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Abstract
The goal of this paper is to propose a scheme that provides com-
prehensive security protection for the heap. Heap vulnerabilities are
increasingly being exploited for attacks on computer programs. In
most implementations, the heap management library keeps the heap
meta-data (heap structure information) and the application’s heap
data in an interleaved fashion and does not protect them against
each other. Such implementations are inherently unsafe: vulnera-
bilities in the application can cause the heap library to perform un-
intended actions to achieve control-flow and non-control attacks.

Unfortunately, current heap protection techniques are limited
in that they use too many assumptions on how the attacks will
be performed, require new hardware support, or require too many
changes to the software developers’ toolchain. We propose Heap
Server, a new solution that does not have such drawbacks. Through
existing virtual memory and inter-process protection mechanisms,
Heap Server prevents the heap meta-data from being illegally over-
written, and heap data from being meaningfully overwritten. We
show that through aggressive optimizations and parallelism, Heap
Server protects the heap with nearly-negligible performance over-
heads even on heap-intensive applications. We also verify the pro-
tection against several real-world exploits and attack kernels.

Categories and Subject Descriptors C [0]Hardware/software in-
terfaces

Keywords Computer Security, Heap Attacks, Heap Security,
Heap Server

1. Introduction
Motivation. Computer systems have evolved significantly in the
last few decades, with machines that are increasingly inter-connected
and run increasingly complex software. Unfortunately, such sys-
tems are also more exposed to security attacks which have not only
grown in quantity, but also in variety. As a result, users are very
concerned about protecting their systems from viruses, worms, tro-
jan horses, and spyware.

In order to attack a single application, attacks often rely on over-
writing a set of locations M with a set of values V with the purpose
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of altering the program behavior when it uses V . Attackers may use
a variety of well-known techniques to overwrite M with V , such as
buffer overflows, integer overflows, and format strings, typically by
supplying unexpected external input (e.g. network packets) to the
application. The desired program behavior alteration may include
direct control flow modifications in which M contains control flow
information such as function pointers, return addresses, and condi-
tional branch target addresses. Alternatively, attackers may choose
to indirectly change program behavior by modifying critical data
that determines program behavior.

Researchers have shown that the stack is vulnerable to over-
writes, so many protection schemes have been proposed to protect
it. However, the heap has received less attention. In this paper, we
will concentrate on protecting the heap against heap attacks, which
are growing in number. Examples include the slapper worm on the
Apache web server [21], GIF image processing library heap over-
flow attack on the Mozzila web browser [9], and heap corruption
attack on Null HTTPD [6]. Moreover, new vulnerabilities are con-
tinuously discovered for popular programs such as Microsoft Win-
dows [26], Microsoft Internet Explorer [30], CVS [28], and Check
Point Firewall-1 [29]. Even the Execution Protection and Sandbox-
ing heap protection schemes used by the recent Windows XP Ser-
vice Pack 2 have been shown to be vulnerable [1].

The growth in heap attacks is mostly due to several main weak-
nesses in the way a program’s heap space is managed. First, in most
current implementations, memory allocations and deallocations are
performed by user-level library code which keeps the heap meta-
data (heap structure information) and the application’s heap data
stored in an interleaved fashion in contiguous locations in the main
memory. Secondly, heap data and heap meta-data are not protected
from each other. Such heap management implementations are in-
herently unsafe: they allow a vulnerability in how heap data is man-
aged to be exploited to corrupt the heap meta-data. For example,
the lack of bound checking on a heap buffer can be exploited to
overflow the buffer and corrupt the heap meta-data. Heap meta-
data is used by the heap management library to perform various
functions such as allocating/deallocating space for an object, con-
solidating free space, and reallocating a recently deallocated object.
With corrupted meta-data, the heap-management library performs
unintended actions such as overwriting an arbitrary memory loca-
tion with an arbitrary value, where the attacker can choose both
the target location and its new value. By overwriting a location that
contains control flow information, the attacker can hijack control
flow and execute malicious code. Even if control flow hijacking is
prevented, attackers can still do considerable damage, e.g. by over-
writing critical program data to alter the behavior of the program.

