
Comprehensive two-level analysis of role-based delegation and revocation
policies with UML and OCL

Karsten Sohr a,⇑, Mirco Kuhlmann a, Martin Gogolla a, Hongxin Hu b, Gail-Joon Ahn b

aCenter for Computing Technologies (TZI), Universität Bremen, Germany
bArizona State University, Tempe, Arizona, USA

a r t i c l e i n f o

Article history:

Available online 11 July 2012

Keywords:

UML

OCL

RBAC

Delegation

Revocation

a b s t r a c t

Context: Role-based access control (RBAC) has become the de facto standard for access management in

various large-scale organizations. Often role-based policies must implement organizational rules to sat-

isfy compliance or authorization requirements, e.g., the principle of separation of duty (SoD). To provide

business continuity, organizations should also support the delegation of access rights and roles, respec-

tively. This, however, makes access control more complex and error-prone, in particular, when delegation

concepts interplay with SoD rules.

Objective: A systematic way to specify and validate access control policies consisting of organizational

rules such as SoD as well as delegation and revocation rules shall be developed. A domain-specific lan-

guage for RBAC as well as delegation concepts shall be made available.

Method: In this paper, we present an approach to the precise specification and validation of role-based

policies based on UML and OCL. We significantly extend our earlier work, which proposed a UML-based

domain-specific language for RBAC, by supporting delegation and revocation concepts.

Result: We show the appropriateness of our approach by applying it to a banking application. In partic-

ular, we give three scenarios for validating the interplay between SoD rules and delegation/revocation.

Conclusion: To the best of our knowledge, this is the first attempt to formalize advanced RBAC concepts,

such as history-based SoD as well as various delegation and revocation schemes, with UML and OCL. With

the rich tool support of UML, we believe our work can be employed to validate and implement real-world

role-based policies.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Today, role-based access control (RBAC) is widely-used to sim-

plify access management in various large-scale organizations, such

as financial institutes, healthcare providers, and enterprises. In

RBAC, users obtain access to business processes and resources

through roles rather than directly through permissions. One

important advantage of RBAC is that organizational rules, such as

separation of duty (SoD), can be naturally specified and imple-

mented. Proceeding this way, various kinds of role-based authori-

zation constraints have been proposed in the literature [1–5]. In

contrast to common static SoD constraints (e.g., no user can be as-

signed to the roles cashier and cashier supervisor by an adminis-

trator), dynamic authorization constraints are more flexible and

hence are needed in many organizations. A typical example of dy-

namic SoD is the rule ‘‘A check must not be prepared, verified and

signed by the same clerk’’. In this case, the access decision for sign-

ing the check depends on the actions that have been previously

performed by the clerk. In the literature, several types of dynamic

authorization constraints have been discussed, such as history-

based SoD and resource-based dynamic SoD1 [2,6].

Another advanced access control concept is role-based delega-

tion and revocation [7–11]. Many organizations may often face sit-

uations in which employees need specific access rights in an ad hoc

fashion, without involving security administrators. For example,

consider a situation in which an order must be timely confirmed,

but the supervisor is not available due to work overload. In this

case, the supervisor may need to partially delegate her supervisor

role to another colleague to process the confirmation request. In a

healthcare environment, physicians often need to consult a spe-

cialist, and hence, need to pass on patient data. In such a situation,

the attending physician needs to delegate read access for the

patient data to the specialist. Sometimes delegations should be re-

voked, e.g., on returning from vacation, a supervisor revokes priv-

ileges from her colleague who was member of the delegated role.

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2012.06.008

⇑ Corresponding author.

E-mail address: sohr@tzi.de (K. Sohr).

1 In the access control literature, this constraint is often referred to as ‘‘object-

based dynamic SoD’’. Due to the fact that the term ‘‘object’’ has another meaning in

the context of UML, we use ‘‘resource’’ instead.

Information and Software Technology 54 (2012) 1396–1417

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2012.06.008
mailto:sohr@tzi.de
http://dx.doi.org/10.1016/j.infsof.2012.06.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


Role-based policies, i.e., the defined roles and authorization

constraints, might become quite complex through the interplay be-

tween authorization constraints and delegation/revocation

schemes. For example, role delegation may cause unexpected vio-

lations of a history-based SoD constraint since delegation itself

might conflict with the delegatee’s previous activities. For this rea-

son, it is desirable to allow a security officer to systematically cre-

ate and analyze the defined role-based policies.

In our earlier work, we introduced an approach to modeling

role-based policies—including dynamic authorization con-

straints—with the Unified Modeling Language (UML) and the Ob-

ject Constraint Language (OCL) [12]. In particular, we designed a

domain-specific language (DSL), based on a UML metamodel using

class diagrams and OCL constraints. Role-based concepts (includ-

ing various kinds of authorization constraints) have been formal-

ized at the level of the metamodel. The concrete policies of an

organization can then be defined with the help of UML object dia-

grams. Proceeding this way, an administrator/security officer can

use a more intuitive graphical UML-based DSL, while the technical

details (e.g., the OCL constraints) can be hidden in the metamodel.

In addition, using UML/OCL for policy specification allows an orga-

nization to utilize the rich tool support available for UML, such as

CASE and UML validation tools, which are widely adopted by

industry, in contrast to logic-based policy languages. Due to the

fact that our RBAC DSL has its foundation in UML object diagrams,

which is a basic diagram type, UML tools generally support our

RBAC DSL. Approaches which utilize the UML profile mechanisms,

e.g., SecureUML [13], have the drawback that it is unclear if and to

which extent CASE tools handle this extension mechanism.

Having aUML-based formalizationof role-basedpolicies at hand,

we showedhow to employ theUSEmodel validator [14] and theUSE

tool (UML-based Specification Environment) [15] to validate the

metamodel as well as role-based policies. The validation approach

with USE allows an administrator to define concrete test cases for

RBAC policies as UML object diagrams. A test case, for example,

can be a situation (system state) inwhich a specific user can execute

certain permissions which she should never obtain. If the policy al-

lows this situation, this might be a hint that the policy is incorrect.

In this paper, we significantly extend our earlier works in sup-

porting delegation and revocation concepts. Our work is based on

RDM2000, a well-established delegation and revocation frame-

work [7], which includes constrained delegation (i.e., constraints

are imposed on delegation) as well as different revocation schemes

as introduced by Hagström et al. [16]. Proceeding this way, our

metamodel can encompass important access control features in

combining advanced RBAC concepts (e.g., static and dynamic

authorization constraints and role-hierarchies) with delegation/

revocation schemes. This allows us to capture complex access con-

trol requirements demanded by real-world applications. We fur-

ther show the applicability of our concepts with the help of a

banking application defined by Chandramouli [17]. Last but not

least, we employ USE and the USE model validator to validate

role-based policies in order to detect subtle problems stemming

from the combination of authorization constraints, role hierar-

chies, and delegation.

In summary, our main contribution is a UML-based RBAC DSL,

which is expressive enough to support delegation and revocation

schemes as well as advanced RBAC concepts, such as role hierar-

chies and history-based authorization constraints. The DSL is gra-

phic-based and hence easy to understand in contrast to

approaches which utilize logics for policy specification. In addition,

a policy designer can employ CASE tools (including functionality

for model driven development) to specify, analyze and implement

the role-based policies.

The remainder of this paper is organized as follows. Section 2

gives anoverviewof thebasic technologies and conceptsused in this

paper. We then recapitulate the RBAC metamodel in Section 3,

whereas Section 4 discusses the validation of this metamodel. In

Section 5, we describe the extensions of the metamodel to support

delegation and revocation schemes and thereafter show how to ap-

ply our RBAC DSL to a banking application. After discussing related

work in Section 7, we conclude and give an outlook in Section 8.

2. Background

In the following, we describe the background of ourwork includ-

ing the basic techniques as we have done in [18] with the exception

of delegation concepts which have not been covered. Having briefly

described the main concepts behind UML, OCL, DSLs, and the vali-

dation tool USE, we recapitulate access control concepts, such as

RBAC, authorization constraints as well as delegation and revoca-

tion. In particular, we give an overview of the RDM2000 delegation

model, which will be a central aspect of our current work.

If the reader is familiar with the concepts treated in this section,

she might skip them and move onto Section 3.1.

2.1. Employed modeling and validation approaches

2.1.1. Unified Modeling Language

The Unified Modeling Language (UML) [19,20] represents a gen-

eral-purpose visual modeling language in which we can specify,

visualize, and document the components of software and hardware

systems. It captures decisions and understanding about systems

that are to be constructed. UML has become a standard modeling

language in the field of software engineering and is increasingly

used in hardware/software co-design.

Through different views and corresponding diagrams, UML per-

mits the description of static, functional, and dynamic models [21].

In this paper, we concentrate on UML class and object diagrams. A

class diagram provides a structural view of information in a sys-

tem. Classes are defined in terms of their attributes and relation-

ships. The relationships include specifically associations between

classes, but also association classes which allow for adding further

information to the relationships. Object diagrams visualize in-

stances of the modeled system, i. e., class instances (objects), attri-

bute instances (values) and instances of associations (links).

Fig. 1 shows an example class and object diagram. The class dia-

gram visualizes a small UML model consisting of the classes ‘Per-

son’ which has the attributes ‘name’ and ‘age’ and ‘Company’ also

containing an attribute ‘name’. Persons may be related through

the binary reflexive association ‘Parenthood’. The association ends

‘parent’ and ‘child’ determine the roles a person can assume in a

parenthood relationship. Persons can have jobs, as the association

class ‘Job’ relates them with companies. The attribute of the asso-

ciation class holds the salary for each job. Since persons may have

more than one job, the operation ‘salary ()’ of class Person calcu-

lates the sum of all related salaries. Relationships between classes

may be constrained by multiplicities. In our example, a person may

have any number of children, but at most two parents. A company

must have at least one employee.

The object diagram represents an example instance of the mod-

el including a family with jobs at two different companies. Ada, for

example, is employed at IBM and Apple which pay individual sal-

aries. Bob is unemployed.

2.1.2. Object Constraint Language

The Object Constraint Language (OCL) [22] is a declarative

textual language that describes constraints on object-oriented

models. It is an industrial standard for object-oriented analysis

and design.

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1397



OCL expressions consist of OCL standard operations or user-de-

fined OCL query operations. The built-in standard operations sup-

port calculations on the basic types Boolean (e. g., and, or and

implies), Integer (e. g., +, ⁄ and mod), Real (e. g., /, and round),

as well as on collection types, i. e., sets, bags (multiset), ordered

sets and sequences. Beside the usual collection type operations

(e. g., union, size and includes) several operations enable iter-

ation over the members of a collection such as forAll, exists,

iterate, and select. The most important features of OCL are

navigation and attribute access, which connect an OCL expression

with the values in a concrete model instance. By definition, OCL

constraints can restrict the static aspects of a UML model through

invariants. Dynamic aspects with respect to user-defined class

operations and their expected execution results are addressed

through pre- and postconditions. In this paper, we break this dis-

tinction by explicitly integrating the dynamic problems into our

RBAC metamodel enabling our invariants to enforce temporal

properties.

OCL invariants are related to a context class; i. e., the boolean

expression for an invariant is evaluated for each instance of this

class. If the expression evaluates to false in the context of at least

one object, the invariant is violated, indicating an invalid model in-

stance. The reserved word ‘self’ is used to refer to the contextual

instance. We extended our example UML model presented in

Fig. 1 by the two simple invariants which are named ‘minimumW-

age’ and ‘minumumAge’.

context Person inv minimumWage:

self.employer->notEmpty() implies self.salary ()

>= 500

The first invariant describes a logical implication whose pre-

mise checks whether the considered Person object has at least

one employer. The subexpression self.employer is a navigation

from an object (self) via the association end employee to a set of

linked Company objects. The collection operation notEmpty eval-

uates to true if the source collection includes at least one element.

