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Abstract: The Paldang Reservoir (PDR) in South Korea is vital for supplying drinking water and
maintaining ecosystems; thus, a comprehensive understanding of its water quality is necessary.
Spatiotemporal changes in reservoir water quality were evaluated by applying Korean water quality
indices and multivariate statistical techniques (MSTs). A dataset of 15 water quality parameters
at five sites in the PDR were evaluated from 2017 to 2021. The organic matter, suspended matter,
total phosphorus (TP), chlorophyll a (Chl-a), and total coliforms in the PDR exhibited a fair grade
or higher. Chemical oxygen demand was found to correlate with biochemical oxygen demand,
Chl-a, and TP. The average real-time water quality index (RTWQI) and average trophic state index
(TSIKO) of the PDR were excellent and mesotrophic, respectively, and 46% of eutrophic conditions
occurred during the monsoon season. For a hierarchical cluster analysis (HCA), the five sites were
grouped into three polluted areas and 12 months were grouped into dry and wet seasons. Principal
component analysis and factor analysis identified four potential pollution sources (domestic sewage,
industrial wastewater, intensive agricultural activities, and livestock wastewater) in the PDR and
explained 79.7% of the total changes. Thus, the RTWQI, TSIKO, and MSTs are useful tools for assessing
freshwater quality in Korea, predicting potentially harmful conditions, and potentially assisting
policymakers in PDR management.

Keywords: Paldang Reservoir; water quality index; trophic state index; sustainable water management;
potential pollution source

1. Introduction

Reservoirs are important resources for freshwater ecosystems, providing drinking
water, regulating the climate, maintaining biodiversity, and nitrate cycling [1]. Freshwa-
ter quality is affected by an increase in internal chemical oxygen demand (COD) caused
by algal overproduction, the leaching of sediment pollutants, and incoming storm wa-
ter runoff [2]. Anthropogenic factors, such as agricultural practices, urbanization, and
industrialization, have gradually increased pressure and competition for sustainable water
management in reservoirs [3,4]. Therefore, the efficient and systematic management of
reservoirs is important for human health, maintaining freshwater ecosystem sustainability,
and socioeconomic development [5,6].

Water quality assessment is helpful in identifying local pollution sources. To obtain
reliable information on freshwater quality and to understand spatiotemporal changes
in physical, chemical, and biological properties, continuous and reliable water quality
assessments are crucial [7]. Water quality assessment is helpful in identifying local pollution
sources. In recent years, researchers, limnologists, and water quality managers have
proposed water quality assessment methods using various water quality indices (WQIs)
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depending on the research purpose, sample types, and size of the sampling area [8,9].
The WQI and trophic state index (TSI) are powerful mathematical tools created using
comprehensive information on various complex water quality parameters to assess surface
freshwater quality [10,11]. Moreover, they provide useful information for surface freshwater
quality management by evaluating spatial and seasonal changes in water quality and
nutritional status [12]. Various indices, such as the National Sanitation Foundation Water
Quality Index, Florida Stream Water Index (FWQI), British Columbia Water Quality Index,
Oregon Water Quality Index, and Canadian Council for Ministers of the Environment
Water Quality Index (CCME WQI), have been successfully developed for and applied in
water quality assessment [13,14]. These WQIs are usually applied to reflect specific local
environments, such as water quality standards, toxic substances, and trace pollutants, or
institutional conditions (e.g., water quality regulations, local environmental conditions,
and trophic state) [12]. Since WQIs differ in statistical integration methods and parameter
value interpretation, indices for the stable prediction of water quality, nutritional status,
and comprehensive water quality assessment still need to be developed [15].

Multivariate statistical techniques (MSTs), such as agglomerative hierarchical cluster
analysis (HCA), principal component analysis (PCA), and factor analysis (FA), are useful
tools for interpreting large and complex water quality datasets in addition to evaluating
their spatiotemporal variability [16,17]. An HCA was conducted to identify spatiotemporal
water quality similarity information based on large-capacity entity data [18]. PCA and
FA (PCA/FA) were used to identify the major factors that may affect water quality. MSTs
have been widely applied in the identification of natural and anthropogenic factors that
affect the physical, chemical, and biological properties of surface freshwater quality [18,19];
however, there are some limitations in applying MST alone to water quality assessment [20].
It cannot define the quantitative contributions of the identified pollution sources or surface
freshwater quality. To minimize the limitations of MSTs and maintain their benefits, they
must be combined with various WQIs, which will lead to the comprehensive assessment
of surface freshwater quality (e.g., prediction of potentially harmful conditions, provid-
ing analysis insights, and decision-making solutions for water quality management and
control) [21].

The Paldang Reservoir (PDR) in South Korea is an important water supply source
for 27 million citizens in the Seoul metropolitan area (52% of the Korean population)
and has been used for various purposes (e.g., fishing, recreation, irrigation, hydroelectric
power) [22]; however, the Korean government has determined environmental policies with
which to conserve the water quality of the PDR (e.g., areas for special countermeasures
and total water pollution load management system (TPLMS)) and given priority to water
quality management as well as safe water supply [23,24]. There is eutrophication and algal
blooms in the PDR due to the increased human activities in the watershed (e.g., industrial
wastewater discharge, intensive agriculture), changes in water circulation due to climate
change (e.g., water temperature rise, dissolved oxygen reduction), and an increase in the
inflow of nonpoint pollutants (e.g., N, P) [25,26]. According to a recent study, the water
quality of reservoirs in Korea is closely related to the proportion of urban areas, farmland,
and forests in the watershed (e.g., in the entire drainage basin) [27]. Moreover, during
the stratification period, changes in the water temperature (WT) and dissolved oxygen
(DO) concentrations lead to a series of water quality problems [2]. Currently, compared
with other reservoirs in Korea, the PDR maintains fair water quality conditions in terms
of biochemical oxygen demand (BOD) class Ib (≤2 mg/L, good). Since there still exist
uncertainties regarding future environmental changes in the PDR, data collection through
regular monitoring programs as well as comprehensive water quality assessments for
sustainable surface water quality management and control are required.