A third weakness of current heap management implementations
is the predictability of the heap layout. This allows attackers to
figure out the exact location of various heap meta-data structures
and of critical heap data such as function pointers.

Current Techniques are Inadequate. Despite the growing
threat of heap attacks, current heap protection schemes either make
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too many assumptions on how heap attacks will be carried out,
or are difficult to implement due to high performance overheads
and/or demanding too many changes (to user code, library, and
compiler). It is hard for users to adopt solutions that require too
many changes due to the need to retool their software development
toolchain.

It is useful to note that heap attacks are carried out in three basic
steps [2]:

1. Bug/vulnerability exploitation stage: a bug or vulnerability in
an application is exploited to corrupt certain structures, e.g. by
corrupting heap meta-data through a buffer overflow, format
string vulnerability, or other vulnerabilities.

2. Activation stage: the corrupted location is transformed into a
dormant attack, e.g. the corrupted meta-data causes the heap
library to alter program control information or critical data. This
stage is not necessary for some attacks.

3. Seized stage: the attack leaves its dormant state and is fully ex-
ecuted, e.g. program behavior is altered or its control is redi-
rected to malicious code.

Note that latter stages can be carried out with more variety than
the earlier stages. Many of the current techniques make assump-
tions on what particular steps will be performed at the activation
or seized stages and prevent the assumed steps from being success-
fully carried out. However, we argue that it is difficult to foresee all
possible steps that attackers may perform in the latter stages, and
hence it is safer to prevent the first stage (the corruption) from be-
ing carried out successfully. For example, non-executable heap [18]
prevents the seized stage of an attack by not allowing injected ma-
licious code in the heap to execute. However, the protection fails
when the assumption breaks, such as when the malicious code is
not in the heap area, or when the attack relies on executing existing
code rather than injecting its own.

Design Criteria. The goal of this paper is to provide compre-
hensive protection for the heap. We list the following criteria that
are required for a comprehensive and likely-implementable solu-
tion:

1. Minimal assumptions about specific steps an attack will rely
on. As discussed earlier, assuming that an attack will happen
in a certain way can be dangerous and overlook future attack
mechanisms. As a result, our solution must prevent the first
stage of an attack (the bug/vulnerability exploitation stage) as a
way to prevent the corruption from happening in the first place.

2. Low overhead. For wide adoption, a security solution must
have a low overhead even for heap-intensive applications, since
applications are moving towards object-oriented design which
tend to have a large and active working set in the heap.

3. Existing hardware. To ensure wide adoption, our design
should make use of existing hardware protection mechanisms,
making it implementable in existing systems.

4. Few code modifications. It is hard for users to adopt a solution
that requires too many changes to their software development
toolchain. Modifications to the code should be centralized to
the heap management library and affect user code as little as
possible.

Contributions. To provide a comprehensive protection against var-
ious attacks on the heap, we propose Heap Server. Heap Server is
a separate process that performs heap management on behalf of an
application. Heap Server’s main protection features include:

• Separation of heap data and meta-data, which is achieved
through two mechanisms. First, a new heap meta-data organiza-
tion removes the interleaving of heap meta-data and heap data

and localizes the heap meta-data in a range of contiguous loca-
tions. Secondly, for even stronger protection, Heap Server re-
moves the heap meta-data from the application’s address space
and keeps it in its own address space. By keeping it in a separate
address space, vulnerabilities in the application can no longer
be used to corrupt heap meta-data, unless the underlying inter-
process protection mechanism is broken. Using this protection,
both contiguous and non-contiguous overwrite attempts can no
longer corrupt the heap meta-data.

