition, our CTD code
can solve problems which are out of reach of the other two methods, generally due to
memory consumption.

2 Preliminaries

In this section we introduce notations and review fundamental results in the theory of
regular chains and regular systems [1,3,11,15,19,21].
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We shall use some notions from commutative algebra (such as the dimension of an
ideal) and refer for instance to [16] for this subject.

2.1 Basic Notations and Definitions

Let K[Y ] := K[Y1, . . . , Yn] be the polynomial ring over the field K in variables Y1 <
· · · < Yn. Let p ∈ K[Y ] be a non-constant polynomial. The leading coefficient and the
degree of p regarded as a univariate polynomial in Yi will be denoted by lc(p, Yi) and
deg(p, Yi) respectively. The greatest variable appearing in p is called the main variable
denoted by mvar(p). The degree, the leading coefficient, and the leading monomial of p
regarding as a univariate polynomial in mvar(p) are called the main degree, the initial,
and the rank of p; they are denoted by mdeg(p), init(p) and rank(p) respectively.

Let F ⊂ K[Y ] be a finite polynomial set. Denote by 〈F 〉 the ideal it generates in
K[Y ] and by

√
〈F 〉 the radical of 〈F 〉. Let h be a polynomial in K[Y ], the saturated

ideal 〈F 〉 : h∞ of 〈F 〉 w.r.t h, is the set

{q ∈ K[Y ] | ∃m ∈ N s.t. hmq ∈ 〈F 〉},

which is an ideal in K[Y ].
A polynomial p ∈ K[Y ] is a zerodivisor modulo 〈F 〉 if there exists a polynomial

q such that pq is zero modulo 〈F 〉, and q is not zero modulo 〈F 〉. The polynomial is
regular modulo 〈F 〉 if it is neither zero, nor a zerodivisor modulo 〈F 〉. Denote by V(F )
the zero set (or solution set, or algebraic variety) of F in K

n
. For a subset W ⊂ K

n
,

denote by W its closure in the Zariski topology, that is the intersection of all algebraic
varieties V(G) containing W for all G ⊂ K[Y ].

Let T ⊂ K[Y ] be a triangular set, that is a set of non-constant polynomials with
pairwise distinct main variables. Denote by mvar(T ) the set of main variables of t ∈ T .
A variable in Y is called algebraic w.r.t. T if it belongs to mvar(T ), otherwise it is
called free w.r.t. T . For a variable v ∈ Y we denote by T<v (resp. T>v) the subsets of
T consisting of the polynomials t with main variable less than (resp. greater than) v. If
v ∈ mvar(T ), we say Tv is defined. Moreover, we denote by Tv the polynomial in T
whose main variable is v, by T�v the set of polynomials in T with main variables less
than or equal to v and by T�v the set of polynomials in T with main variables greater
than or equal to v.

Definition 1. Let p, q ∈ K[Y ] be two nonconstant polynomials. We say rank(p) is
smaller than rank(q) w.r.t Ritt ordering and we write, rank(p) <r rank(q) if one of the
following assertions holds:

– mvar(p) < mvar(q),
– mvar(p) = mvar(q) and mdeg(p) < mdeg(q).

Note that the partial order <r is a well ordering. Let T ⊂ K[Y ] be a triangular set.
Denote by rank(T ) the set of rank(p) for all p ∈ T . Observe that any two ranks in
rank(T ) are comparable by <r. Given another triangular set S ⊂ K[Y ], with rank(S) �=
rank(T ), we write rank(T )<r rank(S) whenever the minimal element of the symmet-
ric difference (rank(T ) \ rank(S)) ∪ (rank(S) \ rank(T )) belongs to rank(T ). By
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rank(T ) �r rank(S), we mean either rank(T ) < rank(S) or rank(T ) = rank(S).
Note that any sequence of triangular sets, of which ranks strictly decrease w.r.t <r, is
finite.

Given a triangular set T ⊂ K[Y ], denote by hT be the product of the initials of T
(throughout the paper we use this convention and when T consists of a single element
g we write it in hg for short). The quasi-component W(T ) of T is V(T ) \ V(hT ), in
other words, the points of V(T ) which do not cancel any of the initials of T . We denote
by Sat(T ) the saturated ideal of T : if T is empty then Sat(T ) is defined as the trivial
ideal 〈0〉, otherwise it is the ideal 〈T 〉 : h∞

T .
Let h ∈ K[Y ] be a polynomial and F ⊂ K[Y ] a set of polynomials, we write

Z(F, T, h) := (V(F ) ∩ W(T )) \ V(h).

When F consists of a single polynomial p, we use Z(p, T, h) instead of Z({p}, T, h);
when F is empty we just write Z(T, h). By Z(F, T ), we denote V(F ) ∩ W(T ).

Given a family of pairs S = {[Ti, hi] | 1 ≤ i ≤ e}, where Ti ⊂ K[Y ] is a triangular
set and hi ∈ K[Y ] is a polynomial. We write

Z(S) :=
e⋃

i=1

Z(Ti, hi).

We conclude this section with some well known properties of ideals and triangular
sets. For a proper ideal I, we denote by dim(V(I)) the dimension of V(I).

Lemma 1. Let I be a proper ideal in K[Y ] and p ∈ K[Y ] be a polynomial regular w.r.t
I. Then, either V(I)∩V(p) is empty or we have: dim(V(I)∩V(p)) ≤ dim(V(I))−1.

Lemma 2. Let T be a triangular set in K[Y ]. Then, we have

W(T ) \ V(hT ) = W(T ) and W(T ) \ W(T ) = V(hT ) ∩ W(T ).

PROOF. Since W(T ) ⊆ W(T ), we have

W(T ) = W(T ) \ V(hT ) ⊆ W(T ) \ V(hT ).

On the other hand, W(T ) ⊆ V(T ) implies

W(T ) \ V(hT ) ⊆ V(T ) \ V(hT ) = W(T ).

This proves the first claim. Observe that we have:

W(T ) =
(
W(T ) \ V(hT )

)
∪

(
W(T ) ∩ V(hT )

)
.

We deduce the second one.

Lemma 3 ([1,3]). Let T be a triangular set in K[Y ]. Then, we have

V(Sat(T )) = W(T ).

Assume furthermore that W(T ) �= ∅ holds. Then V(Sat(T )) is a nonempty unmixed
algebraic set with dimension n− |T |. Moreover, if N is the free variables of T , then for
every prime ideal P associated with Sat(T ) we have

P ∩ K[N ] = 〈0〉.
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2.2 Regular Chain and Regular System

Definition 2 (Regular Chain). A triangular set T ⊂ K[Y ] is a regular chain if one of
the following conditions hold:

– either T is empty,
– or T \{Tmax} is a regular chain, where Tmax is the polynomial in T with maximum

rank, and the initial of Tmax is regular w.r.t. Sat(T \ {Tmax}).

It is useful to extend the notion of regular chain as follows.

Definition 3 (Regular System). A pair [T, h] is a regular system if T is a regular chain,
and h ∈ K[Y ] is regular w.r.t Sat(T ).

Remark 1. A regular system in a stronger sense was presented in [19]. For example,
consider the polynomial system [T, h] where T = [Y1Y4 − Y2] and h = Y2Y3. Then
[T, h] is still a regular system in our sense but not a regular system in Wang’s sense.
Also we do not restrict the main variables of polynomials in the inequality part. At
least our definition is more convenient for our purpose in dealing with zerodivisors
and conceptually clear as well. We also note that in the zerodimensional case (no free
variables exist) the notion of regular chain and that of a regular set in [19] are the
same, see [1,19] for details.