Sustainable water quality management and conservation can be achieved by accurately
understanding the water quality and eutrophication status of the PDR in addition to deter-
mining the major factors that affect water quality. Therefore, this study aims to (1) evaluate
the pollution characteristics of water quality parameters through quantitative analysis;



Water 2023, 15, 509 3 of 19

(2) examine the relationships among the quality parameters that affect the quality; (3) evalu-
ate the spatiotemporal water quality and eutrophication status of the PDR by applying the
Korean WQI and TSIKO; and (4) identify major factors (natural and anthropogenic sources)
that affect the spatiotemporal water quality of the PDR by applying MSTs.

2. Materials and Methods
2.1. Study Area

The PDR is a representative artificial lake constructed for the Paldang hydroelectric
dam (37◦31′35.0” N, 127◦16′44.6” E) at a location joined by the South Han River (SHR),
North Han River (NHR), and Gyoungan Stream (GAS) in 1974 [28,29]. The PDR is one
of the largest reservoirs in Korea, with a surface area of 36.5 km2 and a total capacity
of 244 × 106 m3. It has a mean depth of 6.5 m and a maximum depth of 25 m in front
of the Paldang hydroelectric dam (PDD), and its annual water level fluctuation is very
small [29]. It is very vulnerable to rainfall and pollutants because the average hydraulic
residence time is relatively short (approximately 3.0–6.7 days) [11,26]. Additionally, PDR
spatially exhibits various physical, chemical, and biological properties because the area
from the inflow rivers (SHR, NHR, and GAS) to the PDD is longitudinally divided into
river, transition, and lacustrine zones [30]. The SHR and NHR account for 55% and 42%
of the inflow amount of the PDR, respectively, whereas the GAS represents only 3% [31].
The average annual temperature and precipitation of the PDR watershed over the past
ten years (2012–2021) were 10.5 ◦C and 1319 mm, respectively, and it showed monsoon
climate characteristics, in which approximately 54% of the precipitation occurred from June
to August [32]. The land-use cover of the watershed was composed of 61.2% forest, 18.6%
agricultural, 8.5% meadow, 5.8% urban, 2.5% barren, 2.5% water, and 1.0% wetland [33].
In this study, sampling sites were selected from the National Water Quality Monitoring
Network (PD1–PD5) to identify the water quality characteristics of the PDR (Figure 1).
The network forms a surveillance system with which to protect water supply sources and
manage river water quality with prompt response measures in the event of a pollution
accident by monitoring real-time water pollution accidents.
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2.2. Water Sampling Collection and Analytical Methods

Water samples were collected once per month from January 2017 to December 2021.
Water samples (280 in total) collected at the 5 monitoring sites were analyzed, and the
information was interpreted. Sampling was performed at a surface point with the maximum
water depth in the cross-section of each sampling site. At points with a maximum water
depth of 5 m or higher, water from the surface, middle, and lower layers was mixed by
using a water sampler (1010 Niskin Van Dorn sample bottle, 10 L) (only surface water was
sampled at points with a maximum water depth of less than 5 m). The water samples were
stored in polyethylene bottles (2 L), washed with 0.1 N HNO3 solution, and transported
to the laboratory in an ice box at 4 ◦C or less. Samples were collected, preserved, and
transported according to water pollution process test standards (WPPTSs) [34].

The WT, potential of hydrogen (pH), electrical conductivity (EC), and DO were mea-
sured at the sites by using a multiparameter water quality sonde (EXO2, YSI Inc., Yellow
Springs, OH, USA). The transparency of water was measured using a Secchi disk (ChemLab,
Incheon, Republic of Korea) with a diameter of 30 cm. For the water samples, the concentra-
tions of physical, chemical, and biological water quality parameters, including BOD, COD,
total organic carbon (TOC), total suspended solids (TSSs), total nitrogen (TN), ammonium
nitrogen (NH3-N), nitrate nitrogen (NO3-N), total phosphorus (TP), phosphate phospho-
rous (PO4-P), chlorophyll a (Chl-a), and total coliforms (TCs), were determined according to
the WPPTS method and standard protocol [35] (Table S1). Data quality (e.g., precision and
accuracy) was verified through quality assurance and quality control (QA/QC) implemen-
tation in the laboratory. The laboratory owns an international proficiency test certificate
in the field of water quality (WP289, W291) issued by the US Environmental Resource
Associates in 2019 [36].

2.3. Real-Time Water Quality Index

In this study, the water quality of the PDR was assessed by applying the real-time
water quality index (RTWQI) proposed by the National Institute of Environmental Research
(NIER). The RTWQI is one of the WQIs created by modifying the CCME WQI model to
fit the domestic water environment [37]. Unlike WQIs in many countries, the RTWQI can
provide researchers, policymakers, and the general public with real-time water quality
information through the Water Environment Information System (http://water.nier.go.
kr/web (accessed on 14 November 2022)) [38]. The parameters required for the RTWQI
calculation were WT, pH, EC, DO, turbidity, TOC, TN, and TP. In this study, the RTWQI
was calculated by replacing turbidity with TSSs to investigate the influence of particulate
matter on the PDR. Table S2 lists the reference ranges of the parameters for the RTWQI
calculation [39]. The RTWQI was calculated by considering factors such as the number of
parameters that exceeded the standards (F1), the frequency of water quality standards (F2),
and the degree of violation (F3) (Table 1). The calculated RTWQI can be classified according
to its score, as shown in Table 2.

Table 1. Detection parameters for RTWQI calculation [13,40,41].

Factor Description Formula

F1
(scope)

This represents the extent of water quality guideline non-compliance over the
time of interest; it is expressed by the percentage of variables (chemical

indications) that do not meet the water quality standards (failed variables)

F1 = (number of failed variables/total
number of variables) × 100

F2
(frequency)

This represents the frequency by which the objectives are not met; it is
expressed by the percentage of individual tests that do not meet the quality

standards (“failed tests”)

F2 = (number of failed tests/total
number of tests) × 100

http://water.nier.go.kr/web
http://water.nier.go.kr/web
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Table 1. Cont.