• Layout obfuscation of heap data. While heap meta-data is
strongly protected against overwrites, Heap Server also pro-
tects the heap data against meaningful overwrites through heap
layout obfuscation, which randomizes heap data layout. Simi-
lar to a previously proposed address obfuscation, Heap Server
adds random paddings between heap objects. However, Heap
Server goes beyond that and provides random recycling, which
randomizes the selection of a heap object to recycle to satisfy
an allocation request. The random seed is determined at run
time based on the application’s execution environment. Layout
obfuscation makes it harder for an attacker to figure out the ex-
act location to overwrite, and even when the location is figured
out for one instance of a program, other instances of the same
program will have different layouts and the attack can not be
repeated easily.

Heap Server prevents the exploitation stage of attacks from oc-
curring, and hence uses minimal assumptions on the specific steps
used in an attack. In addition, it uses existing hardware and Oper-
ating System (OS) mechanisms for inter-process protection. Heap
Server only requires modifications to the allocation/deallocation
routines. In most applications, they are localized in the heap man-
agement library. Some applications manage their own heap through
custom allocation/deallocation routines, usually for performance
reasons. However, we found that custom routines are typically lo-
calized in very few functions, leading us to believe that they can be
modified to utilize our solution without significant programming
effort. Moreover, Heap Server incurs nearly-negligible execution
time overheads on a real system, using both SPEC applications as
well as allocation-intensive benchmarks running on a 2-way SMP
2-GHz Intel Xeon processors running RedHat Linux 8.0. Finally,
we also verify the protection against several real-world exploits as
well as several attack kernels.

The rest of the paper is organized as follows: Section 2 discusses
related work and Section 3 illustrates heap attacks. Then, Section 4
describes our solution in details, while Sections 5 and 6 discuss our
evaluation setup and present our security/performance evaluation.
Finally, Section 7 summarizes our findings.

2. Related Work
Several approaches have been proposed in the past for preventing
heap attacks, or security attacks in general. We examine them based
on our design criteria described in Section 1. Unfortunately, none
of these previously proposed solutions meets all our design criteria.
Note however that some of them protect against security attacks in
general, while the Heap Server focuses on protecting the heap.

Many current approaches make assumptions on the particular
steps the heap attacks will perform and try to prevent the seized
stage from being carried out. One proposed solution is to make the
heap non-executable [18]. Non-executable pages are supported in
virtual memory hardware and in recent versions of various Operat-
ing Systems (OSes), such as Microsoft Windows XP Service Pack
2 [23], Linux and OpenBSD. Dynamic hardware tracking of ex-
ternal inputs and their use chains have been proposed by Suh et
al. [12]. If tagged data is executed or used as a branch/jump tar-
get address, an attack is detected. A related hardware scheme is



Minos [14], which tags each data item with an integrity bit that
is set to ’1’ if the data comes from reliable sources. An attack is
detected when a data item with integrity bit of ’0’ is used for a
change in control flow. Program shepherding [16] is a technique
through which policies regarding control flow transfer can be spec-
ified and enforced. Non-executable heap, dynamic tracking, Minos,
and program shepherding try to prevent the last stage of an attack
(the seized stage), and assume that an attack relies on control flow
hijack. They fail when the attack does not rely on control flow hi-
jack. For example, non-control attacks do not rely on control flow
modifications, yet have recently been demonstrated to be as pow-
erful as control-flow attacks [6]. In addition, non-executable heap
also fails for control-flow attacks that do not rely on code injec-
tion, such as ones that divert the control flow to library code [22].
Our solution differs from non-executable heap, dynamic tracking,
and Minos in that we prevent the first stage of an attack, rather
than latter stages, hence we use minimal assumptions on how latter
stages will be carried out, regardless of whether an attack relies on
code injection, control-flow or non-control modifications. In addi-
tion, compared to dynamic tracking and Minos, our solution does
not require new hardware mechanisms.