There are several equivalent characterizations of a regular chain, see [1]. In this paper,
we rely on the notion of iterated resultant in order to derive a characterization which
can be checked by solving a polynomial system.

Definition 4. Let p ∈ K[Y ] be a polynomial and T ⊂ K[Y ] be a triangular set. The
iterated resultant of p w.r.t. T , denoted by res(p, T ), is defined as follows:

– if p ∈ K or all variables in p are free w.r.t. T , then res(p, T ) = p,
– otherwise, if v is the largest variable of p which is algebraic w.r.t. T , then

res(p, T ) = res(r, T<v) where r is the resultant of p and the polynomial Tv.

Lemma 4. Let p ∈ K[Y ] be a polynomial and T ⊂ K[Y ] be a zerodimensional regular
chain. Then the following statements are equivalent:

(i) The iterated resultant res(p, T ) �= 0.
(ii) The polynomial p is regular modulo 〈T 〉.

(iii) The polynomial p is invertible modulo 〈T 〉.

PROOF. “(i) ⇒ (ii)” Let r := res(p, T ). Then there exist polynomials Ai ∈ K[Y ],
0 ≤ i ≤ n, such that r = A0p +

∑n
i=1 AiTi. So r �= 0 implies p is invertible modulo

〈T 〉. Therefore, p is regular modulo 〈T 〉.
“(ii) ⇒ (iii)” If p is regular modulo 〈T 〉, then p is regular modulo

√
〈T 〉. Since

T is a zerodimensional regular chain, which implies Sat(T ) = 〈T 〉, we know that
K[Y ]/

√
〈T 〉 is a direct product of fields. Therefore p is invertible modulo

√
〈T 〉, which

implies p is invertible modulo 〈T 〉.
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“(iii) ⇒ (i)” Assume res(p, T ) = 0, then we claim that p and T have at least one
common solution, which is a contradiction to (iii).

We prove our claim by induction on |T |.
If |T | = 1, we have two cases

(1) If all variables in p are free w.r.t. T , then res(p, T ) = p = 0. The claim holds.
(2) Otherwise, we have res(p, T ) = res(p, T, mvar(T )) = 0. Since init(T ) �= 0, the

claim holds.

Now we assume that the claim holds for |T | = n − 1. If |T | = n, let v := Yn. We
have two cases

(1) If v does not appear in p, then res(p, T ) = res(p, T<v). By induction hypothesis,
there exist ξ1, ξ2, · · · , ξn−1 ∈ K, such that ξ′ = (ξ1, ξ2, · · · , ξn−1) is a common
solution of p and T<v. Since T is a zerodimensional regular chain, hTv is invertible
modulo 〈T 〉 (by “(ii) ⇒ (iii)” ). So hTv (ξ′) �= 0, which implies that there exists a
ξn ∈ K, such that ξ := (ξ1, ξ2, · · · , ξn−1, ξn) is a solution of Tv. Therefore ξ is a
common solution of p and T .

(2) If v appears in p, then res(p, T ) = res(res(p, Tv, v), T<v) = 0. Similarly to (1),
there exists ξ′ = (ξ1, ξ2, · · · , ξn−1), such that res(p, Tv, v)(ξ′) = T<v(ξ′) = 0 and
hTv (ξ′) �= 0. So by the specialization property of resultant, res(p(ξ′), Tv(ξ′), v) =
0, which implies that there exists a ξn ∈ K, such that ξ := (ξ1, ξ2, · · · , ξn−1, ξn)
is a common solution of p and Tv. Therefore ξ is a common solution of p and T .

Theorem 1. The triangular set T is a regular chain if and only if res(hT , T ) �= 0.

PROOF. We start by assuming that T is a zerodimensional regular chain, then the con-
clusion follows from Lemma 4.

We reduce the general case to the zerodimensional one. First, we introduce a new
total ordering <T on Y defined as follows: if Yi and Yj are both in mvar(T ) or both
in its complement then Yi <T Yj holds if and only if Yi < Yj holds, otherwise
Yi <T Yj holds if and only if Yj ∈ mvar(T ). Clearly T is also a triangular set w.r.t
<T . We observe that hT , and thus Sat(T ), are unchanged when replacing the variable
ordering < by <T . Similarly, it is easy to check that a polynomial p ∈ K[Y ] reduces
to zero by pseudo-division by T w.r.t. < if and only if it reduces to zero by pseudo-
division by T w.r.t. <T . Therefore, by applying Theorem 6.1 [1] we deduce that T is
a regular chain w.r.t. < if and only if it is a regular chain w.r.t. <T . Similarly, we have
res(hT , T ) �= 0 w.r.t. < if and only if res(hT , T ) �= 0 w.r.t. <T .

Now we assume that the variables are ordered according to <T . Let N be the set
of the variables of Y that do not belong to mvar(T ). The triangular set T is a regular
chain in K[Y ] if and only if it is a zerodimensional regular chain when regarded as
a triangular set in K(N)[Y \ N ] (where K(N) denotes the field of rational functions
with coefficients in K and variables in N ). This is Corollary 3.2 in [3]. Similarly, it
is easy to check that res(hT , T ) �= 0 holds when regarding T in K[Y ] if and only if
res(hT , T ) �= 0 holds when regarding T in K(N)[Y \ N ].

Proposition 1. For every regular system [T, h] we have Z(T, h) �= ∅.
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PROOF. Since T is a regular chain, by Lemma 3 we have V(Sat(T )) �= ∅. By definition
of regular system, the polynomial hhT is regular w.r.t Sat(T ). Hence, by Lemma 1, the
set V(hhT ) ∩ V(Sat(T )) either is empty, or has lower dimension than V(Sat(T )).
Therefore, the set

V(Sat(T )) \ V(hhT ) = V(Sat(T )) \ (V(hhT ) ∩ V(Sat(T )))

is not empty. Finally, by Lemma 2, the set

Z(T, h) = W(T ) \ V(h) = W(T ) \ V(hhT ) = V(Sat(T )) \ V(hhT )

is not empty.

Notation 1. For a regular system R = [T, h], we define rank(R) := rank(T ). For a set
R of regular systems, we define

rank(R) := max{rank(T ) | [T, h] ∈ R}.

For a pair of regular systems (L, R), we define rank((L, R)) := (rank(L), rank(R)).
For a pair of lists of regular systems, we define

rank((L, R)) = (rank(L), rank(R)).

For triangular sets T, T1, . . . , Te we write W(T ) D−→ (W(Ti), i = 1 . . . e) if one of
the following conditions holds:

– either e = 1 and T = T1,
– or e > 1, rank(Ti) < rank(T ) for all i = 1 . . . e and

W(T ) ⊆
e⋃

i=1

W(Ti) ⊆ W(T ).

2.3 Triangular Decompositions

Definition 5. Given a finite polynomial set F ⊂ K[Y ], a triangular decomposition of
V(F ) is a finite family T of regular chains of K[Y ] such that

V(F ) =
⋃

T∈T
W(T ).

For a finite polynomial set F ⊂ K[Y ], the TRIADE algorithm [15] computes a trian-
gular decomposition of V(F ). We list below the specifications of the operations from
TRIADE that we use in this paper.

Let p, p1, p2 be polynomials, and let T , C, E be regular chains such that C ∪ E is a
triangular set (but not necessarily a regular chain).