Factor Description Formula

F3
(amplitude)

This represents the amount by which failed tests do not meet their objectives;
it is calculated by an asymptotic function that scales the normalized sum of

excursions (nse) from objectives to yield a range between 0 and 100
F3 = (nse/0.01 nse + 0.01)

Excursion

The number of times by which an individual
concentration is greater than (or less than,

when the objective is a minimum) the
objective; it represents the relative deviation

of a failed test from the guideline

excursioni=
(failed test valuei /Objectivei) − 1

nse This represents the collective amount by
which individual tests are out of compliance

nse= (∑ excursioni)/total number
of tests

RTWQI

Combines three measures of variance (F1,
scope; F2, frequency; and F3, amplitude) of

excursions from objectives to produce a
single unitless number that represents the

overall water quality at a site relative to the
benchmark chosen

RTWQI = 100−
√

F2
1 +F2

2 +F2
3

3

Table 2. Classification of surface water quality according to the RTWQI score and rating [39].

RTWQI Score Rating Signal Description

80 ≤ RTWQI ≤ 100 Excellent
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depart from natural or desirable levels.

2.4. Korean TSI

The influence of the eutrophication of rivers and reservoirs on humans and water
bodies may differ depending on the region and country. In this study, the spatial and
temporal nutritional status of the PDR was evaluated by using the Korean trophic state
index (TSIKO) proposed by the NIER. The TSIKO is an indicator that excludes transparency
and reflects COD instead of considering the characteristics of domestic reservoirs, which
have short residence times and are considerably affected by allochthonous organic mat-
ter [42]. The TSIKO is usefully expressed by using empirical equations for the water quality
parameters (e.g., COD, Chl-a, and TP) surveyed in major domestic reservoirs, as shown in
Equations (1)–(3) [12]:

TSIKO (COD) = 5.8 + 64.4 log (COD mg/L) (1)

TSIKO (Chl-a) = 12.2 + 38.6 log (Chl-a mg/m3) (2)

TSIKO (TP) = 114.6 + 43.3 log (TP mg/L) (3)

The TSIKO (total) was calculated by assigning a weight of 50% to allochthonous COD
and a weight of 25% to Chl-a and TP, which are autochthonous organic matter indicators,
as shown in Equation (4):

TSIKO (total) = 0.5 TSIKO (COD) + 0.25 TSIKO (Chl-a) + 0.25 TSIKO (TP) (4)
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The calculated TSIKO was classified into four nutritional states: oligotrophic (≤30);
mesotrophic (31–50); eutrophic (51–70); and hypertrophic (>71).

2.5. Data Treatment and MST

Prior to the statistical analysis, a Kolmogorov–Smirnov single-sample test was con-
ducted to test the goodness-of-fit for the normal distribution of the water quality data [11,20].
A one-way analysis of variance (ANOVA) was conducted to identify significant spatial and
temporal changes in the water quality parameters (p < 0.05). To examine the relationships
between two or more variables, Pearson’s correlation coefficient, which was statistically
significant at p < 0.05, was considered.

HCA uses Ward’s method and squared Euclidean distance to cluster the sampling
sites and seasons as well as express them in a dendrogram (Dlink/Dmax × 100) [17]. After
the HCA, one-way ANOVA and post hoc analyses were conducted in order to examine
which clusters had differences [36]. To test the suitability of the data for PCA/FA, the
Keiser–Meyer–Olkin (KMO) and Bartlett’s sphericity tests were conducted [19]. In this
study, principal components (PCs) with an eigenvalue of 1.0 or higher were extracted, and
varimax rotation was used to interpret the PCA results [17]. The loading of PCs generates
verifactors (VFs), which are new orthogonal variables, through varimax rotation [7]. In this
study, the VFs were classified as “strong”, “moderate”, and “weak” if their absolute loading
values were >0.75, 0.75–0.50, and 0.50–0.30, respectively. HCA and PCA/FA were applied
to standardized experimental data through z-scale transformation to eliminate the influence
of the measurement unit and avoid the misclassification caused by large differences in data
dimensions [20,43]. Multivariate statistical analysis was performed by using the Statistical
Package for the Social Sciences (SPSS, ver. 22.0; IBM Corp., Armonk, NY, USA) software.
Excel 2019 (Microsoft Corp., Redmond, WA, USA) was used for data processing and basic
statistical analysis. Origin Pro 2021b (Origin Lab Corp., MA, USA) software was used for
box plots and contour color filling to visualize the data analysis results.

3. Results and Discussion
3.1. Pollution Characteristics of Water Quality Parameters

In this study, 280 samples were collected at the National Water Quality Monitoring
Network (PD1–PD5) points for five years (2017–2021) in order to investigate the pollution
characteristics of the PDR water. Table 3 summarizes the descriptive statistical values of the
15 water quality parameters at the five sampling sites. In this study, the physicochemical
and biological parameters, except WT, pH, and DO, showed significant spatial differences
among the sites (p < 0.05). In particular, EC and TCs exhibited very large standard devia-
tions compared with the other parameters. Such spatial changes in parameters indicate
that the influence of anthropogenic factors is greater than that of natural factors [9].

WT is a critical parameter that regulates chemical reaction rates and affects aquatic
microbes as well as material transfer [44]. The WT in the PDR ranged from 2.2 to 29.9 ◦C,
with the average WT value being the lowest at site PD2 (13.5 ◦C). As PD2 is located in
front of the PDD, it has the maximum water depth and a large watershed area, which
remained the least affected by atmospheric temperature; pH, a measure of the acidity
(pH of <7) or alkalinity (pH of >7) of water, is an index that represents the hydrogen ion
concentration [45]. The average pH of the PDR was 8.0, indicating a weak alkalinity. EC
is directly related to the concentration of solids dissolved in water and directly affects
drinking and irrigation [45,46]. The EC value of the PDR varied considerably from 101
to 389 µS/cm. The highest average EC value (306 µS/cm) was observed at PD5. This
was because the effluent discharged from a wastewater treatment plant (WWTP) was
introduced into the GAS, which passes through the cities of Yongin and Gwangju [47]. DO
is important for microbial metabolism and redox reaction regulation [48]. The average DO
value of the PDR (10.7 mg/L) belonged to the Korean Water Pollution Standard (KWPS) Ia
class (≥7.5, excellent), ensuring clean ecosystems without pollutants; however, hypoxia
conditions (4.3 mg/L) were observed at PD2 because anaerobic conditions, where DO is
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insufficient or completely absent, were maintained in low layers of PD2 due to continuous
thermocline formation in summer [49]. The natural mixing of water can supplement the
oxygen in reservoirs and eliminate stratification [50]. The transparency of PDR ranged
from 0.4 to 4.8 m. Site PD4 under the influence of the effluent from the Cheongpyong Dam
(CPD) showed the highest average transparency value of 2.1 m.