Storing pointers encrypted in the main memory have been pro-
posed as a software approach in PointGuard [7] and recently as a
hardware approach for stack protection [19]. The compiler or bi-
nary rewriter is required to identify type information, and apply
encryption/decryption on pointer accesses. However, without sac-
rificing language compatibility, accurately identifying pointer ac-
cesses is difficult in C programs due to lack of type information.
For example, many C-language features depend on functions with
untyped buffers (e.g., bzero or memcpy) or take untyped parame-
ters (e.g., printf), making it difficult to get an accurate type infor-
mation. Also, existing library code does not already contain type
information. Furthermore, without extra hardware for encryption,
encrypting/decrypting each pointer for every write/read incurs a
high performance overhead. Finally, future heap attacks may not
rely on corrupting pointers but other parts of meta-data. Our solu-
tion differs from pointer encryption in that our solution only needs
modifications to the allocation/deallocation routines, is compatible
with existing user code, and protects all heap meta-data structures
(not just pointers) against corruption.

Obfuscation techniques for heap protection and beyond have
also been proposed [5, 20, 31] with a goal of making the ad-
dress space less predictable and increases the effort of the at-
tackers to make a successful attack. Transparent Runtime Ran-
domization (TRR) [31] and Address Space Layout Randomization
(ASLR) [20] are software techniques that randomize the starting
address of various segments (heap, stack, BSS, etc.) and dynamic
library codes when a program is loaded [31]. Although TRR and
ASLR increase the difficulty of attacks that involve more than one
segment, they cannot protect against attacks that are solely carried
out within the heap segment. Address obfuscation [5] is another
technique that, in addition to randomizing the starting address of
various segments, also introduces random padding between consec-
utive heap chunks to make the heap layout less predictable. How-
ever, recent work by Shacham et al. [13] shows that randomization
implementations on 32-bit architectures suffer from low entropy
of 16-20 bits, which does not give sufficient protection against de-
termined attackers. Additionally, in realistic implementations, the
amount of padding between chunks are limited to the minimum of
25% of the requested allocation size and a threshold value (e.g. 128
bytes), to avoid excessive fragmentation of the heap space. With
a maximum of 128-byte padding, there is only 128

8
= 16 possible

padding sizes between two consecutive 8-byte aligned heap objects,
which is insufficient against determined attackers. As a result, we
believe that address obfuscation can only be used for heap data,
where attacks require detailed knowledge of the application. Heap

meta-data, however, has the same structure in all applications that
use the same library, so the incentive for devising meta-data attacks
is higher. As a result, meta-data needs stronger protection.

Heap Server incorporates Bhatkar et al.’s address obfuscation
technique and improves it by adding random recycling of heap ob-
jects. We note that due to temporal locality optimizations, the heap
management library often immediately recycles the most-recently
freed object for a subsequent allocation. This regularity means that
once attackers figure out the layout of the heap, future allocations
have predictable layout. Our random recycling introduces random
selection among eligible free heap objects when allocation is re-
quested. This protection makes it harder for an attacker to figure
out the target location to overwrite throughout the program execu-
tion.

Concurrent to our work, Berger and Zorn proposed DieHard [3].
Like Heap Server, DieHard employs similar techniques to separate
heap meta-data from heap data storage, and applies randomized
padding between heap chunks. DieHard also examines using mul-
tiple redundant instances of an application to detect attacks. One
major difference with Heap Server is that the Heap Server further
protects heap meta-data by keeping it in a separate address space,
completely avoiding application vulnerabilities from overwriting it.

3. Heap Attacks and Protection
3.1 Bug/Vulnerability Exploitation Stage

The entry point of a security attack is often external input from
the network. The input causes certain overwrites due to vulnerabil-
ities in the program. In a buffer overflow vulnerability, a program
lacks buffer bound checking and allows a long string input to over-
flow and overwrite adjacent bytes beyond the buffer. In an integer
overflow vulnerability, a signed-integer variable used in indexing a
structure is not checked for its valid range. A too-large value may
be input and becomes a negative number in the variable, causing an
access to a location beyond the structure’s range. In a format string
vulnerability, a use of printf family of functions that accepts for-
matting information in its string input may lead to both read and
write attacks. For example, %s or %x format tokens can reveal the
content of the stack and possibly other locations, while %n format
token causes the number of bytes printed to be written to a location
specified in format string arguments, which allows an overwrite
to a random location with the value chosen by the attacker. Note
that while buffer overflows allow contiguous overwrites to adjacent
bytes, integer overflow and format string vulnerabilities also allow
non-contiguous overwrites in a more random-access fashion.