We implemented the operation salary () as an OCL query operation

which calculates the total income of a person without side-effects

(i. e., without changing the model instance).

Person::salary (): Integer = self.job.salary->sum

()

After navigating from a person to her jobs, the attribute salary

of each Job object is accessed and all corresponding values are col-

lected in a bag. In the end, the sum of all elements of the bag is re-

turned. Consequently, the invariant demands each working person

to earn at least 500 units.

The second invariant makes use of the operation forAll, which

iterates over each person who is employed in the considered com-

pany, and evaluates the boolean body expression p.age >= 16.

context Company inv minimumAge:

self.employee->forAll (p j p.age >= 16)

2.1.3. UML-based Specification Environment

The UML-based Specification Environment (USE) supports the

validation of UML and OCL descriptions. USE is the only OCL tool

enabling interactive monitoring of OCL invariants and pre- and

postconditions, as well as automatic generation of non-trivial mod-

el instances. The central idea of the USE tool is to check for soft-

ware quality criteria like correct functionality of UML

descriptions in an implementation-independent manner. This ap-

proach takes advantage of descriptive design level specifications

by expressing properties more concisely and in a more abstract

way. Such properties can be given by state invariants and opera-

tion pre- and postconditions. They are checked by the USE system

against the test scenarios, i.e., object diagrams and operation calls

given by sequence diagrams, which the developer provides.

USE takes as input a textual description of a model and its OCL

constraints. It then checks this description against the grammar of

the specification language, which is a superset of OCL, extended

with language constructs for defining the structure of the model.

Having passed all these checks, the model can be displayed by

the GUI provided by the USE system. In particular, USE makes

available a project browser which displays all the classes, associa-

tions, invariants, and pre- and postconditions of the current model.

The diagrams shown in Fig. 1 are provided by USE. The status of

the implemented OCL invariants in terms of the given model in-

stance can be examined via a class invariants window (see

Fig. 2). It reveals the invariant minimumWage to be violated. Since

USE allows us to query the current model instance via user-defined

OCL expressions, we exploit this feature to further inspect the

problem. The result is also shown in Fig. 2. Our query calculates

a tuple of name and total income for each person. We see that

Ada and Bob do not reach the minimum wage of 500. However,

since Bob is unemployed, he is disregarded by the invariant.

Fig. 1. Example UML class and object diagram.

1398 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



2.1.4. Domain-specific modeling and languages

Domain-specific modeling (DSM) is an approach for construct-

ing systems that fundamentally relies on employing domain-spe-

cific languages (DSLs) to represent the different system aspects in

the form of models. A DSL is said to offer higher-level abstractions

than a general-purpose modeling language and to be closer to the

problem domain than to an implementation-platform domain. A

DSL catches domain abstractions as well as domain semantics

and supports modelers in order to develop models with a direct

use of domain concepts. Domain rules can be incorporated into

the DSL in the form of constraints, making the development of in-

valid or incorrect models much harder. Thus, domain-specific lan-

guages play a central role in domain-specific modeling. In order to

define a domain-specific modeling language, two central aspects

have to be taken into account: the domain concepts including con-

straining rules (which constitute the abstract syntax of the DSL),

and the concrete notation employed to represent these concepts

(which can be given in either textual or graphical form). In this pa-

per, we mainly focus on the abstract syntax. The abstract syntax of

a domain-specific language is frequently described by a metamod-

el. A metamodel characterizes the concepts of the domain, the rela-

tionships between the concepts, and the restricting rules that

constrain the model elements in order to reflect the rules that hold

in the domain. Such an approach supports fast and efficient devel-

opment of DSLs and corresponding tools (for example, translators,

editors, or property analyzers).

Let us explain these ideas with an example.We consider a few ele-

ments of the well-known relational database language SQL as a do-

main-specific language and show in the screenshot in Fig. 3 how

these features would be represented and analyzed with our tool USE.

We describe the abstract syntax of the considered SQL elements with

a metamodel, which embodies structural requirements in the form of

a class diagram together with restricting constraints. We show how

this metamodel can be validated and analyzed with usage scenarios.

� An overview of the metamodel for the tiny SQL subset is shown

in the project browser in the left upper part of the screenshot

and in the class diagram in the lower right part. Classes, associ-

ations and invariants are pictured in the browser. From the class

diagram we learn that a relational schema (class RelSchema

representing an SQL table) has attributes (columns) and that

an attribute is typed through a data type. A relational schema

is populated with rows (tuples) in which each attribute gets a

value by means of attribute map objects.

� Further rules are stated in the form of invariants which restrict

the possible instantiations, i.e., the object diagrams of the meta-

model. The names of these invariants are shown in the ‘Class

invariants’ window in the middle of the screenshot. We hide

the OCL details but only informally explain the constraint pur-

pose in the order in which the invariants appear: (a) the set of

key attributes of each relational schema has to be non-empty,

(b) the attributes names have to be unique within the relational

schema, (c) each rowmust have an attribute value for each of its

attributes, and (d) each row must have unique key attribute

values.

� In the upper part of the screenshot we see a usage scenario in

concrete SQL syntax. One table (relational schema) is created,

populated by two SQL insert commands and finally modified

with an additional SQL update command.

� This usage scenario is represented in the abstract syntax of the

metamodel in the form of an evolving object diagram. The

screenshot shows only the last object diagram after the SQL

update has been executed: (a) after the create command only

the four left-most objects (rs1, a1, a2, dt1) are present; (b) after

the first insert command the five middle objects (r1, am1, v1,

am2, v2) appear, however we will have v1.content=‘Ada’;

(c) after the second insert the five right-most objects (r2, am3,

v3, am4, v4) will show up; up to this point all four invariants

evaluate to ‘true’; (d) after the update command the ‘content’

value of v1 changes (v1.content=‘Bob’) and the evaluation

of the invariant keyMapUnique turns to ‘false’.

� Let us further explain the impact of the invariants by means of

changing the stated object diagram: (a) the first invariant would

turn to ‘false’ if we would say a1.isKey = false; (b) the sec-

ond invariant would turn to ‘false’ if we would say a2.name =

‘firstName’; (c) the third invariant would turn to ‘false’ if

we would delete the objects am2 and v2; (d) the fourth invari-

ant would turn to ‘true’, if we would say a2.isKey = true.

� The situation is analyzed with the OCL query shown in the

screenshot. The OCL query finds the objects which violate the

failing constraints: All objects are returned for which another

object with the same key attribute values exists.

Our approach to defining a (domain-specific) RBAC language,

which will be explained in the forthcoming parts, follows the prin-

ciples used above for the tiny SQL subset: Definition of the abstract

syntax of the language concepts, and characterization of their dy-

namic evaluation in the form of a metamodel that consists of a

class diagram and restricting constraints.

2.2. Role-based access control and authorization constraints

RBAC has been widely used in organizations to simplify access

management. Roles are explicitly handled in RBAC security poli-

cies. Thereby, security management is simplified and the use of

security principles like ‘separation of duty’ and ‘least privilege’ is

enabled [1]. We now give an overview of (general) hierarchical

RBAC according to the RBAC standard [23] which is the fundament

of our following RBAC UML approach.

RBAC relies on the following sets: U, R, P, S (users, roles, permis-

sions, and sessions, respectively), UA # U � R (user assignment to

roles), PA # R � P (permission assignment to roles), and

RH # R � R (partial order called role hierarchy or role dominance

relation written as 6). Users may activate a subset of the roles they

are assigned to in a session. P is the set of ordered pairs of actions

and resources. Actions and resources are also called operations

and objects in the RBAC context. For disambiguating RBAC and

UML concepts, we continuously use the former notion. Resources

represent all elements accessible in an information technology

(IT) system, e. g., files and database tables. Actions, e. g., ‘read’,

‘write’ and ‘append’, are applied to resources.

The relation PA assigns a subset of P to each role. Therefore,

PA determines for each role the action(s) it may execute and

the resource(s) to which the action in question is applicable

for the given role. Thus, any user having assumed this role can

Fig. 2. Evaluation of class invariants and a user-defined OCL query expression in

USE.

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1399



apply an action to a resource if the corresponding ordered pair is

an element of the subset assigned to the role by PA.

.Role hierarchies can be formed by the RH relation. Senior roles in-

herit permissions from junior roles through the RH relation, e.g., the

role ‘chief physician’ inherits all permissions fromthe ‘physician’ role.

An important advanced concept of RBAC is authorization con-

straints. Authorization constraints can be regarded as restrictions

on the RBAC functions and relations. For example, a (static) SoD con-

straintmaystate thatnousermaybeassigned toboth the cashierand

cashier supervisor role, i.e., theUArelation is restricted. It hasbeenar-

gued elsewhere [1] that authorization constraints are the principal

motivation behind the introduction of RBAC. They allow a policy de-

signer to express higher-level organizational rules as indicated

above. In the literature, several kinds of authorization constraints

have been identified. In this paper, we exemplarily consider static

and dynamic SoD [3,2] and cardinality constraints [1]. Temporal

considerations need extra preparation which we introduce later.

2.3. Role-based delegation and revocation

Delegation is the process whereby an active entity in a distrib-

uted environment authorizes another entity to access resources. In

current distributed systems, a user often needs to act on another

user’s behalf with some subset of his/her privileges. Most systems

have attempted to resolve such delegation requirements with ad

hoc mechanisms by compromising existing disorganized policies

or simply attaching additional components to their applications.

There is still a strong need in the large, distributed systems for a

mechanism that provides effective privilege delegation and revoca-

tion management. To this end, several delegation models have

been proposed recently for access control systems [9,7,24,25].

RBDM0 is a model for delegating roles, which is based on the

RBAC0 model of the RBAC96 family [9]. RDM2000 defines a rule-

based framework for role-based delegation and revocation [7].

The model considers role hierarchies and also provides support

for multi-step delegations. The PBDM model proposes a delegation

model for permissions that also supports multi-step delegations

[24]. In this paper, we address our approach based on well-estab-

lished RDM2000 delegation and revocation framework.

2.3.1. Role delegation

In addition to the basic components defined in RBAC model,

RDM2000 defines a new relation called delegation relation (DLGT).

It includes three elements: original user assignments UAO, dele-

gated user assignment UAD, and constraints. The motivation be-

hind this relation is to address the relationships among different

components involved in a delegation. To illustrate main functional

components in RDM2000, we use a role hierarchy example shown

in Fig. 4. In a user-to-user delegation, there are four components: a

delegating user, a delegating role, a delegated user, and a delegated

role. For example, (Deloris, PL1, Cathy, PL1) means Deloris acting in

role PL1 delegates role PL1 to Cathy. The delegation relation sup-

Fig. 3. USE screenshot of relational DB metamodel.

1400 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



ports role hierarchies: a user who is authorized to delegate a role r

can also delegate a role r0 that is junior to r. For example, (Deloris,

PL1, Lewis, PC1) means Deloris acting in role PL1 delegates a junior

role PC1 to Lewis. A delegation relation is one-to-many relationship

on user assignments. It consists of original user delegation (ODLGT)

and delegated user delegation (DDLGT).