– Regularize(p, T ) returns regular chains T1, . . . , Te such that

• W(T ) D−→ (W(Ti), i = 1 . . . e),
• for all 1 ≤ i ≤ e the polynomial p is either 0 or regular modulo Sat(Ti).
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– For a set of polynomials F , Triangularize(F, T ) returns regular chains
T1, . . . , Te such that we have

V(F ) ∩W(T ) ⊆ W(T1) ∪ · · · ∪W(Te) ⊆ V(F ) ∩ W(T ).

and for 1 ≤ i ≤ e we have rank(Ti) < rank(T ).
– Extend(C ∪ E) returns a set of regular chains {Ci | i = 1 . . . e} such that we

have W(C ∪ E) D−→ (W(Ci), i = 1 . . . e).
– Assume that p1 and p2 are two non-constant polynomials with the same main vari-

able v, which is larger than any variable appearing in T , and assume that the ini-
tials of p1 and p2 are both regular w.r.t. Sat(T ). Then, GCD(p1, p2, T ) returns a
sequence

([g1, C1], . . . , [gd, Cd], [∅, D1], . . . , [∅, De]),

where gi are polynomials and Ci, Di are regular chains such that the following
properties hold:

• W(T ) D−→ (W(C1), . . . ,W(Cd),W(D1), . . . ,W(De)),
• dimV(Sat(Ci)) = dimV(Sat(T )) and dimV(Sat(Dj)) < dimV(Sat(T )),

for all 1 � i � d and 1 � j � e,
• the leading coefficient of gi w.r.t. v is regular w.r.t. Sat(Ci),
• for all 1 � i � d there exist polynomials ui and vi such that we have gi =

uip1 + vip2 mod Sat(Ci),
• if gi is not constant and its main variable is v, then p1 and p2 belong to

Sat(Ci∪{gi}).

2.4 Constructible Sets

Definition 6 (Constructible set). A constructible subset of K
n

is any finite union

(A1 \ B1) ∪ · · · ∪ (Ae \ Be)

where A1, . . . , Ae, B1, . . . , Be are algebraic varieties in K
n

.

Lemma 5. Every constructible set can write as a union of zero sets of regular systems.

PROOF. By the definition of constructible set, we only need to prove that the differ-
ence of two algebraic varieties can write as a union of zero sets of regular systems.
Let V(F ),V(G), where F, G ⊂ K[Y ], be two algebraic varieties in K

n
. With the

Triangularize operation introduced in last subsection, we write V(F ) as a union of
the zero sets of some regular systems

V(F ) =
s⋃

i=1

W(Ti) =
s⋃

i=1

Z(Ti, 1).

Similarly, we can write V(G) as

V(G) =
t⋃

i=1

Z(Ci, 1).

Then the conclusion follows from the algorithm DifferenceLR introduced in next
section.
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3 The Difference Algorithms

In this section, we present an algorithm to compute the set theoretical difference of
two constructible sets given by regular systems. As mentioned in the Introduction, a
naive approach appears to be very inefficient in practice. Here we contribute a more
sophisticated algorithm, which heavily exploits the structure and properties of regular
chains.

Two procedures, Difference and DifferenceLR, are involved in order to achieve
this goal. Their specifications and pseudo-codes can be found below. The rest of this
section is dedicated to proving the correctness and termination of these algorithms.
For the pseudo-code, we use the MAPLE syntax. However, each of the two functions
below returns a sequence of values. Individual value or sub-sequences of the returned
sequence are thrown to the flow of output by means of an output statement. Hence an
output statement does not cause the termination of the function execution.

Algorithm 1 Difference([T, h], [T ′, h′])
Input [T, h], [T ′, h′] two regular systems.

Output Regular systems {[Ti, hi] | i = 1 . . . e} such that

Z(T, h) \ Z(T ′, h′) =
e⋃

i=1

Z(Ti, hi),

and rank(Ti) �r rank(T ).

Algorithm 2 DifferenceLR(L, R)
Input L := {[Li, fi] | i = 1 . . . r} and R := {[Rj, gj ] | j = 1 . . . s} two lists

of regular systems.
Output Regular systems S := {[Ti, hi] | i = 1 . . . e} such that

(
r⋃

i=1

Z(Li, fi)

)

\

⎛

⎝
s⋃

j=1

Z(Rj , gj)

⎞

⎠ =
e⋃

i=1

Z(Ti, hi),

with rank(S) �r rank(L).

To prove the termination and correctness of above two algorithms, we present a series
of technical lemmas.

Lemma 6. Let p and h be polynomials and T a regular chain. Assume that p /∈ Sat(T ).
Then there exists an operation Intersect(p, T, h) returning a set of regular chains
{T1, . . . , Te} such that

(i) h is regular w.r.t Sat(Ti) for all i;
(ii) rank(Ti) <r rank(T );

(iii) Z(p, T, h) ⊆ ∪e
i=1Z(Ti, h) ⊆ (V(p) ∩ W(T )) \ V(h);

(iv) Moreover, if the product of initials hT of T divides h then

Z(p, T, h) =
e⋃

i=1

Z(Ti, h).
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Algorithm 1. Difference([T, h], [T ′, h′])
1: if Sat(T ) = Sat(T ′) then
2: output Intersect(h′hT ′ , T, hhT )
3: else
4: Let v be the largest variable s.t. Sat(T<v) = Sat(T ′

<v)
5: if v ∈ mvar(T ′) and v /∈ mvar(T ) then
6: p′ ← T ′

v

7: output [T, hp′]
8: output DifferenceLR(Intersect(p′, T, hhT ), [T ′, h′])
9: else if v /∈ mvar(T ′) and v ∈ mvar(T ) then

10: p ← Tv

11: output DifferenceLR([T, h], Intersect(p, T ′, h′hT ′ ))
12: else
13: p ← Tv

14: G ← GCD(Tv, T ′
v, T<v)

15: if |G| = 1 then
16: Let (g,C) ∈ G
17: if g ∈ K then
18: output [T, h]
19: else if mvar(g) < v then
20: output [T, gh]
21: output DifferenceLR(Intersect(g, T, hhT ), [T ′, h′])
22: else if mvar(g) = v then
23: if mdeg(g) = mdeg(p) then
24: D′

p ← T ′
<v ∪ {p} ∪ T ′

>v

25: output Difference([T, h], [D′
p, h′hT ′ ])

26: else if mdeg(g) < mdeg(p) then
27: q ← pquo(p, g,C)
28: Dg ← C ∪ {g} ∪ T>v

29: Dq ← C ∪ {q} ∪ T>v

30: output Difference([Dg , hhT ], [T ′, h′])
31: output Difference([Dq , hhT ], [T ′, h′])
32: output DifferenceLR(Intersect(hg, T, hhT ), [T ′, h′])
33: end if
34: end if
35: else if |G| ≥ 2 then
36: for (g,C) ∈ G do
37: if |C| > |T<v| then
38: for E ∈ Extend(C, T�v) do
39: for D ∈ Regularize(hhT , E) do
40: if hhT /∈ Sat(D) then
41: output Difference([D, hhT ], [T ′, h′])
42: end if
43: end for
44: end for
45: else
46: output Difference([C ∪ T�v, hhT ], [T ′, h′])
47: end if
48: end for
49: end if
50: end if
51: end if
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Algorithm 2. DifferenceLR(L, R)
1: if L = ∅ then
2: output ∅
3: else if R = ∅ then
4: output L
5: else if |R| = 1 then
6: Let [T ′, h′] ∈ R
7: for [T, h] ∈ L do
8: output Difference([T, h], [T ′, h′])
9: end for

10: else
11: while R �= ∅ do
12: Let [T ′, h′] ∈ R, R ← R \ { [T ′, h′] }
13: S ← ∅
14: for [T, h] ∈ L do
15: S ← S ∪ Difference([T, h], [T ′, h′])
16: end for
17: L ← S
18: end while
19: output L
20: end if

PROOF. Let

S = Triangularize(p, T ),

R =
⋃

C∈S
Regularize(h, C).