Table 3. Descriptive statistics summary of physicochemical and biological parameters in monitoring
sites and overall PDR water.

Parameter PD1 PD2 PD3 PD4 PD5 Overall

WT (◦C) 15.1 a ± 7.3 b

(3.3 c–27.5 d)
13.5 ± 7.5
(2.2–26.5)

15.2 ± 7.4
(3.4–28.3)

14.8 ± 7.5
(2.7–28.3)

16.8 ± 8.1
(2.9–29.9)

15.0 ± 7.6
(2.2–29.9)

pH 8.0 ± 0.4
(7.3–8.8)

7.9 ± 0.4
(7.2–9.7)

8.1 ± 0.4
(7.4–9.0)

7.9 ± 0.3
(7.0–8.7)

8.0 ± 0.4
(6.7–8.8)

8.0 ± 0.4
(6.7–9.7)

EC (µS/cm) 268 ± 33
(183–345)

197 ± 33
(125–253)

264 ± 35
(178–342)

156 ± 25
(101–210)

306 ± 41
(183–389)

237 ± 63
(101–389)

DO (mg/L) 10.7 ± 2.1
(6.5–14.0)

10.3 ± 2.2
(4.3–14.1)

10.9 ± 2.0
(6.9–14.4)

10.8 ± 1.8
(7.3–14.1)

10.9 ± 1.6
(6.8–14.3)

10.7 ± 2.0
(4.3–14.4)

Transparency
(m)

1.7 ± 0.8
(0.5–4.8)

3.6 ± 1.7
(0.5–3.6)

1.5 ± 0.7
(0.4–4.1)

2.1 ± 0.8
(0.6–4.6)

1.1 ± 0.4
(0.4–1.9)

1.7 ± 0.8
(0.4–4.8)

BOD (mg/L) 1.3 ± 0.7
(0.4–3.1)

1.1 ± 0.3
(0.6–1.9)

1.6 ± 0.7
(0.5–3.4)

1.1 ± 0.3
(0.6–2.3)

2.2 ± 0.6
(1.2–7.2)

1.4 ± 0.7
(0.4–3.7)

COD (mg/L) 3.9 ± 0.7
(2.7–5.6)

3.8 ± 0.5
(3.0–5.2)

4.2 ± 0.8
(2.8–6.8)

3.5 ± 0.5
(2.8–5.5)

5.2 ± 0.8
(3.6–7.2)

4.1 ± 0.9
(2.7–7.2)

TOC (mg/L) 2.3 ± 0.4
(1.6–3.0)

2.2 ± 0.3
(1.5–2.7)

2.4 ± 0.4
(1.7–3.3)

2.0 ± 0.3
(1.5–2.8)

3.0 ± 0.5
(2.0–4.0)

2.3 ± 0.5
(1.5–4.0)

TSSs (mg/L) 6.1 ± 5.5
(1.0–36.3)

5.8 ± 3.7
(1.5–24.8)

6.9 ± 5.5
(1.4–36.2)

3.8 ± 2.1
(1.1–10.8)

9.1 ± 6.1
(2.0–43.4)

6.3 ± 5.1
(1.0–43.4)

TN (mg/L) 2.7 ± 0.4
(1.7–3.6)

2.2 ± 0.3
(1.4–3.0)

2.6 ± 0.4
(1.6–3.7)

1.9 ± 0.2
(1.4–2.4)

2.7 ± 0.7
(1.3–4.0)

2.4 ± 0.6
(1.3–4.0)

NH3-N (mg/L) 0.059 ± 0.050
(0.005–0.313)

0.047 ± 0.029
(0.009–0.172)

0.051 ± 0.040
(0.008–0.247)

0.031 ± 0.026
(0.005–0.141)

0.097 ± 0.072
(0.009–0.350)

0.056 ± 0.051
(0.005–0.350)

NO3-N (mg/L) 2.271 ± 0.365
(1.303–2.978)

1.838 ± 0.301
(1.105–2.374)

2.227 ± 0.395
(1.275–2.953)

1.578 ± 0.214
(1.159–1.973)

2.111 ± 0.625
(0.779–3.148)

2.003 ± 0.478
(0.779–3.148)

TP (mg/L) 0.044 ± 0.026
(0.014–0.156)

0.032 ± 0.019
(0.009–0.117)

0.047 ± 0.029
(0.018–0.179)

0.020 ± 0.010
(0.011–0.052)

0.049 ± 0.026
(0.020–0.188)

0.038 ± 0.026
(0.009–0.188)

PO4-P (mg/L) 0.017 ± 0.017
(0.001–0.063)

0.007 ± 0.009
(0.001–0.048)

0.016 ± 0.018
(0.001–0.074)

0.003 ± 0.003
(0.001–0.012)

0.007 ± 0.008
(0.001–0.042)

0.010 ± 0.013
(0.001–0.074)

Chl-a (mg/m3)
11.6 ± 9.8
(0.5–37.1)

13.0 ± 5.5
(5.2–31.2)

16.5 ± 10.8
(1.5–52.2)

11.1 ± 6.5
(2.8–40.6)

27.6 ± 14.8
(5.0–67.5)

15.8 ± 11.6
(0.5–67.5)

TCs
(CFU/100 mL)

559 ± 1181
(1–4867)

348 ± 693
(2–3567)

703 ± 2126
(2–13,667)

430 ± 1007
(1–4500)

1046 ± 3102
(4–17,000)

607 ± 1830
(1–17,000)

Notes: a Mean; b standard deviation; c minimum; and d maximum. WT: water temperature; pH: potential of
hydrogen; EC: electrical conductivity; DO: dissolved oxygen; BOD: 5-day biological oxygen demand; COD:
chemical oxygen demand; TOC: total organic carbon; TSS: total suspended solids; TN: total nitrogen; NH3-N:
ammonium nitrogen; NO3-N: nitrate nitrogen; TP: total phosphorus; PO4-P: phosphate phosphorous; Chl-a:
chlorophyll a; and TCs: total coliforms.