In some cases, we may need to define whether or not each del-

egation can be further delegated and for how many times, or up to

the maximum delegation depth. RDM2000 introduces two types of

delegation: single-step delegation and multi-step delegation. Single-

step delegation does not allow the delegated role to be further del-

egated; multi-step delegation allows multiple delegations until it

reaches the maximum delegation depth. The maximum delegation

depth is a natural number defined to impose restriction on the del-

egation. Single-step delegation is a special case of multi-step dele-

gation with maximum delegation depth equal to one.

A delegation path (DP) is an ordered list of user assignment rela-

tions generated through multi-step delegation. A delegation path

always starts from an original user assignment.

RDM2000 has the following major components and theses com-

ponents are formalized from the above discussions.

� UAO # U � R is a many-to-many original user to role assign-

ment relation.

� UAD # U � R is a many-to-many delegated user to role assign-

ment relation.

� UA = UAO [ UAD.

� DLGT # UA � UA is one-to-many delegation relation. A delega-

tion relation can be represented by ((u,r), (u0,r0)) 2 DLGT, which

means the delegating user u with role r delegated role r0 to user

u0.

� ODLGT # UAO � UAD is an original user delegation relation.

� DDLGT # UAD � UAD is a delegated user delegation relation.

� DLGT = ODLGT [ DDLGT.

Delegation authorization is to impose restrictions on which role

can be delegated to whom. RDM2000 adopts the notion of prere-

quisite condition to delegation authorization specification. A prere-

quisite condition CR is a Boolean expression using the usual ‘‘&’’

(and) and ‘‘j’’ (or) operators on terms of form x and x where x is a

regular role, for example, CR ¼ r1&r2jr3.

The following relation authorizes user-to-user delegation in

RDM2000:

� can_delegate # R � CR � Nwhere R, CR, N are sets of roles, pre-

requisite conditions, and maximum delegation depth,

respectively.

The meaning of (r,cr,n) 2 can_delegate is that a user who is a

member of role r (or a role senior to r) can delegate role r (or a role

junior to r) to any user whose current entitlements in roles satisfy

the prerequisite condition cr without exceeding the maximum del-

egation depth n. For example, (PL1,PO2,1) 2 can_delegate, then

John can delegate role PC1 to Mark who is a member of PO2 role,

so that (John,PL1,Mark,PC1) 2 DLGT.

2.3.2. Role revocation

Revocation is an important process that must accompany the

delegation. For example, Cathy delegated role PC1 to Mark; how-

ever, if Mark is transferred to another division of the organization,

he should be revoked from the delegated role PC1 immediately.

Several different semantics are possible for user revocation

[9,16]. RDM2000 articulates user revocation in the following

dimensions: dominance, propagation, and grant-dependency. Domi-

nance refers to the effect of a revocation; strong revocation consid-

ers also implicit role memberships (e.g, through role hierarchies),

whereas weak revocation does not. Propagation refers to the extent

of a revocation; a cascading revocation also revokes all the subse-

quent delegations. Grant-dependency refers to the legitimacy of a

user who can revoke a delegated role. Grant-dependent (GD) revo-

cation means only the delegating user can revoke the delegated

user from the delegated role. Grant-independent (GI) revocation

means any original user of the delegating role can revoke the user

from the delegated role.

RDM2000 defines the following relations authorizing delega-

tion revocation w.r.t. grant-dependency:

� can_revokeGD # R

� can_revokeGI # R

The meaning of (b) 2 can_revokeGD is that only the delegating

user who has current membership in b can revoke a delegated user

from the delegated role that is junior to b. The meaning of (b)

2 can_revokeGI is that any user whose current membership in-

cludes a delegated role b in the delegation path that is prior to a

delegated user whose current membership includes a delegated

role junior or equal to b, can revoke the delegated user from role

b. Similarly, revocation relations can be defined for dominance

and propagation properties.

3. RBAC UML description

Three central requirements form the basis of the developed

RBAC metamodel. The model must provide for (1) the design of

organizational (security) policies with respect to core RBAC con-

Fig. 4. An example of organizational role hierarchy and users.

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1401



cepts including authorization constraints, (2) a comprehensive

validation of the specified policies including time-independent

(static) and time-dependent (dynamic) aspects, and (3)

extensibility.

These requirements result in a UML class diagram with two

parts describing a policy level for the policy design and a user access

level for the policy analysis. Fig. 5 visualizes the basic idea. An ob-

ject diagram shows an example instance of the RBAC class diagram

(depicted in Fig. 6). The dark gray part represents a role-based pol-

icy specified by an administrator (security officer) through the cre-

ation of Role, Permission, Action and Resource objects and

insertion of links between the objects. In this example, no authori-

zation constraints are involved.

In summary, the dark gray part represents the role-based policy

as an object diagram, which is based on the RBAC class diagram,

i.e., the metamodel. Proceeding this way, all the details of the RBAC

metamodel are hidden from a security officer, which leads to a

more usable RBAC DSL than a logic-based policy language. This is

in line with Jaeger and Tidswell, who pointed out that graphical

policy languages were more suitable for an administrator than

logic-based languages [26].

The light gray part simulates an IT system with one user bob

who is present at two different points in time and his activities.

With the help of the object diagram, we can sketch the main

principles of RBAC and our UML model, which is examined in de-

tail later. The example policy manages the access to just one re-

source, a (bank) check. (This is a simplified view to an RBAC

permission management. RBAC policies often abstract from indi-

vidual resources.) Users in the role of a ‘clerk’ are entitled to pre-

pare checks. Users in the role of a ‘supervisor’ are allowed to

approve them. As mentioned before, policy designers (administra-

tors) normally aim to prevent situations in which the same user

prepares and approves a critical resource like a check (SoD

requirement).

The user access level is exclusively designed for the analysis of

policies including authorization constraints like the aforemen-

tioned SoD requirement. The analysis is performed by administra-

tors who can either manually instantiate the user access level or

let a UML validation tool (e. g., USE) automatically create user ac-

cess scenarios. The user access level simulates concrete user

activities in the context of a policy, i.e., the actor ‘End-user’ in

Fig. 5 represents real users defined by an administrator, but the

users’ activities are simulations of real events. In the present case,

the following situation is at hand. The user bob prepares a check

at 10 am and approves this check in a different session at 11 am,

thus, violating the SoD requirement. Speaking more precisely, bob

accesses the real resource ‘check’ via the action ‘prepare’ and later

in the context of another access via the action ‘approve’. We call a

point in time a snapshot and a sequence of snapshots a scenario or

film strip to stress the sequential aspect.

The user activity can be checked with respect to the policy. It

is either valid, i. e., the whole object diagram fulfills all underly-

ing UML and OCL constraints specified with the RBAC metamodel,

or invalid, i. e., the object diagram violates at least one UML or

OCL constraint. The UML and OCL constraints are controlled by

the policy part as the policy determines the set of active authori-

zation constraints. For example, if the administrator activates the

respective SoD authorization constraint (a boolean UML attribute

belonging to Resource objects which is currently hidden in the

diagram) for the ‘check’, the OCL invariant enforcing the SoD

requirement will come into effect. Thus, the present scenario will

not be valid in the context of the restricting policy.

The distinction between the actors, i.e., the RBAC metamodel

developers (the authors of this paper), security officers (adminis-

Fig. 5. Policy and user access level of the RBAC UML description.

1402 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



trators), and end-users, is helpful later when we address the vari-

ous possibilities to analyze the RBAC description.

To give a better overview, Fig. 7 depicts the different use cases,

which describe how our RBAC framework can be applied. The RBAC

mmdeveloper specifies theUMLmetamodelof ourRBACDSL includ-

ing the OCL constraints and the class diagram.Whenever new RBAC

concepts are introduced (e.g., new types of authorization constraints

or as in this paper, delegation and revocation concepts), the RBAC

mm developer adjusts the metamodel accordingly. Based on the

metamodel, object diagrams can be defined, which instantiate the

RBAC metamodel. A security officer (administrator) defines the

role-based policy of her organization and works at the policy level

to set attributes (e.g., expressing authorization constraints), add ob-

jects (e.g., roles, users, resources), and set links betweenobjects (e.g.,

defines RBAC relations). The end-user then accesses the security-

critical resources, such as accounts (‘‘User Access Level Diagram’’

in Fig. 7). Pleasenote that this level canalsobeusedbya securityoffi-

cer to simulate the system and test the corresponding role-based

policy.Also, it can serve as abasis for an implementationof anautho-

rization engine [27].

3.1. RBAC metamodel

The object diagram shown in Fig. 5 is based on the RBAC meta-

model shown in Fig. 6. Please note that Fig. 6 depicts one class dia-

gram, which, however, consists of the two parts policy level and

user access level. Classes and associations analogously belong to

the policy level or the user access level. This situation is similar

to that shown in the bottom right corner of Fig. 3, in which a class

diagram for the Relational DB metamodel is given. This class dia-

gram describes two conceptually different parts, namely, the defi-

nition of the DB schema as well as the modification/selection of DB

rows. In the following sections, we describe both parts of the RBAC

metamodel in more detail.

3.1.1. Policy level

The dark gray policy part features the basic RBAC concepts.

Users are assigned to at least one role. Roles entail a particular

set of permissions which are needed for applying actions to re-

sources. The role hierarchy and RBAC authorization constraints

form the realized advanced concepts. Roles may have junior roles

implying the inheritance of permissions. The authorization con-

straints are based on the fundamental paper of Sandhu [1] supple-

mented by dynamic constraints discussed in [28]. In our approach,

the constraints are realized as UML attributes and associations.

While integrating the authorization constraints into the RBAC

metamodel, we adhered to the principle of strictly separating the

RBAC metamodel from concrete policies. That is, concrete policies

should be exclusively defined in object diagrams so that their spec-

ification does not require adjustments at the metamodel level.

Fig. 6. The RBAC metamodel.

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1403



Generally speaking, our approach allows the policy administrators

to freely configure the needed authorization constraints by setting

attribute values and inserting links between objects. While the

attribute and association names are chosen to suggest the meaning

of the corresponding constraint, we provide a short description for

each realized authorization constraint within Table 1. The OCL

invariants implementing the authorization constraints are consid-

ered in Section 3.2.

3.1.2. User access level

As explained before, the user access level displayed in the light

gray part of Fig. 6 is an essential means for policy analysis. On the

one hand, the class ‘User’ and related authorization constraints be-

long to the policy level because administrators create users and

configure their access rights through the assignment to roles and

the determination of the respective attribute values. On the other

hand, a user represents a central element at the user access level be-

cause we model the users’ activities via sessions and resource

accesses at this level. In other words, a User object is part of a con-

crete policy, but the activated sessions and accesses related to the

User object simulate an IT system which underlies the designed

policy. This way, during the analysis process, we can, for example,

identify user activities which are forbidden by the given policy

specification, but are valid in the eyes of the administrators, or iden-

tify constellations which are allowed wrt. the policy but should

actually be forbidden.

The policy level of the RBAC UML description follows the prin-

ciples of an application model, whereas the user access level follows

the principles of a snapshot model [29,30]. That is, one object dia-

gram for Fig. 6 describes exactly one policy, but several situations

on the user access level, i.e., points in time in a IT system. The class

‘Snapshot’ and the associations with ‘PredSucc’ prefix enable the

corresponding dynamics. A scenario consists of one chain of suc-

cessive snapshots. Analogously, users, sessions and accesses can

have successors. These predecessor/successor relationships allow

for identifying the individual users, sessions and accesses over time

(snapshots). For example, the user Bob is represented by one object

per snapshot so that we can follow Bob’s activities within the

whole scenario. This aspect is not explicitly treated in [30].

This snapshot modeling of the user access level with pred/succ

associations allows us to analyze time-dependent (dynamic)

constraints.