In addition to vulnerabilities, a program may naturally have
bugs, which manifest under certain inputs or execution environ-
ment. The bugs may be transformed into security attacks if attack-
ers know how to exploit them. For example, in a dangling pointer
bug, a still-in-use heap chunk is incorrectly deallocated, allowing
the heap management library to write heap meta-data information
to it, causing subsequent access to the chunk to use corrupted data.
In an invalid free bug, an invalid value is incorrectly passed to the
deallocation routine, resulting in the address pointed by the value to
be overwritten by heap meta-data. In a double free bug, an already-
deallocated heap chunk is deallocated again, causing inconsisten-
cies in the free list that maintains deallocated objects. Bug exploits
may be due to actual bugs in the program, or be follow-up actions
after a successful vulnerability exploitation.

3.2 Activation Stage

The previous bug/vulnerability exploitation stage allows an over-
write associated with the vulnerability to occur. In many cases, the
attacker still needs to convert this initial overwrite into a more pow-
erful program behavior alteration. This is performed in the activa-
tion stage. The attackers may want to modify control flow infor-



mation such as function pointers, return addresses, and conditional
branch target addresses. Alternatively, attackers may choose to in-
directly change the program behavior by modifying critical data
that determines program behavior. Such non-control attacks have
been demonstrated recently to be as powerful as control attacks by
Chen et al. [6]. For example, in WU-FTPD, overwriting the effec-
tive UID of an application allows the application to gain root access,
while in Null HTTPD, overwriting CGI-BIN also results in root
compromise. Attacks may also rely on malicious code injection in
which code is injected by the attackers, or may simply use existing
code that was not supposed to be executed, such as out-of-context
library code [22].

In the activation stage, the initial overwrites due to bug or
vulnerability exploitation stage is converted into an overwrite of
critical control or non-control data. Sometimes, the activation stage
is not necessary, such as when critical data’s location is known and
can be directly overwritten with the desired value. In the heap, this
could happen when a heap chunk has a function pointer of which
its location is known by the attacker, and vulnerabilities exist to
overwrite it, e.g. the previous heap chunk has a vulnerable buffer.
Because such attacks do not target the heap meta-data, but target
heap data directly, we refer to this as data overwrite attacks.

To illustrate several types of attacks in the activation stage, we
will first start with an overview of heap meta-data organization.

Heap Meta-Data Organization. Different memory allocation
libraries differ in how they keep heap meta-data. We illustrate some
of the attacks using the heap organization used in the GNU standard
C library [11], but note that other libraries are vulnerable to similar
attacks, such as the System V implementation in IRIX and Solaris
operating systems [2].

The GNU standard C library keeps track of heap memory in
terms of chunks. Figure 1 shows how each chunk stores its meta-
data and data. Memory locations of a chunk are shown top to bot-
tom, starting with lower-address locations at the top of the figure.
In an allocated chunk, the 4-byte size field indicates the number
of bytes occupied by the chunk, whereas the 1-bit PIU (Previous-
In-Use) field indicates whether the chunk that is located right be-
fore the current chunk is also allocated 1. If that previous chunk is
not in use, its last memory word is used by the current chunk as
a 4-byte prev size field that contains the previous chunk’s size.
Finally, a freed chunk is placed as a node in a doubly-linked free
list of similar-size deallocated chunks. The successor (fd) and pre-
decessor (bk) pointers for this list are also maintained in the chunk
itself. Heap meta-data attacks rely on corrupting the meta-data in-
formation (size, prev size, PIU, fd, and/or bk), while heap data
attacks rely on corrupting the heap data information such as func-
tion pointers.