BOD is an important indicator for evaluating the pollution levels of rivers and reser-
voirs by using biodegradable organic matter. The average BOD value of the PDR was
1.4 mg/L, which corresponds to the KWPS Ib class (≤2.0, good). At most sampling sites, the
average BOD value belonged to the KWPS II class (≤3.0, slightly good) or higher, ranging
from 1.1 to 2.2 mg/L, indicating that there was enough pollution by organic matter. Unlike
BOD, COD and TOC are indicators for evaluating the pollution level via total organic
matter, including biodegradable and nonbiodegradable organic matter. The average COD
and TOC values of the PDR were 4.1 and 2.3 mg/L, respectively, which correspond to the
KWPS III class (≤5.0, fair) and Ib class (≤3.0, good), respectively, for the PDR. Site PD5
exhibited the highest average BOD/COD ratio (0.42), indicating that the proportion of
biologically decomposed organic matter was higher than that of chemically decomposed
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organic matter. On the contrary, site PD2 had the lowest average BOD/COD ratio (0.30) as
a large amount of nonbiodegradable organic matter is introduced to and accumulated at
the site because of its location (in front of the PDD). The movement of suspended matter in
reservoirs is affected by natural erosion and sediment transport processes [46]. The TSSs
value of the PDR varied considerably from 1.0 to 43.4 mg/L and belonged to the KWPS
III class (≤15.0, fair), with an average of 6.3 mg/L. The lowest average TSSs value was
observed at site PD4 (3.8 mg/L) under the influence of the effluent from the CPD, which is
located upstream [29].

Nutrients, such as nitrogen, phosphorus, and inorganic nitrogen (ammonia and ni-
trate), limit the growth of freshwater algae and play an important role in the eutrophication
process [51]. The average TN value of the PDR (2.408 mg/L) exceeded the acceptable
limit of the KWPS (≤1.5 mg/L). The average TP value of the PDR was 0.038 mg/L, which
corresponded to the KWPS III class (≤0.05, fair) or higher. Nutrient pollution was highest
at site PD5, which was related to agricultural runoff during the monsoon season, manure
wastewater from human activities, and the use of fertilizers as well as pesticides from agri-
cultural activities [47]. Since high levels of TP, TN, and other nutrients may further deplete
DO by accelerating eutrophication, careful water quality management is required [45].

Chl-a is an important indicator that is used to manage eutrophication in rivers and
reservoirs. The Chl-a value of the PDR ranged from 0.5 to 67.6 mg/m3, with an average
of 15.8 mg/m3 and the highest average Chl-a value (27.6 mg/m3) at PD5. There is no do-
mestic criterion for Chl-a concentration in rivers and reservoirs, but the US Environmental
Protection Agency proposed a Chl-a concentration of >30 µg/L in eutrophic rivers [52].
The average Chl-a concentration at the five sampling sites was ≤30 µg/L. Based on the
Chl-a parameter, eutrophic rivers can reduce DO as well as interfere with the function of
aquatic ecosystems, and long-term eutrophication may lead to algal blooms. TCs are a
water pollution indicator that respond rapidly to environmental changes and are generally
related to the commercial development of a target area [53]. The sources of TCs include
rainwater discharge and agricultural as well as urban runoff [52]. The TCs of the PDR
ranged considerably, from 1 to 17,000 CFU/100 mL. According to the KWPS, the water
quality condition was found to be class Ib (≤500, good) at sites PD2 and PD4, class II
(≤1000, slightly good) at sites PD1 and PD3, and class III (≤5000, fair) at site PD5.

3.2. Correlation of Physical, Chemical, and Biological Parameters

Important relationships between physicochemical and biological parameters were
confirmed by using a Pearson correlation matrix (p < 0.05, Figure 2). There was a sta-
tistically significant positive correlation between COD and TOC in the PDR (r = 0.914,
p < 0.01). COD was significantly positively correlated with BOD (r = 0.851, p < 0.01), Chl-a
(r = 0.801, p < 0.01), and TP (r = 0.509, p < 0.01). COD showed higher correlation with TOC
because organic matter decomposition was higher than BOD. TP showed a statistically
positive correlation with TSSs (r = 0.895, p < 0.01) and TCs (r = 0.520, p < 0.01). Phosphorus
in inorganic pollution is a nutrient indicator, and increasing nutrients increases organic
matter concentration. Water pollution by these pollutants may occur because of agricultural
activities, domestic wastewater, and aquaculture [9]. Since nutrients can flow into the PDR
together with organic matter and cause algal blooms based on these correlations, urgent
measures and management are required for water pollution control [52]. There was a
statistically significant negative correlation between WT and DO (r = −0.850, p < 0.01)
because the solubility of oxygen in water decreases with an increase in temperature [54].
There was a statistically positive correlation between pH and DO (r = −0.499, p < 0.01),
indicating that a high photosynthesis rate increases the pH of the water [10]. EC was
significantly positively correlated with TN (r = 0.544, p < 0.01) and TOC (r = 0.462, p < 0.01).
EC can be increased by wastewater discharge from the local WWTP and drainage returned
from agricultural irrigation along rivers [19]. The PDR, a river reservoir in the Han River
system, is exposed to all of these effects [29]. TSSs showed a statistically significant positive
relationship with TP (r = 0.895, p < 0.01), indicating that suspended particles tend to adsorb
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phosphorus [55]. Chl-a had the highest statistically positive correlation with BOD (r = 0.854),
followed by COD (r = 0.801) and TP (r = 0.746) (p < 0.01). Changes in algae that feed on
high concentrations of inorganic nutrients cause an increase in organic matter in rivers
and reservoirs [56]; however, Chl-a showed no statistically significant correlation with
DO, which is important for microbial metabolism (p > 0.05). There was a strong positive
correlation between TP and TC levels (r = 0.520, p < 0.01). This indicates that nutrient
enrichment in a reservoir considerably affects TC growth and may determine the utility of
the water [46].
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3.3. Korean WQI Assessment
3.3.1. Spatial and Seasonal Characteristics of the RTWQI