3.2. Supplemental OCL constraints

The RBAC class diagram is supplemented by OCL invariants

which serve three purposes. They (1) represent authorization con-

straints, (2) check for reasonable policy designs, and (3) regulate

the snapshot concepts.

The OCL invariants make use of OCL query operations displayed

in the operation parts of the classes (see Fig. 6). The query opera-

tions represent auxiliary functions simplifying the invariant bodies

or calculating transitive closures. For example, the operation ‘suc-

cessors’ (Snapshot) returns all direct and indirect successors of the

snapshot under consideration, or the operation ‘required’ (Role)

calculates all directly and indirectly required roles in the context

of the calling Role object.

3.2.1. Formalizing authorization constraints

Each authorization constraint is represented by an OCL invari-

ant which checks whether a user access scenario complies with

the authorization constraint. The administrator determines for

which objects the authorization constraint should be activated, i.

e., for which objects the invariant should be applied. This is done

by creating objects on the policy level, changing attributes, or

establishing links. The invariant corresponding to the authoriza-

tion constraint comes into play through these modifications. Please

note that the invariant is formulated only once, and can be

activated in different contexts. For example, consider the invariant

‘MaximumNumberOfMembers’ stated below. It corresponds to the

authorization constraint which is configured with the attribute

‘maxMembers’ of class ‘Role’. After determining a value for ‘max-

Members’ in the context of a Role object in the policy, the related

invariant is activated which checks the requirement for the Role

object.

context r:Role inv MaximumNumberOfMembers:

r.maxMembers.isDefined implies r.user->size () <=

r.maxMembers

Fig. 7. Use cases for policy management with the RBAC DSL.

1404 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



This invariant expresses a static, time-independent property be-

cause it must hold at each point in time. In contrast, the invariant

‘NoExclusiveRolesActive’ related to the (switch) attribute ‘wrtAc-

tiveRoles’ of class ‘MutuallyExclusive’ has to respect the snapshot

framework.

It ensures that no pair of roles exists which are characterized as

mutually exclusive with respect to the activation in a single ses-

sion. That is, the attribute ‘wrtActiveRoles’ is set to ‘true’, and it

is used in the definition of the query operation ‘activeRolesExclu-

sives,’ which is used in the following invariant:

context s:Session inv NoExclusiveRolesActive:

let activeRoles = s.successors ()�role->union

(s�role) in

activeRoles->excludesAll

(activeRoles.activeRolesExclusives ())

As sessions are active in an arbitrary time frame, they often per-

sist several snapshots until the respective user terminates them.

Hence, the invariant must include the whole time frame wrt. a ses-

sion, i.e., the sequence of successive Session objects (s.successors

()), representing the single considered session over time.

3.2.2. Checking for reasonable policies

The model comprises further invariants assisting the adminis-

trators (at a syntactical level) to design correct policies. Thus,

structurally inconsistent policies, e.g., showing self excluding roles

or roles which simultaneously require and exclude themselves, can

be avoided in the first place. The aim is to allow the administrators

to focus on semantical aspects, like assigning the end-users to

proper roles so that they achieve a policy which matches their in-

tended security properties.

3.2.3. Constraining user access scenarios

Finally, a set of OCL invariants is created to maintain valid se-

quences of snapshots. For example, only one scenario is allowed

within an object diagram and the set of snapshots must be prop-

erly ordered. All sources related to the RBAC metamodel can be

found in [31].

4. Analyzing the RBAC description

If we consider the complexity of real RBAC policies and the

extensive possibilities of designing a policy by means of the RBAC

metamodel, and if we consider the resulting possibilities of over-

looking security holes, we see that computer-aided analysis is

essential at the policy level. In the following, we discuss several

ways to validate the RBAC description given above. This discussion

is based on our earlier work [18].

As an adequate RBAC metamodel is the precondition for design-

ing accurate policies, the model itself must be sound. Regarding the

number of classes, associations and attributes as well as the num-

ber of OCL constraints, the RBAC UML model has reached a size

which makes pure manual validation impossible. Thus, the UML

and OCL experts who maintain the RBAC metamodel (the DSL)

within an organization (as well as the authors of this paper) also

need tool support. Table 2 shows the different approaches to ana-

Table 1

Realized authorization constraints.

Constraint Description Reference

User: maxRoles Maximum number of roles the user is assigned to (respecting or ignoring the role hierarchy, depending on the

boolean value of attribute ‘maxRolesRespecting-Hierarchy’)

[1], page 11,

lines 29–30

maxSessions Maximum number of simultaneously active sessions with respect to a user [1], page 12,

lines 15–16

Role: maxMembers Maximum number of assigned users [1], page 11,

lines 27–28

maxJuniors Maximum number of inheriting junior roles (mutually exclusive juniors allowed or prohibited, depending on the

boolean value of attribute ‘exclusiveJuniors-Allowed’)

[1], page 12,

lines 30–31

maxSeniors Maximum number of senior roles [1], page 12,

lines 30–31

PrerequisiteRoles (Assoc.) Dependent role postulates required role with respect to user assignment [1], page 11,

lines 36–38

MutuallyExclusive:

wrtUserAssignment A user must not be assigned to both of the connected roles (identical seniors can be explicitly allowed by setting the

boolean attribute ‘identicalSeniorAllowed’ to true)

[1], page 11,

lines 6–7

wrtPermissionAssignment A permission must not be assigned to both roles [1], page 11,

lines 10–12

wrtActiveRoles The connected roles must not be both activated in a session (possibly involving several snapshots) [1], page 12,

lines 14–15

wrtJuniors The connected roles must not have the same junior roles [1], page 12,

lines 31–32

wrtSeniors The connected roles must not have the same senior roles [1], page 12,

lines 31–32

Permission: maxRoles Maximum number of roles the permission is assigned to [1], page 11,

lines 30–32

maxSessions Maximum number of sessions simultaneously activating the permission (i. e., within the same snapshot) [1], page 12,

lines 16–17

PrerequisitePermissions

(Assoc.)

Assignment of the dependent permission postulates the assignment of the required permission [1], page 12,

lines 1–3

Resource:

resourceBasedDynamic-

SeparationOfDuty

A user may not apply more than one action to the resource [2], page 4,

line 16–20

historyBasedDynamic-

SeparationOfDuty

A user may not apply all available actions to the resource [2], page 4,

line 28–39

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1405



lyzing the RBAC artifacts including the RBACmetamodel, RBAC pol-

icies and the user access. In the following, the user access level can

be disregarded because user activities are restricted by a policy.

Consequently, a complete and correct policy suffices to enable only

valid user activities.

4.1. The USE model validator

Our RBAC description provides diverse interfaces for analysis so

that any UML and OCL tool with analysis functionality can help to

ensure a sound RBAC metamodel and well-designed policies. We

follow the approach of the USE system [15]. In order to ensure

properties of the metamodel or the policies, we search system state

spaces, i. e., sets of object diagrams. The existence of an object dia-

gram fulfilling specified conditions gives information about the

model or the policy characteristics.

The success of this approach strongly depends on the perfor-

mance of the underlying search engine. In [28], we employ the

ASSL generator [15] integrated into USE to analyze RBAC policies

in order to detect missing and conflicting static authorization con-

straints. The enumerative generator has to consider all possible ob-

ject diagrams in the worst case, i.e., if there is no state having the

required properties. Hence, it cannot handle models of the size of

the present RBAC metamodel with acceptable execution times.

The developed USE model validator resolves this problem. It is

based on the relational model finder Kodkod representing the suc-

cessor of the Alloy Analyzer [32]. Both tools provide a relational lo-

gic for specifying and analyzing models. Internally, they translate

the model and properties to be checked into a SAT problem which

can be handled by any SAT solver. Kodkod is designed as a Java API

simplifying the integration into other tools.

The model validator includes a translation from UML and OCL

concepts into relational logic. The current version comprises all

important UML class diagram and OCL features. As the RBAC meta-

model is completely supported, it can be taken as an example for

the successful use of the model validator, see [31] for details.

4.2. Analyzing the RBAC metamodel

A comprehensive analysis of the RBACmetamodel during devel-

opment helped us to discover several unwanted properties. Also

future extensions of the model with respect to further RBAC fea-

tures will benefit from further analysis of the model properties.

Our examinations presented here are based on the core concepts

of independence and reasoning discussed in [33].

4.2.1. Independence

The independence of constraints describes the fact that each de-

fined constraint adds essential information to the model, i.e., it fur-

ther restricts the space of valid object diagrams. This property can

be checked by searching for an object diagram fulfilling all con-

straints but the constraint under consideration. If such a diagram

exists, the respective constraint is independent from the others be-

cause it does not follow from them. Each check results in an object

diagram or yields no solution. The latter case indicates dependen-

cies between the constraints which have to be further examined,

e.g., by temporarily disabling not involved constraints. Within

the RBAC metamodel given above, all constraints are independent.

The results for each invariant are presented in [31].

4.2.2. Reasoning

Reasoning stands for the universal examination of model prop-

erties. Properties under consideration are often complex, but in

many cases simple properties already lead to the desired informa-

tion. For example, in order to check a specific RBAC metamodel

invariant, we can configure the model validator to search for a va-

lid object diagram, in which the authorization constraint corre-

sponding to the invariant is activated. Proceeding this way, we

discovered a further erroneous invariant during development.

We defined a search space, from which we expected to find object

diagrams which satisfy the invariant, but finally found none. More

details on this situation can be found in the paper from Kuhlmann

et al. [18].

4.3. Analyzing RBAC policies

Complex security policies usually become opaque with respect

to their implicit properties, i.e., the combination of the explicitly

stated authorization constraints often yields new properties which

have to be analyzed. Consequently, changes to a policy may have

various effects. Even simple policies like the ones presented in this

section can reveal unanticipated characteristics. In the context of

our RBAC metamodel and the model validator these characteristics

can be uncovered by searching for specific object diagrams. In con-

trast to the analysis at the metamodel level, the analysis of policies

is normally based on a given object diagram representing the pol-

icy under consideration or a partial policy which may be automat-

ically adapted during the search. That is, administrators can

determine which parts of the designed policy should be fixed (e.

g., permission ‘p1’ must be assigned to role ‘clerk’ and the number

of roles must not change) or are variable (e. g., the user assignment

to roles can arbitrarily be changed during the search). In many

cases, at least some parts of a policy remain variable.

The analysis with the model validator needs two artifacts, an

object diagram—the (partial) policy—and a property to be checked.

The property can be formulated in the form of a usually non-com-

plex OCL expression and by explicitly stating the bounds with re-

spect to the number of objects and links for each class and

association as well as the definition of attribute values. Let us take

the object diagram shown in Fig. 8 which presents the first artifact,

a partial policy (gray objects and black links) with some fixed ele-

ments, e. g., the existing objects must not be deleted, users do not

change their roles, and the attribute value of ‘wrtUserAssignment’

must remain ‘true’, i.e., a user may not have both roles ‘clerk’ and

‘supervisor’ at the same time. The white objects and gray links

are not part of the policy. They are addressed later. Please note that

we manually adapted the displayed object diagram to combine the

elements existing before and after the search. The second artifact

Table 2

Different perspectives of analyzing RBAC.

RBAC level Focus Analyzed by Considered subject

RBAC metamodel Class diagram and OCL constraints RBAC DSL developers All instantiable policies

All possible RBAC scenarios

RBAC policy Static policy aspects Policy administrators One specific (partial) policy

All possible RBAC snapshots

Dynamic policy aspects Policy administrators One specific (partial) policy

all possible RBAC scenarios

User access Resource access Authorization system (based on an RBAC policy) One specific RBAC scenario

1406 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



represents the following property to be checked (informally): ‘Does

the policy allow a user to apply both actions (‘prepare’ and ‘ap-

prove’) to the resource in the context of a snapshot, although a user

cannot have both roles?’ Modeling this property with OCL, we re-

quire (among other requirements) the following statement to be

fulfilled.