We then have

V(p) ∩W(T ) ⊆
⋃

R∈R
⊆ V(p) ∩ W(T ).

This implies

Z(p, T, h) ⊆
⋃

R∈R, h/∈Sat(R)
Z(R, h) ⊆ (V(p) ∩ W(T )) \ V(h).

Rename the regular chains {R | R ∈ R, h /∈ Sat(R)} as {T1, . . . , Te}. By the specifi-
cation of Regularize we immediately conclude that (i), (iii) hold. Since p /∈ Sat(T ),
by the specification of Triangularize, (ii) holds. By Lemma 2, (iv) holds.

Lemma 7. Let [T, h] and [T ′, h′] be two regular systems. If Sat(T ) = Sat(T ′), then
h′hT ′ is regular w.r.t Sat(T ) and

Z(T, h) \ Z(T ′, h′) = Z(h′hT ′ , T, hhT ).
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PROOF. Since Sat(T ) = Sat(T ′) and h′hT ′ is regular w.r.t Sat(T ′), h′hT ′ is regular
w.r.t Sat(T ). By Lemma 2 and Lemma 3, we have

Z(T, hh′hT ′) = W(T ) \ V(hh′hT ′)

= W(T ) \ V(hh′hT hT ′)

= W(T ′) \ V(hh′hT hT ′)
= W(T ′) \ V(hh′hT )
= Z(T ′, hh′hT ).

Then, we can decompose Z(T, h) into the disjoint union

Z(T, h) = Z(T, hh′hT ′)
⊔

Z(h′hT ′ , T, hhT ).

Similarly, we have:

Z(T ′, h′) = Z(T ′, hh′hT )
⊔

Z(hhT , T ′, h′hT ′).

The conclusion follows from the fact that

Z(T, hh′hT ′) \ Z(T ′, hh′hT ) = ∅ and Z(h′hT ′ , T, hhT ) ∩ Z(T ′, h′) = ∅.

Lemma 8. Assume that Sat(T<v) = Sat(T ′
<v). We have

(i) If p′ := T ′
v is defined but not Tv, then p′ is regular w.r.t Sat(T ) and

Z(T, h) \ Z(T ′, h′) = Z(T, hp′)
⊔

(Z(p′, T, hhT ) \ Z(T ′, h′)) .

(ii) If p := Tv is defined but not T ′
v, then p is regular w.r.t Sat(T ′) and

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′hT ′).

PROOF. (i) As init(p′) is regular w.r.t Sat(T ′
<v), it is also regular w.r.t Sat(T<v). Since

Tv is not defined, we know v /∈ mvar(T ). Therefore, p′ is also regular w.r.t Sat(T ). On
the other hand, we have a disjoint decomposition

Z(T, h) = Z(T, hp′)
⊔

Z(p′, T, hhT ).

By the definition of p′, Z(T ′, h′) ⊆ V(p′) which implies

Z(T, hp′)
⋂

Z(T ′, h′) = ∅.

The conclusion follows.
(ii) Similarly, we know p is regular w.r.t Sat(T ′). By the disjoint decomposition

Z(T ′, h′) = Z(T ′, h′p)
⊔

Z(p, T ′, h′hT ′),

and Z(T, h) ∩ Z(T ′, h′p) = ∅, we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′hT ′),

from which the conclusion follows.
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Lemma 9. Assume that Sat(T<v) = Sat(T ′
<v) but Sat(T�v) �= Sat(T ′

�v) and that v is
algebraic w.r.t both T and T ′. Define

G = GCD(Tv, T
′
v, T<v);

E =
⋃

(g,C)∈G, |C|>|T<v|
Extend(C, T�v);

R =
⋃

E∈E
Regularize(hhT , E).

Then we have

(i)

Z(T, h)

=

⎛

⎜
⎝

⋃

R∈R, hhT /∈Sat(R)
Z(R, hhT )

⎞

⎟
⎠

⋃
⎛

⎝
⋃

(g,C)∈G, |C|=|T<v|
Z(C ∪ T�v, hhT )

⎞

⎠ .

(ii) rank(R) <r rank(T ), for all R ∈ R.
(iii) Assume that |C| = |T<v|. Then
(iii.a) C ∪ T�v is a regular chain and hhT is regular w.r.t it.
(iii.b) If |G| > 1, then rank(C ∪ T�v) <r rank(T ).

PROOF. By the specification of GCD we have

W(T<v) ⊆
⋃

(g,C)∈G
W(C) ⊆ W(T<v).

That is,
W(T<v)

D−→ (W(C), (g, C) ∈ G).

From the specification of Extend we have: for each (g, C) ∈ G such that |C| > |T<v|,

W(C ∪ T�v)
D−→ (W(E), E ∈ Extend(C ∪ T�v)).

From the specification of Regularize, we have for all (g, C) ∈ G such that |C| >
|T<v| and all E ∈ Extend(C ∪ T�v),

W(E) D−→ (W(R), R ∈ Regularize(hhT , E)) .

Therefore, by applying the Lifting Theorem [15] we have:

W(T ) = W(T<v ∪ T�v)

⊆
(

⋃

R∈R
W(R)

)
⋃

⎛

⎝
⋃

(g,C)∈G, |C|=|T<v|
W(C ∪ T�v)

⎞

⎠

⊆ W(T<v ∪ T�v)

= W(T ),
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which implies,

Z(T, h) = Z(T, hhT )

⊆

⎛

⎜
⎝

⋃

R∈R, hhT /∈Sat(R)
Z(R, hhT )

⎞

⎟
⎠

⋃
⎛

⎝
⋃

(g,C)∈G, |C|=|T<v|
Z(C ∪ T�v, hhT )

⎞

⎠

⊆ W(T ) \ V(hhT ) = Z(T, h).

So (i) holds. When |G| > 1, by Notation 1, (ii) and (iii.b) hold.
If |C| = |T<v|, by Proposition 5 of [15], we conclude that (iii.a) holds.

Lemma 10. Assume that Sat(T<v) = Sat(T ′
<v) but Sat(T�v) �= Sat(T ′

�v) and that v
is algebraic w.r.t both T and T ′. Define p = Tv, p′ = T ′

v and

G = GCD(p, p′, T<v).

If |G| = 1, let G = {(g, C)}. Then the following properties hold

(i) C = T<v.
(ii) If g ∈ K, then

Z(T, h) \ Z(T ′, h′) = Z(T, h).

(iii) If g /∈ K and mvar(g) < v, then g is regular w.r.t Sat(T ) and

Z(T, h) \ Z(T ′, h′)

= Z(T, gh)
⊔

(Z(g, T, hhT ) \ Z(T ′, h′)) .