Heap chunks can be either allocated or freed. Chunks are allo-
cated by calls to malloc() or similar functions. Allocated chunks
are still in use by the application, whereas, freed chunks are chunks
that were allocated by the application, used, and then freed (by a
call to free() or similar functions).

Only if PIU==0
size PIU
prev_size

App
Data

size PIU
prev_size

Free
Space

fd bk
Free list
pointers

Allocated Chunk Free Chunk

Figure 1. Heap chunk structure used in GNU C [11].

1 Actually, since heap chunks are 8-byte aligned, the last three bits in the
size numeric field are used to store the PIU field and some additional
information.

Freed chunks are organized into bins of equal or similar sizes
using a doubly-linked list structure. Upon an allocation request
(e.g. malloc()), those bins are searched for a freed chunk of suit-
able size. If a chunk of suitable size is found, the address of the
application data section of that chunk is returned to the user. If no
chunk of suitable size is found, a larger chunk is divided into two
chunks, one to be used to serve the allocation request and the other
is considered a new freed chunk. If the allocation request cannot be
served using freed chunks, it is served from the top of the heap, the
chunk bordering the end of available heap memory.

On a call to free(), or similar functions, the chunk is first consol-
idated with neighboring chunks if they are also free and of suitable
sizes. 2 Then the consolidated chunk is placed into a suitable bin
based on its size. Finally, when a freed chunk is removed from a
bin (either to be allocated or consolidated), its predecessor and suc-
cessor in the doubly-linked list bin are linked using their fd and bk
pointers, respectively. This can be done, for example, using code
similar to the one below:

/* Assuming the chunk to be removed is P */
P->bk->fd = P->fd
P->fd->bk = P->bk

We will now describe various ways of attacking the heap meta-
data and heap data, assuming that the attack relies on heap buffer
overflow exploit, although other exploits are possible. For illustra-
tion purposes we use a control-flow attack, but note that non-control
attacks can be performed similarly.

buffer

Before Attack
size PIU

size PIUB
fd bk
Free

Space

A

size PIUC
fd bk
Free

Space

size PIUD
fd bk
Free

Space

Code to remove B from its free list
B->fd->bk=B->bk;
B->bk->fd=B->fd;

buffer

Buffer Overflow
size PIU

size PIUB
fd bk
Free

Space

A

Malicious
Code …

… …
M

MC
funcptr …

br MC … … …

Free
Space

After Consolidation of A and B
size PIU

Free
Space

A

Malicious
Code …

… …
M

MC
funcptr …

br MC … … …

Figure 2. Steps of a forward consolidation attack.

Forward consolidation attack on heap meta-data. Figure 2
shows the steps of a forward consolidation attack. Again, the as-
sumption is that chunk A is allocated and contains a buffer. Chunk
B, on the other hand, is free and part of a free list in which the next
and previous chunks are C and D. The attack starts by overflow-
ing chunk A’s buffer to overwrite B’s fd pointer with a data value,
such as the address of a malicious code M. Also, B’s bk pointer is
overwritten to point to a target data location minus a constant dis-
placement equal to the difference between a chunk’s address and
the address of its fd pointer. The attack is now dormant until chunk
A is deallocated or until B is allocated again. The memory man-
agement library tries to avoid fragmentation of free heap space by
merging consecutive free chunks into a larger one. As a result, deal-
location of chunk A results in merging A with B. To do this, B is
removed from its free list, merged with A, and the resulting chunk
is inserted into another free list. Similarly, chunk B may be removed
from its free list if it is allocated again. Removal of B from its free
list is accomplished by copying B’s fd pointer into the fd of the
chunk pointed to by B’s bk pointer as described earlier. This results
in copying the malicious code address M into the target memory
location which can be, for example, a return address on the stack or
a function pointer. When this return address is used to return from
a function or the function pointer is used to call a function, the at-
tacker’s malicious code M is executed. The malicious code M could

2 Chunks smaller than a certain threshold are considered fast chunks and are
not consolidated normally.



have been injected in chunk A’s buffer or anywhere else. Note also
that the attacker may not insert malicious code at all, but use the
attack to redirect the execution flow as desired.