User.allInstances ()->exists (u j

u.session.access.action->asSet ()->size () = 2)

These kinds of statements normally have specific patterns

which are often reused in case of other properties. Thus, the

administrators do not need to have a deep insight into the OCL

semantics. Moreover, the patterns could be enforced and imple-

mented in the used UML tool (e.g., USE) in order to allow property

configurations through a graphical user interface.

Giving both artifacts to the model validator, it returns a com-

pleted object diagram fulfilling all constraints. It is partly shown

with the white objects and gray associations in Fig. 8. We hide

the overhead like the session in which the user accesses the re-

source via both actions. We see that the static SoD property is cir-

cumvented, if the role ‘clerk’ becomes the junior role of ‘supervisor’

because a supervisor will in turn inherit all permissions from a

clerk.

Beside the automatically generated object diagrams, it is also

often helpful to manually specify scenarios of user activities. They

can, for example, be used as positive (valid object diagrams) and

negative (invalid object diagrams) test cases during the develop-

ment of policies. When a reasonable set of test cases is available,

it can be periodically checked during the development process be-

cause a failed test can indicate the existence of a new unwanted

property within the policy, possibly resulting from the interplay

of several authorization constraints. However, if a policy undergoes

great structural changes, the test cases must be adapted accord-

ingly. We give further examples of such test cases in the context

of the discussion of the banking application (see Section 6).

5. UML description for RDM2000

In the following, we describe how we can extend the UML-

based metamodel for RBAC to represent the RDM2000 features,

which have been presented in Section 2.3. The RBAC metamodel

depicted in Fig. 5 serves as a basis as RDM2000 is based upon

RBAC96. The class diagram shown in Fig. 9 represents the exten-

sion of the UML metamodel for RDM2000. To better understand

how our metamodel captures the RDM2000 concepts, Table 3 gives

an overview of the mapping between the RDM2000 features and

the corresponding elements of the metamodel.

We have introduced the class Delegation, which is used for

expressing the ODLGT and DDLGT relations. For example, the del-

egating pairs of users and roles are expressed by the associations

DelegatingUser and DelegatingRole, respectively; delegated

users and roles can be represented similarly by the DelegatedUs-

er and DelegatedRole associations. The instances of the reflex-

ive association delegatedDelegation indicate that we have a

DDLGT relationship; if, however, a delegatedDelegation link

is absent, we have an ODLGT relationship.

RDM2000 lets one impose restrictions on delegation authoriza-

tion through the can_delegate relation (see Section 2.3.1). The max-

imum delegation depth, for example, is represented by the

maxDelegationDepth attribute of the Role class. In addition,

we need an OCL invariant, expressing the fact the delegation depth

must not be exceeded (also see Table 3). For other modeling ele-

ments of our metamodel, additional OCL invariants are also re-

quired. We only give the invariant for the maxDelegationDepth

attribute here as an example:

context d:Delegation

inv MaxDelegationDepth:

let maxDepth = d.getDelegationPath ()->first ()

.delegatingRole.maxDelegationDepth in

(maxDepth.isDefined () implies

d.getDelegationPath ()->size ()-1 <= maxDepth)

and

(d.maxDelegationDepth.isDefined () implies

d.getNumberOfFurtherDelegations () <=

d.maxDelegationDepth)

This constraint comprises two parts, which must be checked.

First, it must be made sure that the current delegation d does not

violate the maximum delegation depth of the (original) delegation

starting the delegation path. Second, if the current delegation has

also set a maximum delegation depth, it must be guaranteed that

the subsequent delegations of d also respect d’s maximum delega-

tion depth.

The prerequisite roles, which the delegated user must possess

on delegation, are expressed in our approach with the help of the

DelegationAuthorization class and the DelegationPrereq-

uisiteRoles association. Roles which the delegated user must

not possess on delegation are represented by the Delegation-

ForbiddenRoles association. All DelegationForbiddenRoles

and DelegationPrerequisiteRoles links connected to a

DelegationAuthorization object express a conjunct of prere-

quisite and forbidden roles, which realizes the & operator of

RDM2000 (also see Table 3).

The AuthorizationRole association also allows one to ex-

press alternative prerequisite restrictions on delegation (realizing

the ‘‘j’’ operator in the RDM2000 model), i.e., only one of the prere-

quisite conditions must be satisfied for a successful delegation.

Alternative prerequisite conditions can be expressed by multiple

instances of the DelegationAuthorization class, which are con-

nected to the authorizing role of a delegation via links of type

AuthorizationRole. Summarizing, we obtain a disjunctive nor-

mal form for prerequisite conditions. The conjuncts are represented

by all the links of the types DelegationPrerequisiteRoles and

DelegationForbiddenRoles connected to an object of type

DelegationAuthorization (see the preceding paragraph); the

Fig. 8. Partial policy and partial search results (white objects, gray links).

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1407



disjuncts are expressed by all connections between a single role

(the authorizing role of a delegation) and such DelegationAutho-

rization objects.

In order to realize the semantics of the aforementioned prere-

quisite conditions for delegation (i.e., the disjunctive normal form),

we also need OCL constraints, which are listed in Table 3. For the

sake of brevity, we do not present them in this paper. The interested

reader is referred to our OCL specification [34], which can be down-

loaded and then invoked by the freely available USE system.

The type of the revocation scheme (grant-dependency, domi-

nance, propagation) is represented by the respective attributes of

the class Role. As a consequence, the type of revocation (e.g., with

respect to dominance, propagation, and grant-dependency) cannot

be selected by the revoking user, but only by the policy designer/

administrator according to our model. We feel that otherwise the

burden of security decisions would be placed on end-users (such

as physicians) who often do not understand in detail the security

implications of their actions. Revocation is expressed by the

association Revocation, with the associated user being the revok-

ing user. Please note that a revocation does not mean in our model

that the delegation links are removed; only a revocation link (i.e.,

an instance of the Revocation association) is added between

the revoked delegation and the revoking user. Proceeding this

way, the whole delegation history is preserved and can be recon-

structed despite revocation actions.

Fig. 9 represents the user access level as well as the policy level.

The latter is presented in dark gray, whereas the former is in light

gray. The user access level describes the user activities, i.e.,

performing delegation and revocation steps. In contrast, the policy

level encompasses all administrative activities, such as constrain-

ing delegation through prerequisite rules or determining the kind

of revocation (i.e., setting the attribute values strongRevocation

or cascadingRevocation).

An OCL operation which is central for the specification of revo-

cation is the isRevoked () operation defined in the context of the

Delegation class. We give the OCL specification of isRevoked

() in the following:

context d: Delegation

isRevoked (curSnap:Snapshot): Boolean =

revokingUser.isDefined and

self.revokingUser.snapshot.successors ()->

including (self.revokingUser.snapshot)->

includes (curSnap) or

delegatedUser.getAllDelegations ()->select (d j

d.getDelegationPath ()->first

().delegatingRole.strongRevocation and

d.delegatedRole.seniors ()->includes

(self.delegatedRole))

->exists (djd.isRevoked

(curSnap)) or

getDelegationPath ()->first

().delegatingRole.cascadingRevocation and

getDelegationPath ()->excluding (self)-

>exists (djd.isRevoked (curSnap))

end

The operation isRevoked () evaluates to true in three cases,

which are discussed in the following:

1. The delegation self is revoked in the current snapshot cur-

Snap or has been revoked earlier. To put this in another way,

the current snapshot curSnap lies in the present/future of a

point in time in which the revocation has been carried out.

2. Considering the delegation self, the delegated user’s delegated

role or a junior role has been revoked strongly (recursive call of

isRevoked()). Thismeans that thedelegated role is also revoked

if it is senior to a strongly revoked role for a delegated user.

Fig. 9. The delegation metamodel.

1408 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



3. If the cascading revocation has been activated earlier on the

delegation path of self, the delegated role has been revoked

(recursive call of isRevoked ()).

Another central invariant is ActionsPermitted, which makes

sure that a user can only execute permitted actionswithin a session,

i.e., actions which a user has obtained through her current roles:

context Session:s

inv ActionsPermitted:

s.access->forAll (a j

let

neededPermissions = a.action.permission->

select (pjp.resource = a.resource)

in

a.action.resource->includes (a.resource) and

s.role.permission->asSet ()->includesAll

(neededPermissions))

This invariant checks (1) if the action can be performed on the

resource at all (a.action.resource->includes (a.re-

source)) and (2) if the permissions obtained through the roles

activated in this session are sufficient to execute the action. Then,

we need an additional constraint which makes sure that a user can

only access permissions in a session, which belong to roles that the

user holds:

inv ActiveRolesSubsetUserRoles:

s.user.getAllRoles ()->includesAll (s.role)

The operation getAllRoles () collects all the roles which a

user possesses, i.e., directly assigned roles, junior roles, and in par-

ticular, delegated roles. Due to the fact that getAllRoles ()must

respect revocation, the aforementioned isRevoked () operation

is also called.

To make our concepts clearer, Fig. 10 shows an object diagram,

which is based on the metamodel and serves the purpose of

explaining our modeling approach. It presents a concrete delega-

tion and revocation scenario of a system including the time steps,

in which delegation and revocation activities have been carried

out.

In particular, we consider the following situation:

1. Ada delegates at point in time snap1 role r1 to user Bob.

2. Bob further delegates in point in time snap2 role r1 to Cyd.

3. Ada then revokes r1 from Bob in point in time snap3.

We also define the delegation rule: ‘‘Role r1 may be delegated

(1) if the delegated user possesses role r2, but not role r3, or (2) if

she possesses role r4, but not role r5’’.

Taking a closer look at Fig. 10, we can see the aforementioned

three steps, which are represented by the snapshots snap1, snap2,

and snap3. d1 represents the first delegation step (delegation from

Ada to Bob), which is an original delegation. The delegation object

d2 represents the second delegation, which is a delegated delega-

tion. The revocation step is then carried out within snap3; here, a

corresponding link between the delegation d1 and the revoking

user Ada is added to the object diagram. The delegation constraints

(delegation policy) are displayed at the right-hand side of the object

diagram, expressing the aforementioned delegation rule. Please

note that we use two objects of type DelegationAuthorization

Table 3

Mapping between RDM2000 features and the corresponding metamodel elements.

RDM2000 concept Metamodel element

UAO OriginalUserAssignment association

UAD Delegation class with the associations DelegatedUser and DelegatedRole

ODLGT Delegation class with the associations DelegatingUser, DelegatingRole,

DelegatedUser, and DelegatedRole,

invariant DelegatingUserOrDelegation

DDLGT Delegation class with the associations DelegatingUser, DelegatingRole,

and DelegatedDelegation, invariant DelegatingUserOrDelegation

Delegation authorization: maxDelegationDepth attribute of the classes Role and Delegation,

maximum delegation depth MaxDelegationDepth invariant

Delegation authorization: class DelegationAuthorization, association AuthorizationRole,

delegating role invariants DelegationAuthorizationWrtOriginalRole

and DelegationAuthorizationWrtDelegatedRole

Delegation authorization: class DelegationAuthorization, association DelegationPrerequisiteRoles,

prerequisite condition invariant DelegationAuthorizedWrtConditions

Delegation authorization: negation class DelegationAuthorization, association DelegationForbiddenRoles,

invariant DelegationAuthorizedWrtConditions

Delegation authorization: &-operator class DelegationAuthorization,

association DelegationPrerequisiteRoles,

invariant DelegationAuthorizedWrtConditions.