To determine the utility and potential pollution level of PDR water, the RTWQI was
calculated at the five sampling sites, considering eight different physical and chemical water
quality parameters (Table S3). The RTWQI of PDR water ranged from fair (45) to excellent
(100) during the monitoring period, with an average score of 81, which corresponds to
the excellent grade, indicating clean water quality with few pollutants (Table S3). The
Korean RTWQI shows cleaner water quality as its score increases (Table 2). The RTWQI
of the PDR was distributed in the order of good (48%) > excellent (44%) > fair (8%).
Figure 3 shows the average RTWQI calculated at the five PDR sampling sites. Site PD4,
which had the highest average RTWQI score (95), showed excellent (98%) and good (2%)
grades during the monitoring period. Site PD2 (85) exhibited the second highest average
RTWQI score, followed by PD1 (79), PD3 (77), and PD5 (66). Relatively good water quality
was maintained at all sampling sites because the grades were higher. WQIs with a low
score are mainly affected by industrial and domestic wastewater, agricultural runoff, and
various anthropogenic activities, including the direct drainage of untreated water from
factories [56,57]. In particular, PD5 was included in the good water quality category, but
its RTWQI score was low because the concentrations of EC, TSSs, TOC, and TN, which
affect the calculation of the RTWQI, were relatively higher than those at other sampling
sites (Figure 4).
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To investigate the seasonal characteristics of the RTWQI of the PDR, a heatmap was
drawn by calculating the monthly average RTWQI score at the sampling sites (Figure 5a).
The collected data were divided into pre-monsoon (January to June), monsoon (July to
September), and post-monsoon (October to December) data to evaluate RTWQI characteris-
tics by season. The average RTWQI was 83 (57–100) and 82 (53–100) in the post-monsoon
and pre-monsoon seasons, respectively, which correspond to an excellent grade; however,
in the monsoon season, a good grade was observed with an average of 74 (45–100). There-
fore, the seasonal RTWQI of the PDR showed no significant difference (p > 0.05), and the
RTWQI of the PDR was found to be more affected by anthropogenic factors than the season.
There were significant changes in the parameters (EC, TSSs, TOC, TN and TP), except for
WT, pH, and DO, that affected the RTWQI calculation.
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The excellent grade of the PDR was more dominant in the post-monsoon season (50%)
than in the pre-monsoon (46%) and monsoon seasons (28%); however, the good and fair
grades were more dominant in the monsoon season (52%) than in the pre-monsoon and
post-monsoon seasons (20%). In particular, the excellent grade was always maintained
at sites PD2 and PD4 in the pre-monsoon and post-monsoon seasons, except during the
monsoon season. On the other hand, a fair grade (70%) was continuously observed at
site PD5 during the monsoon season. Therefore, it is necessary to perform effective water
quality management and control by identifying factors and pollutants that spatially and
seasonally affect the RTWQI through an on-site survey of site PD5.

3.3.2. Spatial and Seasonal Characteristics of TSIKO

The TSIKO was calculated by applying the water quality data collected from the five
sampling sites once a month to Equations (1)–(4) (Figure 3b). Furthermore, the period
was divided into pre-monsoon (January to June), monsoon (July to September), and post-
monsoon (October to December) in order to evaluate the seasonal TSIKO characteristics
of the PDR (Figure 5b). The nutritional status of the PDR showed spatial and seasonal
changes based on TSI (COD), TSI (TP), and TSI (Chl-a). These results are similar to those of
a study on the nutritional status of Korean reservoirs [58]. The TSIKO of the PDR spatially
showed oligotrophic to eutrophic conditions and maintained mesotrophic conditions on
average. The average TSIKO for each site was evaluated as mesotrophic at PD1 (47), PD2
(47), PD3 (50), and PD4 (43), except for site PD5. Site PD4 showed mesotrophic conditions
during the entire period, whereas site PD2 exhibited mesotrophic conditions in the pre- and
post-monsoon seasons. In particular, site PD5 was found to be eutrophic over the entire
period compared with the other sites (Figure 3b). Regardless of the season, eutrophication
can decrease DO, interfere with ecosystem functions, and affect the quality of intake water
in the PDR [46]. As site PD5 is located in the GAS, the stagnation caused by the increased
residence time of the SHR and NHR has a large impact on the drinking water quality of the
PDR due to a marked increase in algal-growth-limiting nutrients [59].

The average TSI (COD) of the PDR was not eutrophic during any season. In contrast,
the average TSI (TP) and TSI (Chl-a) showed eutrophic conditions during the monsoon
season. The PDR was oligotrophic mainly in the post-monsoon season, and hypertrophic
conditions did not occur in all of the seasons; however, mesotrophic and eutrophic con-
ditions were observed over the entire period. In particular, the mesotrophic condition
of the PDR was dominant in the pre-monsoon season (49%) and eutrophic conditions
were dominant in the monsoon season (46%). The eutrophic condition of the PDR was
aggravated in the monsoon season because an environment suitable for algal growth was
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created as nutrients were introduced from upstream areas due to low rainfall compared
with normal years, and both intermittent rainfall as well as WT were increased by recent
heat waves. Considering the results of this study, it is necessary to prepare appropriate
measures with which to control the spatial and seasonal occurrence of eutrophic conditions
in the PDR.