(iv) Assume that mvar(g) = v.
(iv.a) If mdeg(g) = mdeg(p), defining

q′ = pquo(p′, p, T ′
<v)

D′
p = T ′

<v ∪ {p} ∪ T ′
>v

D′
q′ = T ′

<v ∪ {q′} ∪ T ′
>v,

then we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′),

rank(D′
p) < rank(T ′) and h′hT ′ is regular w.r.t Sat(D′

p).
(iv.b) If mdeg(g) < mdeg(p), defining

q = pquo(p, g, T<v)
Dg = T<v ∪ {g} ∪ T>v

Dq = T<v ∪ {q} ∪ T>v,

then we have: Dg and Dq are regular chains such that rank(Dg) < rank(T ),
rank(Dq) < rank(T ), hhT is regular w.r.t Sat(Dg) and Sat(Dq), and

Z(T, h) = Z(Dg, hhT )
⋃

Z(Dq, hhT )
⋃

Z(hg, T, hhT ).
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PROOF. Since |G| = 1, by the specification of the operation GCD and Notation 1, (i)
holds. Therefore we have

Sat(C) = Sat(T<v) = Sat(T ′
<v) (1)

There exist polynomials A and B such that

g ≡ Ap + Bp′ mod Sat(C). (2)

From (2), we have

V(Sat(C)) ⊆ V(g − Ap − Bp′) (3)

Therefore, we deduce

W(T )
⋂

W(T ′)

= W(T<v ∪ p ∪ T�v)
⋂

W(T ′
<v ∪ p′ ∪ T ′

�v)

⊆ (W(T<v) ∩ V(p))
⋂

(W(T ′
<v) ∩ V(p′))

⊆ V(Sat(T<v))
⋂

V(p)
⋂

V(p′) by (1)

⊆ V(g − Ap − Bp′)
⋂

V(p)
⋂

V(p′) by (3)

⊆ V(g).

that is

W(T )
⋂

W(T ′) ⊆ V(g). (4)

Now we prove (ii). When g ∈ K, g �= 0, from (4) we deduce

W(T )
⋂

W(T ′) = ∅. (5)

Thus we have

Z(T, h) \ Z(T ′, h′)
= (W(T ) \ V(h)) \ (W(T ′) \ V(h′))
= (W(T ) \ V(h)) by (5)

= Z(T, h).

Now we prove (iii). Since C = T<v and mvar(g) is smaller than or equal to v, by the
specification of GCD, g is regular w.r.t Sat(T ). We have following decompositions

Z(T, h) = Z(T, gh)
⊔

Z(g, T, hhT ),
Z(T ′, h′) = Z(T ′, gh′)

⊔
Z(g, T ′, h′hT ′).
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On the other hand,

Z(T, gh)
⋂

Z(T ′, gh′)

= (W(T ) ∩ V(gh)c)
⋂

(W(T ′) ∩ V(gh′)c)

⊆ (W(T ) ∩ V(g)c)
⋂

(W(T ′) ∩ V(g)c)

= (W(T ) ∩ W(T ′))
⋂

V(g)c

= ∅ by (4).

Therefore,

Z(T, h) \ Z(T ′, h′)

= (Z(T, gh) \ Z(T ′, gh′))
⊔

(Z(g, T, hhT ) \ Z(T ′, h′))

= Z(T, gh)
⊔

(Z(g, T, hhT ) \ Z(T ′, h′)) .

Now we prove (iv.a). First, both h′ and h′
T are regular w.r.t Sat(C) = Sat(T<v) =

Sat(T ′
<v). From the construction of D′

p, we have h′hT ′ is regular w.r.t Sat(D′
p).

Assume that mvar(g) = v and mdeg(g) = mdeg(p). We note that mdeg(p′) >
mdeg(p) holds. Otherwise we would have mdeg(g) = mdeg(p) = mdeg(p′) which
implies:

p ∈ Sat(T ′
�v) and p′ ∈ Sat(T�v). (6)

Thus

Sat(T�v) = 〈T�v〉 : h∞
T�v

= 〈T<v ∪ p〉 : h∞
T�v

⊆ Sat(T ′
�v) : h∞

T�v
by (6)

= Sat(T ′
�v),

that is Sat(T�v) ⊆ Sat(T ′
�v). Similarly, Sat(T ′

�v) ⊆ Sat(T�v) holds. So we have
Sat(T ′

�v) = Sat(T�v), a contradiction.
Hence, mvar(q′) = v.
By Lemma 6 [15], we know that D′

p and D′
q′ are regular chains. Then with Theo-

rem 7 [15] and Lifting Theorem [15], we know

Z(T ′, h′) ⊆ Z(D′
p, h

′)
⋃

Z(D′
q′ , h′)

⋃
Z(hp, T

′, h′)

⊆ W(T ′) \ V(h′).

By Lemma 2, we have

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⋃

Z(D′
q′ , h′hT ′)

⋃
Z(hp, T

′, h′hT ′).

Since

Z(D′
q′ , h′hT ′) = Z(D′

q′ , hph
′hT ′)

⋃
Z(hp, D

′
q′ , h′h′

T )

= Z(D′
q′ , phph

′hT ′)
⋃

Z(p, D′
q′ , hph

′h′
T )

⋃
Z(hp, D

′
q′ , h′h′

T )
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and

Z(p, D′
q′ , hph

′h′
T ) ⊆ Z(D′

p, h
′hT ′)

Z(hp, D
′
q′ , h′h′

T ) ⊆ Z(hp, T
′, h′hT ′),

we deduce

Z(T ′, h′) = Z(D′
p, h

′hT ′)
⊔

Z(D′
q′ , ph′hT ′)

⊔
Z(hp, T

′, h′hT ′).

Now observe that

Z(T, h)
⋂

Z(D′
q′ , ph′hT ′) = ∅, and

Z(T, h)
⋂

Z(hp, T
′, h′hT ′) = ∅.

We obtain

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′).

Finally we prove (iv.b). We assume that mvar(g) = v and mdeg(g) < mdeg(p); this
implies mvar(q) = v. Applying Lemma 6 in [15] we know that Dg and Dq are regular
chains and satisfy the desired rank condition. Then by Theorem 7 [15] and Lifting
Theorem [15] we have

Z(T, h) = Z(Dg, hhT )
⋃

Z(Dq, hhT )
⋃

Z(hg, T, hhT ).

This completes the whole proof.

Definition 7. Given two pairs of ranks (rank(T1), rank(T ′
1)) and (rank(T2), rank(T ′

2)),
where T1, T2, T

′
1, T

′
2 are triangular sets. We define the product order <p of Ritt order

<r on them as follows

(rank(T2), rank(T ′
2)) <p (rank(T1), rank(T ′

1))

⇐⇒
{

rank(T2) <r rank(T1) or
rank(T2) = rank(T1), rank(T ′

2) <r rank(T ′
1).

In the following theorems, we prove the termination and correctness separately. Along
with the proof of Theorem 2, we show the rank conditions are satisfied which is part
of the correctness. The remained part, say zero set decomposition, will be proved in
Theorem 3.

Theorem 2. Algorithms Difference and DifferenceLR terminate and satisfy the
rank conditions in their specifications.

PROOF. The following two statements need to be proved

(i) Difference terminates with rank(Difference([T, h], [T ′, h′])) �r rank([T, h]),
(ii) DifferenceLR terminates with rank(DifferenceLR(L, R)) �r rank(L).
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We prove them by induction on the product order <p.

(1) Base case: there are no recursive calls to Difference or DifferenceLR. The
termination of both algorithms is clear. By line 2, 18 of the algorithm Difference,
rank(Difference([T, h], [T ′, h′])) �r rank([T, h]). By line 2, 4 of the algorithm
DifferenceLR, rank(DifferenceLR(L, R)) �r rank(L).

(2) Induction hypothesis: assume that both (i) and (ii) hold with inputs whose ranks
are smaller than the rank of ([T, h], [T ′, h′]) w.r.t. <p.

(3) By (1), if no recursive calls occur in one branch, then (i) and (ii) already hold. When
recursive calls occur, by line 8, 11, 21, 25, 30, 31, 32, 41, 46 and Lemma 6, 8, 9, 10,
we know the inputs of recursive calls to both Difference and DifferenceLR
have smaller ranks than rank(([T, h], [T ′, h′])) w.r.t <p. By induction hypothesis,
(i) holds. Finally, by line 8, 15 of algorithm DifferenceLR and (i), (ii) holds.