Explanation: Each prerequisite role link represents a conjunct of the form

‘the delegated user must have the linked role’

and each forbidden role link represents a conjunct of the form

‘the delegated user must not have the linked role’.

Delegation authorization: j-operator class DelegationAuthorization,

association DelegationPrerequisiteRoles,

invariant DelegationAuthorizedWrtConditions.

Explanation: Each DelegationAuthorization object

linked to a specific role represents a disjunct.

Grant-dependency attribute grantDependentRevocation of class Role and invariant

GrantDependency

Dominance attribute strongRevocation of class Role,

invariant ActionsPermitted with the query operation isRevoked ()

Propagation attribute cacadingRevocation of class Role,

invariant ActionsPermitted with the query operation isRevoked ()

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1409



to express the prerequisite rule by simulating the ‘‘j’’ operator. Con-

sidering the formalism of the RDM2000 model, this corresponds to

the prerequisite condition r1&r3jr4&r5, which is in disjunctive nor-

mal form.

6. Evaluation of our approach with a banking application

In this section, we illustrate the concepts discussed in the pre-

vious sections with a banking application, which has been derived

from [17]. In particular, we present several validation scenarios

employing the USE tool as well as the USE model validator, and

we show how to use our UML-based DSL to formulate role-based

delegation and revocation policies.

6.1. An overview

The banking application can be used by various bank officers to

perform transactions on customer deposit accounts and customer

loan accounts, and to generate and to verify financial account data.

The roles in the banking systemcontain teller, customer service repre-

sentative, loan officer, accountant, accounting manager, internal audi-

tor and branch manager. The permissions assigned to these roles

include (a) create, delete, input, or modify customer deposit ac-

counts, (b) create, or modify customer loan accounts, (c) create gen-

eral ledger report, and (d) modify, or verify the ledger posting rules.

The participating roles and permissions performed by each role

in the banking system are defined as follows:

1. teller – input and modify customer deposit accounts.

2. customerServiceRep – create and delete customer deposit

accounts.

3. loanOfficer – create and modify loan accounts.

4. accountant – create general ledger reports.

5. accountingManager – in addition to the inherited privileges from

accountant, modify ledger posting rules.

6. internalAuditor – verify ledger posting rules.

7. branchManager – perform all privileges of other roles under the

emergency case.

Since some roles may perform the privileges of others, there ex-

ist dependencies between roles. These dependency relations can be

expressed by the role hierarchy. Fig. 11 shows the role hierarchy

structure in the banking application. The accountingManager role

is senior to the accountant role and the branchManager role is se-

nior to all other roles.

In the banking application, several organizational authorization

rules should be enforced to support common security principles

such as separation of duty and least privilege. We address these

authorization rules in the banking application as follows:

� Rule 1: Some bank officers, such as teller and accountant, cannot

be performed by the same user (see below for the concrete SoD

constraints).

� Rule 2: Some users cannot act as the same bank officer.

� Rule 3 : Some bank officers, such as customerServiceRep and

loanOfficer, cannot be activated by the users in the same trans-

action session.

� Rule 4: A user can play the bank officer role only if the user has

been assigned to another specific bank officer role. For instance,

teller is a prerequisite role of customerServiceRep.

� Rule 5: The number of users assigned to the bank officer role

should be restricted. For example, only one user can be assigned

to the internalAuditor role.

� Rule 6 : When a user is on a business trip or long-term

absence, the user can temporarily delegate her authority to

others.

� Rule 7: A user can revoke the delegated authority from others.

6.2. The RBAC policy for the banking application

In the following, we describe several authorization constraints

in more detail, which are a part of banking system’s RBAC policy.

Authorization constraints. We have discussed above several

examples of organizational authorization rules for the banking

application. These organizational authorization rules are repre-

sented and enforced in RBAC systems by means of authorization

constraints. RBAC constraints including static separation of duty

Fig. 10. A concrete delegation and revocation scenario represented by an object diagram.

1410 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



(SSD), dynamic separation of duty (DSD),2 prerequisite conditions,

and cardinality rules can be used to support these organizational

authorization rules. Table 4 shows six typical RBAC constraints and

corresponding organizational authorization rules for the banking

application.

SSD-Role constraints: For the banking system, the following pairs

of roles are conflicting:

{(customerServiceRep, accountingManager),

(customerServiceRep, internalAuditor),

(loanOfficer, accountingManager), (loanOfficer,

internalAuditor),

(accountingManager, internalAuditor), (teller,

accountant),

(teller, loanOfficer), (teller, internalAuditor),

(accountant, loanOfficer), (accountant,

internalAuditor)}

DSD constraints: For the banking system, the following pair of

roles is in DSD relation:

{(customerServiceRep, loanOfficer)}.

Prerequisite-Role Constraints: For the banking system, the fol-

lowing pair of roles is in a prerequisite role constraint:

– The Teller role is a prerequisite role for the customerSer-

viceRep role.

Cardinality-Role Constraints: A cardinality constraint can be

defined as follows:

– The maximum number of users that can be assigned to

branchManager and internalAuditor is ‘1’.

Similarly to our earlier works [12,18], we now formulate the

RBAC policy for the banking application in our RBAC DSL, i.e., as

a UML object diagram (see Fig. 12). Specifically, one can see the

roles and the permission assignments as well as role hierarchy

relations (e.g., between the roles accountant and accounting-

Manager). An administrator can also formulate authorization con-

straints by setting the corresponding attribute values for instances

of classes and association classes, respectively. For example, the

SSD constraint between the roles teller and accountant is rep-

resented by the association class instance t_A_SSD_exclusive.

Since it is a static SoD constraint w.r.t. user assignment, the attri-

bute value wrtUserAssignment is set to true. The other SSD

constraints mentioned above are defined similarly with our graph-

ical RBAC DSL and are not shown for the sake of clarity. This is one

advantage of our DSL approach; we can hide parts of the policy,

such as authorization constraints and permission assignments, to

concentrate on those aspects of the policy which are currently

interesting for an administrator.

Delegation authorization. In some cases, users in the banking

system need to grant their authority to others when they are on

a business trip or long-term absence, or need to collaborate with

others. Such cases need temporary delegation of authority, for

example,

can_delegate (customerServiceRep, teller, 1).

This delegation rule means that a user who is a member of role

customerServiceRep (or a role senior to customerServiceRep) can del-

egate the role customerServiceRep to a user who is a member of the

teller role without exceeding the maximum delegation depth of ‘1’.

Revocation authorization. Revocation is an important process

that accompanies the delegation, for example,

can_revokeGD (customerServiceRep).

Fig. 11. Role hierarchy for the banking authorization system.

Table 4

RBAC constraints and corresponding rules.

Constraint Supported rule

Statical SoD constraint SSDRole Rule 1

SSD User Rule 2

Dynamical SoD constraint DSD Rule 3

Prerequisite constraint Prerequisite-Role Rule 4

Cardinality constraint Cardinality-Role Rule 5

2 As common in the literature on RBAC, we understand DSD in the sense of

mutually exclusive roles which must not be activated by a user [23].

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1411



The meaning of this revocation constraint is that only the dele-

gating user who has current membership in customerServiceRep

can revoke a delegated user from the delegated role customerSer-

viceRep. Moreover, the revocation is grant-dependent, i.e., only

the user who has delegated the role can revoke it.

6.3. RBAC Policy analysis

Bringing in authorization constraints, role hierarchies as well as

delegation and revocation in access control systems gives rise to

the problem of possible conflicts. In other words, when the objec-

tives of two role-based authorization constraints cannot be ful-

filled simultaneously, the enforcement of one constraint causes

the violation of another constraint. Therefore, it is critical for

authorization management to ensure that an authorization con-

straint is not in conflict with other existing constraints through

policy analysis. In this section, we demonstrate how our approach

and tools, specifically, USE and the USE model validator, can be lev-

eraged to validate role-based policies in order to discover subtle

policy conflicts. An administrator can employ USE to define posi-

tive and negative test cases for a policy as UML object diagrams.

Positive test cases describe situations (system states), which the

policy should allow, whereas negative test cases should be forbid-

den by the policy, such as unallowed access to resources. The USE

system then confirms or refutes the expectations of the

administrator.

In addition, an administrator can define properties for the pol-

icy, formulated in OCL. Then the USE model validator can be em-

ployed to automatically generate system states that satisfy both

the policy and the properties. If the property is not desirable and

the USE model validator finds a solution, then the policy is incor-

rect w.r.t. the expectations of the administrator. If she, however,

expects a solution and the validator does not find any, then this lets

one conclude that we have a too strict policy.

In the following, we describe three delegation and revocation

scenarios to illustrate our validation approach. We also show in

this context how to use our DSL to define delegation and revoca-

tion policies.

6.3.1. Scenario 1: Conflict between delegation and SoD constraints

A delegation constraint may conflict with a prohibition con-

straint, such as an SoD constraint. Consider the following delega-

tion rule and SSD constraint, which has been defined in the

aforementioned RBAC policy:

DelegationConstraintAM:can_delegate

(accountingManager,teller,1).

SSD-A-T: a pair of roles (accountant, teller) is conflicting.

Fig. 12. The RBAC policy of the banking application formulated in the UML-based DSL.

1412 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



DelegationConstraintAM claims that a user who is a mem-

ber of the role teller can be assigned to the delegated role

accountingManager or its junior role accountant. As explained

in Section 5, the class DelegationAuthorization expresses the

can_delegate relation. In the object diagram of Fig. 13, we see the

object auth_AM_T, which represents DelegationConstraintAM.

Please note that the delegation is only possible if the delegated

user has the role teller, which is represented by the link between

auth_AM_T and the role teller. Due to the fact that the maximum

delegation is set to ‘1’ by DelegationConstraintAM, the attri-

bute maxDelegationDepth of the delegated role accounting-

Manager must also be set to ‘1’.

The constraint SSD-A-T defines that the roles accountant and

teller conflict with each other and cannot be assigned to the

same user simultaneously. Thus, DelegationConstraintAM is

in conflict with the SSD-A-T constraint. The scenario (film strip)

depicted in Fig. 13 shows a situation which reveals this problem.

Here, Ada delegates role teller to Bob. The temporal aspect of

this delegation can be shown with the help of the two snapshots

snap1 and snap2 which represent two successive points in time,

namely, before and after delegation. In the second point in time,

Bob has received the role accountingManager (see the object

del_AM_T of type Delegation).

Employing USE, we can see that the invariant User::Assigned-

toExclusiveRoles is violated by user Bob in the second point in

time (bob2 represents user Bob in snapshot snap2). This problem

stems from the fact that Bob has indirectly received the role

accountant through the delegation of the accountingManager

role, i.e., the delegation and the prohibition constraints conflict

with each other. In summary, an administrator can predefine such

test cases as object diagrams and can thereafter test the policy with

these test cases employing the USE tool.

Looking again at Fig. 13, one can see that the displayed ob-

ject diagram represents both the policy and the user access le-

vel. Specifically, the policy part covers delegation authorization,

e.g., the delegation authorization object auth_AM_T and the

attribute maxDelegationDepth of the accountingManager

role. An administrator only needs to create objects and links

as well as set attributes for these instances. She is not directly

confronted with OCL constraints (as given in the Sections 3.2.1

and 5), which again underlines the DSL aspect of our approach.

The user access level (which an administrator can utilize for

testing purposes) encompasses the concrete delegation steps.

Similar remarks hold for the other scenarios described below.