3.4. Multivariate Statistical Analysis
3.4.1. Spatial Similarity Grouping

In this study, an HCA was used to classify the spatial (sampling sites) and temporal
(seasonal) water quality similarities in the PDR into groups. The HCA group showed high
internal homogeneity and external heterogeneity [46]. The spatial HCA of the PDR formed
a dendrogram in which all five sampling sites were grouped into three clusters that were
statistically significant at (Dlink/Dmax) × 100 < 50 (Figure 6; p < 0.05). The dendrogram is
used to provide a visual summary of the clustering process, and it presents a description of
groups and proximity to considerably reduce the dimensions of the original dataset [36].
Cluster 1 consisted of two sites (PD1 and PD3), which were affected by the effluent from
the Ipo Weir located in the SHR. Cluster 2 also consisted of two sites (PD2 and PD4), which
were affected by the clean effluent from the CPD located in the NHR. Site PD5 of cluster 3
was affected by the GAS and wastewater that was directly discharged from the two WWTPs.
Therefore, the spatial HCA of the PDR suggests that the sampling sites were affected by
similar sources and natural backgrounds (geographical locations) [16]. To identify the
water quality characteristics of the clusters, the average values and standard error (SE) of
the water quality parameters are presented in Table 4. For cluster 3, COD, Chl-a, and TC
concentrations exhibited substantially higher pollution (HP) than the other clusters, except
for the pH, DO, and transparency parameters; however, for cluster 2, very low pollution
(LP) was observed for all of the water quality parameters. Cluster 1 showed moderate
water pollution between clusters 2 and 3. This also indicates that the NHR has the highest
quality of water, followed by the SHR and the GAS. A one-way ANOVA and a post hoc
analysis were conducted to examine the reliability of the HCA and the average difference
between the clusters. The one-way ANOVA results showed that WT, DO, TSSs, Chl-a,
and TCs at site PD5 (cluster 2) were remarkably different from those at sites PD2 and PD4
(cluster 3) (p < 0.05). The post hoc analysis results showed that there was no statistically
significant difference between clusters 2 and 3 (p > 0.05), and that cluster 1 was significantly
different from clusters 2 and 3 (p < 0.05).
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Table 4. Mean values with standard error (SE) and ANOVA for water quality parameters in clusters
of the sampling sites.

Parameter
LP MP HP

Mean SE Mean SE Mean SE

WT 14.1 7.54 15.2 7.40 16.8 8.13
pH 7.9 0.39 8.1 0.37 8.0 0.39
EC 177 35.67 266 34.53 306 41.89
DO 10.5 2.04 10.8 2.04 10.9 1.61

Transparency 1.9 0.76 1.6 0.78 1.1 0.38
BOD 1.1 (Ib) 0.32 1.4 (Ib) 0.74 2.2 (II) 0.62
COD 3.6 0.49 4.1 0.80 5.2 0.85
TOC 2.1 (Ib) 0.27 2.3 (Ib) 0.40 3.0 (Ib) 0.52
TSS 4.9 3.18 6.5 5.50 9.1 6.17
TN 2.023 (VI) 0.33 2.651 (VI) 0.42 2.726 (VI) 0.70

NH3-N 0.039 0.03 0.055 0.05 0.097 0.07
NO3-N 1.714 0.29 2.249 0.38 2.111 0.63

TP 0.026 (Ib) 0.02 0.045 (III) 0.03 0.049 (III) 0.03
PO4-P 0.005 0.02 0.016 0.02 0.007 0.01
Chl-a 12.1 (II) 6.07 14.0 (II) 10.64 27.6 (IV) 14.91

TC 387 861.06 629 1716.44 1046 (III) 3131.83

Notes: Units (mg/L), except for pH, WT (◦C), EC (µS/cm), Chl-a (mg/m3), and TCs (CFU/100 mL). LP: low
pollution (cluster 2); MP: moderate pollution (cluster 1); and HP: high pollution (cluster 3). The Korean Water
Pollution Standard classes are Ia (very good), Ib (good), II (slightly average), III (fair), IV (slightly poor), V (poor),
and VI (very poor).

3.4.2. Seasonal Similarity Grouping

The seasonal HCA of PDR grouped 12-month data for five years (2017–2021) into
two clusters that were statistically significant at (Dlink/Dmax) × 100 < 50 (Figure 6b;
p < 0.05). The two clusters corresponded closely to the dry season (DS) and wet season
(WS) according to precipitation in Korea. In the one-way ANOVA results, all parameters,
except BOD, showed a statistically significant seasonal difference (p < 0.05) (Table S4). A
previous study reported that summer in Korea had a significant influence on hydrology,
suspended solids, and nutrient concentrations in reservoirs compared with other seasons
owing to the concentration of precipitation (p < 0.05) [60]. COD and TOC concentrations
in the PDR were higher in the WS than in the DS (Table S4). This supports the view that
the summer monsoon is the main driver of high levels of organic matter in reservoirs
in East Asian countries such as China and Japan [61]. Organic matter in reservoirs can
have allochthonous or autochthonous origins [46]. While allochthonous organic matter is
mainly introduced into water systems through runoff derived from terrestrial water flow
during rainfall events, autochthonous organic matter is generated through photosynthesis
by phytoplankton [59]. TSS, TP, and Chl-a also exhibited higher concentrations in WS
than in DS (Table S4). Regression analysis results between TSS and TP in WS showed that
approximately 88% of the variation in TSS could be explained by TP (Figure S1). This
indicates that TSS may act as a nutrient carrier in the PDR [62]. This also explains why
autochthonous production by Chl-a is important for phosphorus accumulation. Therefore,
for the seasonal water quality characteristics of the PDR, it can be said that WS poses a
larger water pollution threat than DS. The HCA technique used in this study was found to
be useful for clustering spatial and seasonal water quality similarities across the PDR. It
also showed that future sampling strategies can be developed in an optimal manner for
economic feasibility and efficiency of sampling.

3.4.3. PCA/FA

PCA/FA was conducted on the normalized dataset for the 15 water quality parameters
over five years (2017–2021) at the five sampling sites in the PDR. The PCA/FA extracted
PCs that affected the water quality of the PDR and identified potential pollution sources.
The KMO and Bartlett’s sphericity tests were conducted to determine the validity of the