Theorem 3. Both Difference and DifferenceLR satisfy their specifications.

PROOF. By Theorem 2, Difference and DifferenceLR terminate and satisfy their
rank conditions. So it suffices to prove the correctness of Difference and
DifferenceLR, that is

(i) Z(T, h) \ Z(T ′, h′) = Z(Difference([T, h], [T ′, h′])),
(ii) Z(L) \ Z(R) = Z(DifferenceLR(L, R)).

We prove them by induction on the product order <p.

(1) Base case: no recursive calls to Difference and DifferenceLR occur. First, by
line 2, 18 of the algorithm Difference and Lemma 6, 7, 10, (i) holds. Second, by
line 2, 4 of the algorithm DifferenceLR, (ii) holds.

(2) Induction hypothesis: assume that both (i) and (ii) hold with inputs whose ranks
are smaller than the rank of ([T, h], [T ′, h′]) w.r.t. <p.

(3) By (1), if no recursive calls occur, (i) and (ii) already hold. When there are recur-
sive calls, we first show (i) holds. From the proof of Theorem 2, in Difference,
the inputs of recursive calls to Difference and DifferenceLR will have smaller
ranks w.r.t. the product order <p. Therefore, by (2), line 7, 8, 11, 20, 21, 25, 30,
31, 32, 41, 46 and Lemma 6, 8, 9, 10, (i) holds.
Finally, by (i) and line 5 − 18 of algorithm DifferenceLR, (ii) holds.

4 Decomposition into Pairwise Disjoint Constructible Sets

We assume that DifferenceLR(L, R) returns a list of regular systems sorted by
increasing rank.

Definition 8. Let S be a list of regular systems sorted by increasing rank. If S is empty
or consists of a single regular system [T, h], define MPD(S) = S. Otherwise, let
S = L + R, where |L| = |R| or |L| = |R| + 1 (and + denotes concatenation of lists).
Define

MPD(S) = MPD(DifferenceLR(L, R)) + MPD(R).
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Definition 9. For a regular system S = [T, h], let Z0(S) denote the zero set of S

considered as a regular system in K̂[mvar(T )] := K(Y \ mvar(T ))[mvar(T )] .

Lemma 11. For every regular system S, Z0(S) is non-empty and finite.

PROOF. If the regular system S = [T, h] is considered in K̂[mvar(T )], it remains to be
a regular system and, moreover, T becomes a zero-dimensional regular chain. We have
therefore

Z0(S) = W
K̂
(T ) \ V

K̂
(h) = V

K̂
(T ).

Definition 10. For a finite set of regular systems S = {[T1, h1], . . . , [Tk, hk]} such that
rank(T1) = · · · = rank(Tk), define

Z0(S) = Z0([T1, h1]) ∪ . . . ∪ Z0([Tk, hk]).

For an arbitrary finite set of regular systems S, let Srank(S) denote the subset of

regular systems of maximal rank. Define Z0(S) = Z0(Srank(S)).

Lemma 12. Let S be a list of regular systems sorted by increasing rank represented as
a concatenation of two non-empty sublists: S =L+R. Let C =DifferenceLR(L, R).
Then either rank(C) < rank(S), or |Z0(C)| < |Z0(S)|.

PROOF. If rank(L) < rank(S), then rank(C) < rank(S) by Theorem 2. Otherwise,
rank(L) = rank(S) and, since S is sorted by increasing rank, the rank of every system
in R equals rank(S). By Theorem 2, we have rank(C) ≤ rank(S). In case of strict
inequality we are done, so assume that rank(C) = rank(S).

Denote r = rank(L) = rank(C) = rank(R) = rank(S). We have:

⋃

C∈Cr

Z(C) ⊆
⋃

A∈Lr

Z(A) \
⋃

B∈R
Z(B),

which implies
Z0(C) ⊆ Z0(L) \

⋃

B∈R
Z0(B).

Since, by Lemma 11, Z0(S) = Z0(L) ∪ Z0(R) is finite and
⋃

B∈R Z(B) �= ∅, we
obtain the desired |Z0(C)| < |Z0(S)|.

Lemma 13. For any list S of regular systems, D = MPD(S) is well-defined.

PROOF. We define a well-order on the set of all sorted finite lists of regular systems
and prove the statement by induction on this well-order.

For a non-empty list S, let φ(S) = (rank(S),Z0(S), |S|). Let L ≺ R iff φ(L) <lex
φ(R). Since <lex is the lexicographic product of three well-orders, <lex is a well-order,
whence so is ≺. Define the empty list to be less than any non-empty list w.r.t. ≺.

For empty and singleton lists S, MPD(S) is well-defined. Let S be a non-singleton
and non-empty list. Assume that MPD(S′) is defined for all lists S′ such that S′ ≺ S.
Let, as in Definition 8, S = L + R, where |L| = |R| or |L| = |R| + 1. Then by
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Lemma 12, Difference(L, R) ≺ S. Also, rank(R) ≤ rank(S), Z0(R) ≤ Z0(S), and
|R| < |S|, whence R ≺ S. This implies that MPD(S) is well-defined according to
Definition 8.

Note that Definition 8 yields a recursive algorithm for computing MPD(S), which
terminates according to the previous lemma. The output of this algorithm is a decompo-
sition of the union of zero-sets of regular systems in S into a disjoint union of zero-sets
of regular systems:

Proposition 2. For all distinct regular systems R, S ∈ D = MPD(S), we have
Z(R) ∩ Z(S) = ∅, and ⋃

R∈S
Z(S) =

⋃

S∈D
Z(D).

PROOF. Follows immediately from the definition of MPD.

In the following section, to compute comprehensive triangular decompositions, we will
see that SMPD (strongly make pairwise disjoint) is really required. Given a set of reg-
ular systems A1, · · · , As, SMPD compute another set of regular systems B1, · · · , Bt

whose zero sets are pairwise disjoint, such that each Z(Ai) writes as a union of some
of the Z(B1), · · · ,Z(Bt).

Algorithm 3. SMPD(S)
1: if |S| ≤ 1 then
2: output S
3: end if
4: Let [T0, h0] ∈ S , S ← S \ {[T0, h0]}
5: S ← SMPD(S)
6: for [T, h] ∈ S do
7: A ← Difference([T, h], [T0, h0])
8: B ← DifferenceLR([T, h], A)
9: output MPD(A)

10: output MPD(B)
11: end for
12: C ← DifferenceLR([T0, h0], S)
13: output MPD(C)

Proposition 3. The Algorithm SMPD terminates and is correct.

PROOF. It follows directly from the termination and correctness of algorithms
Difference, DifferenceLR and MPD.

5 Comprehensive Triangular Decomposition

In this section we introduce the concept of comprehensive triangular decomposition of
an algebraic variety. We propose an algorithm for computing this decomposition and
apply it to compute the set of all parameter values at which a given parametric system
has an empty or an infinite set of solutions.
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Notation 2. From now on, we assume that n = m + d, the variables Y1, . . . , Yd are
renamed U1, . . . , Ud and viewed as parameters, whereas Yd+1, . . . , Yn are renamed
X1, . . . , Xm and regarded as unknowns.

If the polynomial set F ⊂ K[Y ] involves polynomials from K[U ] only, we denote by

VU (F ) its variety in K
d
. Similarly, if the regular chain T ⊂ K[Y ] involves polynomials

from K[U ] only, we denote by WU (T ) its quasi-component in K
d
.