Backward consolidation attack on heap meta-data. Figure 3
shows a backward consolidation attack where the meta-data of an
allocated chunk B is overwritten by overflowing a buffer in chunk
A. The attack creates a fake heap chunk record in the buffer and
overwrites B’s PIU field to falsely indicate that the previous chunk
is free. The fake size* of the previous chunk enables the attacker
to control at which address the fake chunk starts. The fake pointers
fd* and bk* are in the buffer controlled by the attacker, and point to
malicious code and to a target location minus displacement. When
chunk B is deallocated, the memory management library tries to
consolidate B and the fake chunk in A into a single larger chunk.
The first step in this consolidation is to remove the fake chunk,
which result in overwriting the target location with attacker’s value.
Compared to forward consolidation, backward consolidation is rel-
atively easier to perform because only four bytes in the next chunk
need to be overwritten, and it relies only on allocated chunks which
are often more numerous than free chunks.

buffer

Before Attack

size PIU

size PIUB

A
Buffer Overflow

Malicious
Code …

… …
M

MC
funcptr …

br MC … … …

buffer

size PIU

size PIUB

A
fd* bk*

A’s size*
Free

Space

After Consolidation of A and B
size PIU

Free
Space

A

Malicious
Code …

… …
M

MC
funcptr …

br MC … … …

Figure 3. Steps of a backward consolidation attack. fd*, bk*, and
A’s size* are fake fields created by the attacker.

Other attacks on heap meta-data A hybrid consolidation at-
tack combines forward and backward consolidations, and has been
used by the Slapper worm [21]. Attacks to other components of
heap meta-data are also feasible and have been demonstrated to be
effective [1].

3.3 Economics of Heap Attacks

It is easy to see why attacks on the heap meta-data are attractive
from the attackers’ point of view. To the attackers, the incentive
to devise an attack depends on the cost of attack design and de-
ployment effort, and the coverage of the attack (how many cases
the attack can be applied to in order to amortize the cost). Hence,
the incentive is, roughly speaking, proportional to coverage

cost
. Let us

consider the case of heap attacks. Suppose a program consists of
two components: user code and the heap library code. The heap li-
brary code is small, does not directly interact with external inputs
(from the networks or I/O), and has been debugged more rigorously
over many years. Thus, on its own, it has few, if any, exploitable
vulnerabilities. Thus, the cost of directly attacking the heap library
code is high, but since many applications use it, its coverage is also
high. On the other hand, user code is typically less debugged, large,
and directly interact with external inputs, and thus it has lower cost,
but at the same time lower coverage. An attacker can choose to at-
tack the user code with incentive = low

low
or the library code with

incentive = high
high

. However, if an attacker uses vulnerabilities
in the user code to compromise and use the library code to attack
any applications that rely on it, his/her incentive has increased to
high
low

. From this simple analysis, we note that heap meta-data defi-
nitely need stronger protection than heap data due to its higher in-
centive for attackers, although for comprehensive protection, both
heap meta-data and heap data need to be protected.

3.4 Scope of Protection

The goal of a security attack on a single application is to alter the
application’s behavior such that it results in a security breach, such
as elevating the privilege level of the application, execution of ma-
licious code with or without code injection, or simply application
crash. Of those, an application crash is considered much less harm-
ful than the others since the crash does not allow the attackers to
follow up with larger damages. In addition, it is very difficult to
protect against crashes because any random overwrite can poten-
tially cause a crash. Hence, we do not seek to protect against an
application crash.