Water 2023, 15, 509 14 of 19

PCA. For the KMO test, the validity increases as the value of the variable for the data
is closer to 1.0, and values less than 0.5 are not allowed [63]. The Bartlett’s sphericity
test was used to test the null hypothesis that the correlation matrix between variables is
a unit matrix. The relationship becomes more significant as the correlation between the
variables increases, and the significance increases as the value approaches zero [36]. For
the normalized dataset of the PDR, the KMO and Bartlett’s sphericity test results were
0.742 and 5307 (df = 120, p < 0.001), respectively. This rejects the null hypothesis that the
correlation matrix is a unit matrix and explains that PCA can be performed because there is
a statistical significance between the water quality variables. When PCA was conducted,
eigenvalues that explained 79.7% of the total variance extracted were >14 PCs. Table S5
explains the total variance and shows the amount of data that can be interpreted by each
PC, as well as its proportion and cumulative amount. The scree plot also showed changes in
eigenvalues according to the number of PCs (Figure 7) [16]. This means that the 15 variables
can be explained by using the four PCs.
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The FA identified four VFs through varimax rotation on the extent to which each PCs
can interpret different variables. Table 5 presents the variable loadings for each VF. In
this study, VFs with a correlation higher than 0.70 were considered strong. VF1, which
represents 26.67% of the total variance, showed strong positive loading (>0.70) for BOD,
Chl-a, COD, and TOC, as well as moderate negative loading (>0.50) for transparency. VF1
represents the organic matter concentration in the PDR because phytoplankton growth
becomes an organic matter supply source in the reservoir and represents a considerable
portion of the organic carbon concentration. Additionally, the negative contribution of
transparency is related to high levels of organic matter and algal growth [46]. VF2, which
represents 22.07% of the total variance, showed strong positive loading (>0.70) for TP, TSS,
and PO4-P in addition to moderate positive loading (>0.50) for TCs. This indicates that VF2
is related to the sediment deposited at the bottom of the water body as well as untreated
domestic and municipal sewage. VF3, which represented 17.62% of the total variance,
exhibited strong positive loading (>0.70) for DO and NO3-N in addition to strong negative
loading (>0.70) for WT. It also showed moderate positive loading (>0.50) for TN and pH.
VF3 explains the ionic substances introduced from the runoff caused by seasonal changes,
as well as livestock and agricultural activities in the reservoir. VF4, which represents 13.20%
of the total variance, exhibited strong positive loading (>0.70) for EC and NH3-N. VF4
can explain the influence of effluents from the WWTPs. Based on the PCA/FA results,
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municipal sewage, domestic sewage, industrial wastewater, intensive agricultural activities,
and livestock wastewater were identified as potential sources of water pollution in the PDR.

Table 5. Loading of the 15 experimental variables on significant principal components for the dataset.

Variable VF1 VF2 VF3 VF4

WT 0.337 0.301 −0.772 −0.207
pH 0.441 −0.277 0.591 −0.181
EC 0.401 −0.134 0.134 0.751
DO −0.012 −0.298 0.868 0.137

Transparency −0.565 −0.536 −0.116 0.033
BOD 0.929 0.052 0.074 0.117
COD 0.896 0.236 −0.195 0.204
TOC 0.838 −0.536 −0.116 0.260
TSS 0.350 0.851 −0.017 0.025
TN 0.072 0.329 0.634 0.632

NH3-N 0.026 0.007 0.111 0.778
NO3-N −0.084 0.302 0.705 0.526

TP 0.247 0.920 −0.154 0.161
PO4-P −0.214 0.820 −0.233 0.134
Chl-a 0.926 0.053 0.051 −0.054

TC 0.114 0.626 −0.074 −0.139
Kaiser–Mayer–Olkin measure of sampling adequacy 0.742

Bartlett’s test of sphericity 0.000
Note: Bold and italic values represent strong and moderate loadings, respectively.

To develop a prediction model for VFs, multiple linear regression analysis was con-
ducted using VFs as dependent variables and the factor scores obtained from the FA as
independent variables. The prediction model of VFs can explain the causal relationships
between the variables, as shown in Table 6. Since the R2 value of each VF was close to 1,
ranging from 0.827 to 0.948, it can be said that the prediction of the regression equations is
valid. This indicates that 82.7% to 94.8% of the information possessed by the dependent
variables (VFs) can explain the variation in the independent variables. In addition, the
regression equations can be said to be statistically significant because the significance prob-
ability (p-value) of the F statistic is less than the significance level of 0.05, as determined by
one-way ANOVA results.

Table 6. Stepwise multiple linear regression model for VFs.

Model Regression Equation R2 Sig.

VF1 Y= −2.576 + 0.509 BOD + 0.035 Chl-a + 0.195 COD + 0.208 TOC 0.948 0.000

VF2 Y= −0.999 − 2.546 TP + 39.758 PO4-P + 0.103 TSS 0.932 0.000

VF3 Y = −9.096 + 0.194 DO + 1.524 NO3-N + 0.744 pH − 0.675 TN − 0.022 WT 0.911 0.000

VF4 Y= −2.557 + 11.019 NH3-N + 0.008 EC 0.827 0.000
Note: Sig.—statistical significance.

4. Conclusions

For sustainable water quality management in the PDR, which is an important as well
as the largest regional water supply source in South Korea, a comprehensive water quality
assessment was performed by applying the RTWQI, TSIKO, and MSTs. The correlation
analysis results showed that COD has a statistically significant correlation with BOD
(r = 0.851, p < 0.01), Chl-a (r = 0.801, p < 0.01), and TP (r = 0.509, p < 0.01). As organic
matter and phosphorus can flow into the PDR and cause eutrophication based on these
correlations, it is necessary to limit the loads of organic matter and nutrients. The average
RTWQI and TSIKO of the PDR showed excellent and mesotrophic conditions, respectively,
indicating clean water quality. The management and control of pollution sources has been
prioritized owing to the Korean government’s environmental policies for water quality
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preservation. The RTWQI of the PDR showed no remarkable seasonal difference, and 46% of
eutrophic conditions occurred during the monsoon season (July to September). In particular,
eutrophic conditions occurred at site PD5 over the entire period due to the increase in algae
and nutrients. For the HCA, the five sites were grouped into three polluted areas while the
seasons were grouped into dry and wet. PCA and FA identified four potential pollution
sources in the PDR, namely domestic sewage, industrial wastewater, intensive agricultural
activities, and livestock wastewater, and explained 79.7% of the total changes. Therefore,
sustainable water management in the PDR should be performed with careful consideration
of organic matter load, nutrient load, and other factors. The RTWQI, TSIKO, and MSTs,
which were used in this study, were found to be effective approaches for freshwater quality
assessment. In particular, the Korean RTWQI and TSIKO can be used as tools to predict
potentially harmful conditions in domestic rivers and reservoirs, as they have the potential
to assess the overall influence of water quality management and assist decision making.
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total variance explained.
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