In the following, we give the second scenario discussing the rev-

ocation concepts as well as undesirable properties of revocation

constraints.

6.3.2. Scenario 2: Blocked Access through Undesirable Revocation

In the following, we describe a situation in which an access is

blocked due to revocation. First, we define the following delegation

and revocation constraints:

DelegationConstraintAM: can_delegate

(accountingManager,, 1).

RevocationConstraintAM: can_revokeGDStrongCasc

(accountingManager).

The revocation is grant-dependent, strong, and cascading. Fur-

thermore, we assume that user Ada has the roles accountant

and accountingManager via original user assignment. Fig. 14

now depicts a situation, which consists of four points in time

(snapshots) and which is allowed by these rules and the RBAC pol-

icy defined above:

1. Snapshot 1: Ada delegates role accountant to Cyd by means of

the accountingManager role. This is expressed by the delega-

tion del_A_T.

2. Snapshot 2: Ada delegates role accountingManager to Cyd.

This is expressed by the delegation del_AM_T.

Fig. 13. Delegation scenario with a conflict between a delegation and an SSD constraint.

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1413



3. Snapshot 3: Cyd delegates role accountant to Dan via the role

accountingManager delegated in the step before. This is

expressed by the delegation delDel_AM_T.

4. Snapshot 4: Dan tries to execute the action createLedgerRe-

port on the resource legderReport1. At the same time, Ada

revokes the role accountant from Cyd. This revocation is

grant-dependent, strong, and cascading.

With the help of USE, we now can learn that the invariant Ses-

sion::ActionsPermitted is violated, i.e., Dan is not permitted to

execute the action createLedgerReport on the resource leg-

derReport1 even though the permission has not been directly re-

voked from him. Due to the strong revocation, Cyd also loses the

accountingManager role in addition to the accountant role.

As a consequence, however, Dan also loses the accountant role

because this role has been delegated via the role accountingMan-

ager and all delegations based on accountingManager are re-

voked cascadingly (see the small object diagram, which shows

the configuration with respect to the accountingManager role,

at the bottom of Fig. 14). Without the role accountant, Dan does

not have the permission to execute createLedgerReport on

ledgerReport1 anymore.

Again, an administrator can use such a scenario (film strip) as a

test case for the policy validationwithUSE, specifically, testing com-

plex access control concepts, such as cascading and strong revoca-

tion. Furthermore, the object diagram depicted in Fig. 14 shows

that we store the whole ‘‘access control state’’. This means, even if

delegations are revoked, the Delegation objects and the corre-

sponding links are not deleted. If ourmetamodel for role-based del-

egation is used as a basis for the implementation of an authorization

engine [27,35], this information can be used for an audit trail.

6.3.3. Scenario 3: Identify leaking permissions

The scenarios discussed presume that the administrator al-

ready knows the situations in detail which might go wrong.

Sometimes, however, an administrator wishes to let the valida-

tion tool generate automatically desirable or undesirable scenar-

ios. In this case, the USE model validator comes into play.

Please note that we currently cannot handle revocation policies

here because Kodkod is based on relational logic and hence recur-

sion, which is used for the definition of the OCL operation

isRevoked ()) (see Section 5), cannot be expressed.

Again, the basis of this scenario is the aforementioned RBAC

policy, but with the exception that we define the following DSD

constraint for the roles teller and accountant instead of the

SSD constraint mentioned above:

DSD-Role-A-T: the pair of roles (accountant, teller) is

conflicting w.r.t. to role activation within a session.

This constraint may have been introduced by an administrator

for the sake of a higher flexibility compared to the SSD constraint

(less strict policy). In addition, the following delegation constraint

is defined by the administrator:

DelegationConstraintT: can_delegate (teller,, 1).

Furthermore, the following user assignment relations are

presumed:

UAO (Ada,accountant), UAO

(Bob,customerServiceRep),

UAO (Cyd,teller), UAO (Dan,teller)

Now, the administrator would like to test this new policy with

the USE model validator. She first defines a property which she ex-

pects to be satisfied by the policy. Typically, this can be a safety

property. The safety problem is well-known in access control liter-

ature and states whether access rights can leak to a user [36]. In

our case, she might ask whether a user can execute the actions

inputDepositAccount and createLedgerReport on re-

sources. This situation should not be possible because these actions

are assigned to the mutually exclusive roles teller and accoun-

tant, respectively.

We can formulate the aforementioned property in OCL as

follows:

User.allInstances ()->exists (uj

u.session.access.action->includesAll

(Set{inputDepositAccount,

createLedgerReport}))

We now give this property, the RBAC policy, and the delegation

policy to the USE model validator. The search space for the USE

model validator then is defined by:

1. the RBAC/delegation policy as a partial solution,

2. the additional property,

3. all UML and OCL constraints.

For the classes Session, Access, Delegation, and Snapshot,

we only configure a maximum number max of instances (objects)

rather than define concrete instances in advance. All possible attri-

bute value and link combinations are considered for the attributes

and associations belonging to the aforementioned classes. In par-

ticular, if we consider the class Delegation, this means that the

USE model validator generates delegation steps (instances of the

class Delegation) on its own. Starting from max = 0, we can suc-

cessively increment max for each class until we obtain a solution

(or we are confident that no solution exists). Proceeding this

way, the search space is gradually increased.

In Fig. 15, we see the solution which satisfies both the query and

the policy and which is an undesirable system state. Ada can access

both actions, although this should have been prohibited by the DSD

constraint. Ada obtains the teller role from Dan (in addition to

the accontant role). This delegation step is not forbidden because

we have not defined an SSD constraint between accontant and

teller. Since the DSD rule only considers one session, Ada now

can activate both roles in two different sessions session1 and

session2 and finally execute the actions inputDepositAccount

and createLedgerReport.

In summary, this example shows that USE model validator can

be effectively used in testing RBAC/delegation policies. In addition,

the USE model validator generated the solution depicted in Fig. 15

only within a few seconds on an ordinary laptop. Improving on the

user interface in the future, we believe that our validation environ-

ment consisting of USE and the model validator can be employed in

organizations to test real-world policies.

7. Related work

In this section, we will show that our RBAC DSL is the first UML-

based policy language which supports delegation and revocation

schemes as well as advanced RBAC concepts, such as history-based

SoD, a concept completely different from the simple authorization

constraints, which are enumerated in the RBAC ANSI standard [23].

There is a plethora of works integrating security policies into

system models based on UML. We have already commented on

our earlier works [12,18] in the introduction of this paper, in par-

ticular, we now support the RDM2000 model for delegation and

1414 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



revocation. Other works which discuss role-based policy lan-

guages based on UML include [28,37–40,13]. Some of the ap-

proaches do not particularly address RBAC like UMLsec [37].

Basin et al. present the modeling language SecureUML for inte-

grating the specification of access control into application models

and for automatically generating access control infrastructures of

applications [13]. They also deal with authorization constraints,

but do not support SoD constraints. Furthermore, SecureUML is

based on the UML profile mechanism and hence it is unclear

whether and to which extent current CASE tools support UML

profiles, whereas we use UML object diagrams, a very basic dia-

gram type.

In [28], we explicitly model role-based SoD constraints with

UML and OCL. In this work, we have no means for handling dy-

namic aspects and we do not strictly separate the presented RBAC

metamodel from concrete policy definitions. Ray et al. [38] solve

the latter problem by generically designing the authorization con-

straints. We follow their approach with respect to the RBAC

description presented in this paper and extend it in terms of dy-

namic aspects as well as delegation and revocation. Owing to the

fact that Ray et al. utilize a template mechanism, only those UML

object diagrams can be expressed for which templates have been

defined. Consequently, the expressiveness of their policy language

is more restricted than ours.

There is also recent work by Strembeck and Mendling with a

similar goal by providing a DSL which hides the OCL constraints.

In particular, the authors express role-based policies for business

processes by an extension of the UML2 metamodel (extended

UML activity diagrams) [41]. As a consequence, UML CASE tools

do not support this extension such that the authors had to develop

their own tool support for processing their DSL in contrast to our

approach based on object diagrams. Moreover, delegation and rev-

ocation is not treated in this work as directly noted in the conclu-

sion. Conversely, our RBAC DSL currently does not cover business

processes, which remains interesting future work. We believe that

the snapshot models provide a good foundation for this task.

Several works on the validation of RBAC policies based on UML

and OCL have been presented [42,30,28,43]. Based upon Secure-

UML, Basin et al. propose an approach to analyzing RBAC policies

by stating and evaluating queries like ‘Which permissions can a

user perform with a given role?’ or ‘Are there two roles with the

same set of permissions?’ [42]. Although not explicitly addressed

in this paper, our approach allows the same kind of queries

through the query facility of the USE tool [15] into which the mod-

el validator is integrated. In [30], a scenario-based approach to ana-

lyzing UML models is presented which is exemplified by an

elementary RBAC UML model. In this context, a policy is consid-

ered as a dynamic artifact which evolves through administrator

activities. Hence, it can be examined whether a sequence of admin-

istrative RBAC operations such as assigning users to roles can vio-

late static SoD constraints. In contrast, we realize dynamics at the

end-user level, enabling dynamic SoD. Administrative actions are

implicitly involved in our approach when analyzing partial poli-

cies. In addition, our RBAC metamodel consists of both a static

and a dynamic part.

The main difference between all the aforementioned and our

current work lies in the fact that we now support delegation and

revocation based upon a concrete and well-established delegation

Fig. 14. Revocation scenario blocking access to resources.

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1415



and revocation model [7]. None of the earlier works on RBAC and

UML has tackled the problem of delegation and different revoca-

tion semantics (as given by Hagström et al.) before.

There exist some tools designed to support the analysis of gen-

eral access control systems. In particular, the SERSCIS Access Mod-

eller (SAM) [44], which is inspired by Scollar [45], takes amodel of a

system and strives to validate certain security properties about the

system via examining all the ways access can propagate through

the system. However, this tool can onlymodel an RBAC systemwith

limited notations and relations. In contrast, our approach can repre-

sent complex RBAC systemswith advanced concepts like delegation

and revocation. Besides, our DSL has the capability to express a

wide range of policies including history-based SoD and various del-

egation and revocation schemes. In addition, due to the fact that we

leverage basic UML notations for model representation, our DSL can

be processed by most existing UML tools.

There are other approaches to the formal specification of access

control policies with notions of delegation, notably the work by

Becker et al. [46]. In particular, they designed the SecPAL language,

which also hides the technical (and formal) details behind a DSL. In

contrast to the SecPAL approach, we can exploit the rich tool sup-

port available for UML and OCL (CASE and validation tools).

8. Conclusion and outlook

In this paper, we presented a UML-based graphical DSL for role-

based delegation and revocation. In particular, our DSL allows an

administrator to define role-based access control policies with

complex concepts, such as different revocation schemes, in UML

object diagrams. This hides the complexity inherent in OCL. More-

over, we showed how to validate delegation and revocation with

the USE tool and the USE model validator. This allows an adminis-

trator to identify subtle security holes, induced by the interplay be-

tween delegation and revocation rules with other advanced access

control concepts, such as role hierarchies and authorization

constraints.

There is plenty of room for future work. First, we can improve

our user interface. For example, currently we can only query prop-

erties of role-based policies with the help of OCL queries. For often

recurring queries, specific user interfaces can be made available.

Also, a graphical DSL for role-based policies can be designed, which

uses specific language constructs for access control, such as the

graphical language proposed by Jaeger and Tidswell [26]. Having

a transformation between our UML-based DSL and the specific

DSL at hand, validation tools such as USE and the USE model vali-

dator can still be used. Furthermore, we can develop an authoriza-

tion engine, which enforces the delegation and revocation policies

and can be integrated with IT infrastructures of organizations. Last

but not least, we can apply our approach to other domains, such as

the healthcare domain to express policies on electronic health re-

cords, and perform larger case studies to evaluate usability and

effectiveness of our proposal.