Notation 3. Let p ∈ K[U ][X ] be a polynomial. We denote by VU (p) the variety of

K
d
, consisting of the common roots of the coefficients of p, when p is regarded as a

polynomial with variables in X and coefficients in K[U ]. Then, we define VU (F ) as
the intersection of all VU (p) for p ∈ F .

For u ∈ K
d
, we denote by p(u) the polynomial of K[X ] obtained by evaluating p at

U1 = u1, . . . , Ud = ud. Clearly, for all u ∈ K
d
, the polynomial p(u) is identically null

iff u ∈ VU (p). Then, we denote by F (u) the set of all non-zero p(u) for p ∈ F .

Definition 11. Let T ⊂ K[U, X ] be a regular chain. The defining set of T w.r.t. U ,

denoted by DU (T ), is the constructible set of K
d

given by

DU (T ) = WU (T ∩ K[U ]) \ VU (res(hT>Ud
, T>Ud

)).

Let u ∈ WU (T ∩ K[U ]). We say that the regular chain T specializes well at u if T (u)
is a regular chain in K[X ] such that rank(T (u)) = rank(T>Ud

).

Remark 2. Since DU (T ) is a constructible set, by Lemma 5, there exists an algorithm
to compute a set of regular systems RU (T ), such that DU (T ) = Z(RU (T )).

Lemma 14. Let T ⊂ K[U, X ] be a regular chain with mvar(T ) ⊆ X and let u ∈ K
d
.

We have

u �∈ VU (res(hT , T )) ⇐⇒ res(hT (u), T (u)) �= 0 and hT (u) �= 0.

PROOF. “ ⇐ ” If hT (u) �= 0 and res(hT (u), T (u)) �= 0, then

res(hT (u), T (u)) = res(hT (u), T (u)) �= 0,

which implies res(hT , T )(u) �= 0. So u �∈ VU (res(hT , T )).
“ ⇒ ” We prove this by induction on |T |.
If |T | = 1, then u �∈ VU (res(hT , T )) implies hT (u) �= 0 and therefore

res(hT (u), T (u)) = hT (u) = hT (u) �= 0.

Now we assume that the conclusion holds for |T | = n − 1. If |T | = n, let v be the
largest variable in mvar(T ). Since u �∈ VU (res(hT , T )), we have

res(hT , T )(u) = res(hT , T<v)(u) �= 0.

Therefore, res(hT<v , T<v)(u) �= 0. By induction hypothesis, we know hT<v (u) �=
0. By the specialization property of resultant, res(hT (u), T<v(u)) �= 0 and therefore
hT (u) �= 0. So res(hT , T )(u) �= 0 implies res(hT (u), T (u)) �= 0.
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Proposition 4. Let T ⊂ K[U, X ] be a regular chain and let u ∈ WU (T ∩ K[U ]). The

regular chain T specializes well at u ∈ K
d

if and only if u ∈ DU (T ).

PROOF. Assume that u ∈ DU (T ). We prove that T specializes well at u. From
Lemma 14 we have

res(hT>Ud
(u), T>Ud

(u)) �= 0 and hT>Ud
(u) �= 0.

With u ∈ WU (T ∩ K[U ]), which implies (T ∩ K[U ])(u) = {0}, we conclude that
rank(T (u)) = rank(T>Ud

). Moreover, by Theorem 1, T (u) is a regular chain. There-
fore, the regular chain T specializes well at u. The converse implication is proved
similarly.

Definition 12. Let T ⊂ K[U, X ] be a regular chain. The comprehensive
quasi-component of T w.r.t. U , denoted by WC(T ), is defined by

WC(T ) = W(T ) ∩ Π−1
U (DU (T )).

Proposition 5. Let T ⊂ K[U, X ] be a regular chain. The following properties hold:

(1) We have: WC(T ) = W(T ) \ Π−1
U (VU (res(hT>Ud

, T>Ud
))).

(2) We have: ΠU (WC(T )) = DU (T ).

PROOF. It follows from Definition 11 and Lemma 14.

Definition 13. Let F ⊂ K[U, X ] be a finite polynomial set. A comprehensive triangular
decomposition of V(F ) is given by :

1. a finite partition C of ΠU (V(F )),
2. for each C ∈ C a set of regular chains TC of K[U, X ] such that for u ∈ C each of

the regular chains T ∈ TC specializes well at u and we have for all u ∈ C

V(F (u)) =
⋃

T∈TC

W(T (u)).

We will compute the above comprehensive triangular decomposition with the help of
the following auxiliary concept:

Definition 14. Let F ⊂ K[U, X ] be a finite polynomial set. A pre-comprehensive tri-
angular decomposition (PCTD) of V(F ) is a family of regular chains T satisfying the

following property: for each u ∈ K
d
, let Tu be the subfamily of all regular chains in T

that specialize well at u; then

V(F (u)) =
⋃

T∈Tu

W(T (u)).

Proposition 6. Let F ⊂ K[U, X ] be a finite polynomial set. A triangular decomposi-
tion T of V(F ) is a pre-comprehensive triangular decomposition if and only if

V(F ) =
⋃

T∈T
WC(T ).
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PROOF. It follows from the definition of WC(T ), Proposition 4 and the definition of
pre-comprehensive triangular decomposition.

Algorithm 4. PCTD(F )
Input: A finite set F ⊂ K[U, X].
Output: A PCTD of V(F ).
1: T ← Triangularize(F )
2: while T �= ∅ do
3: let T ∈ T , T ← T \ {T}
4: output T
5: G ← COEFFICIENTS(res(hT>Ud

, T>Ud), U )
6: T ← T ∪ Triangularize(G, T )
7: end while

Proposition 7. Algorithm 4 computes a pre-comprehensive triangular decomposition
of V(F ).

PROOF. The loop satisfies the following invariant: the union of all W(T ), where T
ranges over T , and of the W(T ′), where T ′ ranges over the current output, equals
V(F ). Indeed, the invariant holds at the beginning, when the output is empty; and for
the regular chain T taken from T at the current iteration, we have W(T ) \ WC(T ) =
V(G) ∩ W(T ) by Proposition 5 (1). Then, correctness of the algorithm follows from
Proposition 6 and the fact that at the end T = ∅.

Since polynomials in G do not involve the main variables of T , by Lemma 3 they
are regular w.r.t Sat(T ). Then by Lemma 1, either the output of Triangularize(G, T )
is empty or the dimensions of the regular chains computed by Triangularize(G, T ) are
strictly less than that of T . Therefore, the algorithm terminates.

Proposition 8. Algorithm 5 computes a comprehensive triangular decomposition of
F ⊂ K[U, X ].

PROOF. Let T be the output of PCTD(F ). By Proposition 6 and Proposition 5 (2),
we have

ΠU (V(F )) =
⋃

T∈T
DU (T ).

Then the conclusion follows from the definition of comprehensive triangular decompo-
sition, Proposition 3, 7 and Remark 2.

Given a polynomial set F ⊂ K[U, X ], a natural question is to describe the points u

of K
d

for which the specialized system F (u) admits a finite and positive number of
solutions in K

m
. This question is formalized by the following definition.

Definition 15. The discriminant set of F is defined as the set of all points u ∈ K
d

for
which V(F (u)) is empty or infinite.
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Algorithm 5. CTD(F )
Input: A finite set F ⊂ K[U, X].
Output: A CTD of V(F ).
1: T ← PCTD(F )
2: S ← ∅
3: for T ∈ T do
4: S ← S ∪ RU (T )
5: end for
6: S ← SMPD(S)
7: while S �= ∅ do
8: let C ∈ S , S ← S \ C
9: TC ← regular chains in T associated to C

10: output (C,TC)
11: end while

Theorem 4. If T is a pre-comprehensive triangular decomposition of V(F ), then the
following is the discriminant set of F :

⎛

⎜
⎜
⎜
⎝

⋃

T ∈ T
X �⊆ mvar(T )

DU (T )

⎞

⎟
⎟
⎟
⎠

∪

⎛

⎜
⎜
⎜
⎝

⋂

T ∈ T
X ⊆ mvar(T )

K
d \ DU (T )

⎞

⎟
⎟
⎟
⎠

.

PROOF. By Proposition 4, for every parameter value u ∈ K
d
, the set {T (u) | T ∈

T and u ∈ DU (T )} is a triangular decomposition of V(F (u)) into regular chains. In
particular, if there exists no T ∈ T such that u ∈ DU (T ) holds, then V(F (u)) = ∅.

Therefore, u yields finitely many solutions (and at least one) if and only if the fol-
lowing conditions hold:

– u belongs to at least one DU (T ) such that X ⊆ mvar(T ), i.e., T (u) is a zero-
dimensional regular chain.

– u does not belong to any DU (T ) such that X �⊆ mvar(T ), i.e., T (u) is a positive-
dimensional regular chain.

Remark 3. By Theorem 4 and Proposition 8, we have completely answered the two
problems proposed in the introduction.

6 Implementation

We have implemented the algorithm for computing comprehensive triangular decom-
positions (CTD) based on RegularChains library in Maple 11. Our main function CTD
calls essentially three functions

– Triangularize, computing a triangular decomposition of the input system F ,
– PCTD, deducing a pre-comprehensive triangular decomposition of F ,
– SMPD, obtaining a comprehensive triangular decomposition of F .
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Table 1. Solving timings and number of cells of CTD

Sys Name Triangularize PCTD SMPD CTD #Cells
1 MontesS1 0.089 0.002 0.031 0.122 3
2 MontesS2 0.031 0.002 0 0.033 1
3 MontesS3 0.103 0.006 0.005 0.114 2
4 MontesS4 0.101 0.016 0 0.117 1
5 MontesS5 0.383 0.022 0.465 0.870 11
6 MontesS6 0.395 0.019 0.121 0.535 4
7 MontesS7 0.416 0.215 0.108 0.739 4
8 MontesS8 0.729 0.001 0.016 0.746 2
9 MontesS9 0.945 0.116 3.817 4.878 23
10 MontesS10 5.325 0.684 1.138 7.147 10
11 MontesS11 0.757 0.208 12.302 13.267 28
12 MontesS12 14.199 2.419 10.114 26.732 10
13 MontesS13 0.415 0.143 1.268 1.826 9
14 MontesS14 41.167 31.510 0.303 72.980 4
15 MontesS15 6.919 0.579 1.123 8.621 5
16 MontesS16 6.963 0.083 2.407 9.453 21
17 AlkashiSinus 0.716 0.191 0.574 1.481 6
18 Bronstein 2.526 0.017 0.548 3.091 6
19 Gerdt 3.863 0.006 0.733 4.602 5
20 Hereman-2 1.826 0.019 0.020 1.865 2
21 Lanconelli 2.056 0.336 3.430 5.822 14
22 genLinSyst-3-2 1.624 0.275 25.413 27.312 32
23 genLinSyst-3-3 9.571 1.824 1097.291 1108.686 116
24 Wang93 6.795 37.232 11.828 55.855 8
25 Maclane 12.955 0.403 54.197 67.555 21
26 Neural 15.279 19.313 0.530 35.122 4
27 Leykin-1 1261.751 86.460 27.180 1375.391 57
28 Lazard-ascm2001 60.698 2817.801 – – –
29 Pavelle – – – – –
30 Cheaters-homotopy – – – – –

We provide comparative benchmarks with MAPLE implementations of related meth-
ods for solving parametric polynomial systems, namely: decomposition into regular
systems by Wang [19] and discussing parametric Gröbner bases by Montes [14]. Cor-
responding MAPLE functions are RegSer and DISPGB, respectively.

Note that the specifications of these three methods are different. The outputs of CTD
and DISPGB depend on the choice of the parameter sets, whereas RegSer does not
require to specify parameters. RegSer decomposes the input system into pairwise dis-
joint constructible sets given by regular systems. CTD computes a comprehensive tri-
angular decomposition, and thus a family of triangular decompositions with a partition
of the parameter space. DISPGB computes a family of comprehensive Gröbner bases
with a partition of the parameter space.

We run CTD in Maple 11 using an Intel Pentium 4 processor (3.20GHz CPU, 2.0GB
total memory, and Red Hat 4.0.0-9); we set the time-out to 1 hour. Due to the current
availability of RegSer and DISPGB, the timings obtained by these two functions are
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Table 2. Solving timings and number of components/cells in three algorithms

DISPGB RegSer CTD
Sys Time (s) # Cells Time (s) # Components Time (s) # Cells
1 0.509 2 0.021 3 0.122 3
2 0.410 2 0.021 1 0.033 1
3 0.550 2 0.060 3 0.114 2
4 1.511 2 0.070 1 0.117 1
5 1.030 3 0.099 4 0.870 11
6 1.350 4 0.049 5 0.535 4
7 1.609 2 0.180 4 0.739 4
8 2.181 3 0.150 4 0.746 2
9 10.710 5 0.171 7 4.878 23
10 9.659 5 0.329 5 7.147 10
11 0.489 3 0.260 9 13.267 28
12 259.730 5 2.381 23 26.732 10
13 5.830 9 0.199 9 1.826 9
14 – – – – 72.980 4
15 30.470 7 0.640 10 8.621 5
16 61.831 7 6.060 22 9.453 21
17 4.619 6 0.150 5 1.481 6
18 8.791 5 0.319 6 3.091 6
19 20.739 5 3.019 10 4.602 5
20 101.251 2 0.371 7 1.865 2
21 43.441 4 0.330 7 5.822 14
22 – – 0.350 18 27.312 32
23 – – 2.031 61 1108.686 116
24 – – 4.040 6 55.855 8
25 83.210 11 – – 67.555 21
26 – – – – 35.122 4
27 – – – – 1375.391 57
28 – – – – – –
29 – – – – – –
30 – – – – – –

performed in Maple 8 on Intel Pentium 4 machines (1.60GHz CPU, 513MB memory
and Red Hat Linux 3.2.2-5); and the time-out is 2 hours. The 30 test-systems used in
our experimentation are chosen from [13,18,21].

As shown in the above two tables, our implementation of the CTD algorithm can
solve all problems which can be solved by the other methods. In addition, the CTD
can solve 4 test-systems which are out of reach of the other two methods, generally due
to memory consumption.

7 Conclusion

Comprehensive triangular decomposition is a powerful tool for the analysis of paramet-
ric polynomial systems: its purpose is to partition the parameter space into regions, so
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that within each region the “geometry” of the algebraic variety of the specialized system
is the same for all values of the parameters.

As the main technical tool, we proposed an algorithm that represents the difference
of two constructible sets as finite unions of regular systems. From there, we have de-
duced an algorithmic solution for a set theoretical instance of the coprime factorization
problem: refining a family of constructible sets into a family of pairwise disjoint con-
structible sets.

We have reported on an implementation of our algorithm computing CTDs, based on
the RegularChains library in MAPLE. Our comparative benchmarks, with MAPLE

implementations of related methods for solving parametric polynomial systems, illus-
trate the good performances of our CTD code.
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