Acknowledgements

The work of Gail-Joon Ahn and Hongxin Hu was partially

supported by the grants from US National Science Foundation

and US Department of Energy.

References

[1] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, Role-based access control
models, IEEE Computer 29 (2) (1996) 38–47.

[2] R. Simon, M. Zurko, Separation of duty in role-based environments, in: 10th
IEEE Computer Security Foundations Workshop (CSFW ’97), 1997, pp. 183–
194.

[3] V.D. Gligor, S.I. Gavrila, D. Ferraiolo, On the formal definition of separation-of-
duty policies and their composition, in: 1998 IEEE Symposium on Security and
Privacy (SSP ’98), IEEE, 1998, pp. 172–185.

[4] C. Georgiadis, I. Mavridis, G. Pangalos, R. Thomas, Flexible team-based access
control using contexts, in: Proc. of the ACM Symposium on Access Control
Models and Technologies, 2001, pp. 21–27.

[5] J. Joshi, E. Bertino, U. Latif, A. Ghafoor, A generalized temporal role-based
access control model, IEEE Transactions on Knowledge and Data Engineering
17 (1) (2005) 4–23.

Fig. 15. A system state with an undesirable situation, automatically generated by the USE model validator.

1416 K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417



[6] M.J. Nash, K.R. Poland, Some conundrums concerning separation of duty, in:
Proc. IEEE Symposium on Research in Security and Privacy, 1990, pp. 201–207.

[7] L. Zhang, G.-J. Ahn, B.-T. Chu, A rule-based framework for role-based delegation
and revocation, ACM Transactions on Information and System Security 6 (3)
(2003) 404–441.

[8] J. Joshi, E. Bertino, Fine-grained role-based delegation in presence of the hybrid
role hierarchy, in: Proc. of the 11th ACM Symposium on Access Control Models
and Technologies, Lake Tahoe, California, USA, 2006, pp. 81–90.

[9] E. Barka, R. Sandhu, A role-based delegation model and some extensions, in:
Proc. of 16th Annual Computer Security Application Conference, 2000, pp.
125–134.

[10] J. Wainer, A. Kumar, A fine-grained, controllable, user-to-user delegation
method in RBAC, in: Proc. of the 10th ACM Symposium on Access Control
Models and Technologies, Stockholm, Sweden, 2005, pp. 59–66.

[11] V. Atluri, J. Warner, Supporting conditional delegation in secure workflow
management systems, in: Proc. of the 10th ACM Symposium on Access Control
Models and Technologies, Stockholm, Sweden, 2005, pp. 49–58.

[12] M. Kuhlmann, K. Sohr, M. Gogolla, Comprehensive two-level analysis of static
and dynamic RBAC constraints with UML and OCL, in: Fifth International
Conference on Secure Software Integration and Reliability Improvement, SSIRI
2011, IEEE Computer Society, 2011, pp. 108–117.

[13] D.A. Basin, J. Doser, T. Lodderstedt, Model driven security: From UML models
to access control infrastructures, ACM Transactions on Software Engineering
and Methodology 15 (1) (2006) 39–91.

[14] M. Kuhlmann, L. Hamann, M. Gogolla, Extensive validation of OCL models by
integrating SAT solving into USE, in: J. Bishop, A. Vallecillo (Eds.), Objects,
Models, Components, Patterns – 49th International Conference, TOOLS 2011,
Zurich, Switzerland, June 28–30, 2011. Proceedings, vol. 6705 of Lecture Notes
in Computer Science, Springer, 2011, pp. 290–306.

[15] M. Gogolla, F. Büttner, M. Richters, USE: a UML-based specification
environment for validating UML and OCL, Science of Computer Programming
69 (2007) 27–34.

[16] A. Hagström, S. Jajodia, F. Parisi-Presicce, D. Wijesekera, Revocations – a
classification, in: 14th IEEE Computer Security Foundations Workshop (CSFW
’01), 2001, pp. 44–58.

[17] R. Chandramouli, Application of XML tools for enterprise-wide RBAC
implementation tasks, in: Proceedings of the Fifth ACM Workshop on Role-
Based Access Control, Berlin, Germany, 2000, pp. 11–18.

[18] M. Kuhlmann, K. Sohr, M. Gogolla, Employing UML and OCL for designing and
analyzing role-based access control, Mathematical Structures in Computer
Science (in press).

[19] Object Management Group, OMG Unified Modeling Language (OMG UML),
Infrastructure – Version 2.3, formal/2010-05-03 (May 2010).

[20] Object Management Group, OMG Unified Modeling Language (OMG UML),
Superstructure – Version 2.3, formal/2010-05-03 (May 2010).

[21] J. Rumbaugh, I. Jacobson, G. Booch, The unified modeling language reference
manual, in: Object Technology Series, second ed., Addison-Wesley
Professional, Boston, Massachusetts, 2004.

[22] Object Management Group, Object Constraint Language – Version 2.2,
formal/2010-02-01 (February 2010).

[23] American National Standards Institute Inc., Role Based Access Control, ANSI-
INCITS 359-2004 (2004).

[24] X. Zhang, S. Oh, R. Sandhu, Pbdm: a flexible delegation model in RBAC, in:
Proceedings of the Eighth ACM Symposium on Access Control Models and
Technologies, ACM, 2003, pp. 149–157.

[25] J. Crampton, H. Khambhammettu, Delegation in role-based access control,
International Journal of Information Security 7 (2) (2008) 123–136.

[26] T. Jaeger, J. Tidswell, Practical safety in flexible access control models, ACM
TISSEC 4 (2) (2001) 158–190.

[27] K. Sohr, T. Mustafa, X. Bao, G.-J. Ahn, Enforcing role-based access control
policies in web services with UML and OCL, in: Proceedings of the 23th Annual
Computer Security Applications Conference, IEEE Computer Society, 2008, pp.
257–266.

[28] K. Sohr, M. Drouineaud, G.-J. Ahn, M. Gogolla, Analyzing and managing role-
based access control policies, IEEE Transactions on Knowledge and Data
Engineering 20 (7) (2008) 924–939.

[29] M. Kuhlmann, M. Gogolla, Modeling and validating mondex scenarios
described in UML and OCL with USE, Formal Aspects of Computing 20 (1)
(2008) 79–100.

[30] L. Yu, R.B. France, I. Ray, Scenario-based static analysis of UML class models, in:
Model Driven Engineering Languages and Systems, 11th International
Conference, MoDELS 2008, LNCS, vol. 5301, Springer, Berlin, 2008, pp. 234–
248.

[31] M. Kuhlmann, K. Sohr, M. Gogolla, RBAC Metamodel: Sources and Validation
Results.

[32] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, UML2Alloy: a challenging model
transformation, in: Model Driven Engineering Languages and Systems, 10th
International Conference, MoDELS 2007, LNCS, vol. 4735, Springer, Berlin,
2007, pp. 436–450.

[33] M. Gogolla, M. Kuhlmann, L. Hamann, Consistency, independence and
consequences in UML and OCL models, in: Proc. 3rd Int. Conf. Test and Proof
(TAP’2009), LNCS, vol. 5668, Springer, Berlin, 2009, pp. 90–104.

[34] M. Kuhlmann, K. Sohr, M. Gogolla, H. Hu, G.-J. Ahn, USE Specifications of the
Metamodel for Role-Based Delegation and Revocation, (2011) <http://
www.db.informatik.uni-bremen.de/publications/RDM2000_metamodel.use>.

[35] M. Zurko, R. Simon, T. Sanfilippo, A user-centered, modular authorization
service built on an RBAC foundation, in: Proc. of the IEEE Symposium on
Research in Security and Privacy, Oakland, CA, 1999, pp. 57–71.

[36] M.S. Harrison, W.L. Ruzzo, J.D. Ullman, Protection in operating systems,
Communications of the ACM 19 (8).

[37] J. Jürjens, UMLsec: extending UML for secure systems development, Lecture
Notes in Computer Science 2460 (2002) 412–425.

[38] I. Ray, N. Li, R.B. France, D.-K. Kim, Using UML to visualize role-based access
control constraints, in: Proc. of the 9th ACM symposium on Access Control
Models and Technologies, ACM Press, New York, USA, 2004, pp. 115–124.

[39] G.-J. Ahn, M.E. Shin, Role-based authorization constraints specification using
object constraint language, in: Proc. of the 10th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE,
2001, pp. 157–162.

[40] E. Fernández-Medina, M. Piattini, Extending OCL for secure database
development, in: Proc. of UML 2004 – The Unified Modeling Language:
Modeling Languages and Applications, LNCS, vol. 3273, Springer, 2004, pp.
380–394.

[41] M. Strembeck, J. Mendling, Modeling process-related RBAC models with
extended UML activity models, Information and Software Technology 53 (5)
(2011) 456–483.

[42] D.A. Basin, M. Clavel, J. Doser, M. Egea, Automated analysis of security-design
models, Information & Software Technology 51 (5) (2009) 815–831.

[43] S. Höhn, J. Jürjens, Automated checking of SAP security permissions, in: 6th
Working Conference on Integrity and Internal Control in Information Systems
(IICIS), Kluwer, Lausanne, Switzerland, 2003.

[44] SERSCIS Access Modeller, <http://www.serscis.eu/sam/>.
[45] The Scoll Project, <http://www.scoll.evoluware.eu/>.
[46] M.Y. Becker, C. Fournet, A.D. Gordon, SecPAL: design and semantics of a

decentralized authorization language, Journal of Computer Security 18 (4)
(2010) 619–665.

K. Sohr et al. / Information and Software Technology 54 (2012) 1396–1417 1417

http://www.db.informatik.uni-bremen.de/publications/RDM2000_metamodel.use
http://www.db.informatik.uni-bremen.de/publications/RDM2000_metamodel.use
http://www.serscis.eu/sam/
http://www.scoll.evoluware.eu/

	Comprehensive two-level analysis of role-based delegation and revocation  policies with UML and OCL
	1 Introduction
	2 Background
	2.1 Employed modeling and validation approaches
	2.1.1 Unified Modeling Language
	2.1.2 Object Constraint Language
	2.1.3 UML-based Specification Environment
	2.1.4 Domain-specific modeling and languages

	2.2 Role-based access control and authorization constraints
	2.3 Role-based delegation and revocation
	2.3.1 Role delegation
	2.3.2 Role revocation


	3 RBAC UML description
	3.1 RBAC metamodel
	3.1.1 Policy level
	3.1.2 User access level

	3.2 Supplemental OCL constraints
	3.2.1 Formalizing authorization constraints
	3.2.2 Checking for reasonable policies
	3.2.3 Constraining user access scenarios


	4 Analyzing the RBAC description
	4.1 The USE model validator
	4.2 Analyzing the RBAC metamodel
	4.2.1 Independence
	4.2.2 Reasoning

	4.3 Analyzing RBAC policies

	5 UML description for RDM2000
	6 Evaluation of our approach with a banking application
	6.1 An overview
	6.2 The RBAC policy for the banking application
	6.3 RBAC Policy analysis
	6.3.1 Scenario 1: Conflict between delegation and SoD constraints
	6.3.2 Scenario 2: Blocked Access through Undesirable Revocation
	6.3.3 Scenario 3: Identify leaking permissions


	7 Related work
	8 Conclusion and outlook
	Acknowledgements
	References