We note that vulnerability exploitation techniques can be di-
rected to corrupt the stack, heap meta-data, heap data, or others.
Heap Server seeks to protect the heap, so we only discuss attacks
on the heap. However, we note that the security of a system is only
as strong as its weakest component, so if only one of the stack or
the heap is protected, the system is overall still vulnerable. For ex-
ample, let us assume that the stack is protected by StackGuard [8].
StackGuard places a canary value between a return address and
local variables in the stack. A stack buffer overflow that over-
writes the return address also overwrites the canary value, which
is checked before returning from the function to detect the attack.
However, if the heap is unprotected, some heap attacks can directly
overwrite a single memory location with a desired value and hence
bypass StackGuard’s protection by overwriting the return address
directly (without overwriting the canary value), or overwriting the
default canary value itself [18]. Alternatively, if the heap is pro-
tected but the stack is not, attackers would just choose to attack the
stack, without bothering to break the Heap Server.

Finally, we note that read attacks (through format string vulner-
abilities) need special attention because attackers may read mem-
ory contents to break address/layout obfuscation in a particular in-
stance of an application.

Table 1. Attacks on the heap and scope of Heap Server’s pro-
tection: full vs. probabilistic protection. N/A = Not Applicable.

Type Attacks Meta-Data Data
Vulnerability Buffer overflow Full Prob
Exploit Integer overflow Full Prob

Format string Full Prob
Bug Dangling pointers Prob Prob
Exploit Invalid free Full Full

Double free Full N/A
Activation Fwd Consol. Full N/A
Stage Bkwd Consol. Full N/A

Other meta-data Full N/A

Table 1 shows attacks on the heap and scope of Heap Server’s
protection, whether it is full or probabilistic protection. We note
that any exploits that try to overwrite parts of the heap meta-data
are completely avoided because the heap meta-data is separately
protected in the Heap Server’s address space. These include all
the vulnerability exploits and all activation stage attacks. Protection
from data overwrites is probabilistic, through layout obfuscation.

Because of Heap Server’s protection, bug exploits can no longer
be used to directly overwrite heap meta-data. In addition, unlike
traditional heap management libraries, the heap meta-data orga-
nization in Heap Server provides an easy mechanism to double
check the validity of a deallocation request. For example, invalid
free (deallocation to an invalid location) and double free (dealloca-
tion to an already-deallocated location) can be easily found by the
Heap Server because, in order to service a request, it first reads and
verifies the validity of heap meta-data corresponding to the loca-
tion in question. An invalid free will be detected as a deallocation



not to the start of a heap chunk or to a location outside the heap
range. A double free will be detected as a deallocation to a chunk
whose heap meta-data indicates that the chunk is already deallo-
cated. Attempts to deallocate non-heap data (in order to overwrite
it) will also be caught because the Heap Server will not find a valid
meta-data record corresponding to the requested location.

Only dangling pointer exploit (deallocation of a still-live ob-
ject) may not be fully protected against. A deallocation request to
a valid and live heap object is always accepted by the Heap Server.
However, unlike in traditional libraries which overwrite parts of the
object with heap meta-data causing data corruption, Heap Server
never corrupts data when it updates the meta-data as a result of
the deallocation request. In the future, if the object if finally deal-
located, Heap Server will detect it as a double free attempt. How-
ever, if the deallocated chunk is recycled before the actual dealloca-
tion occurs, two heap objects may incorrectly share a single object
space. This may likely lead to crash, but meaningful exploitation by
attackers is unlikely, because layout obfuscation prevents attackers
from knowing which two objects are sharing that space.

4. Heap Server Design and Implementation
Heap Server is a separate process that performs heap management
on behalf of an application. Heap Server’s protection comes from
three mechanisms. First, it uses a new bitmapped heap meta-data
organization (Section 4.1) that stores heap meta-data separately
from heap data, but still allows fast meta-data lookups with low
storage overhead. Secondly, the heap meta-data is moved from
the application’s address space to the Heap Server’s address space
(Section 4.2). The application communicates its allocation and
deallocation requests through inter-process messaging to the Heap
Server, which manages the heap meta-data for the application.
Finally, the Heap Server obfuscates the heap layout to make it
difficult for the attackers to attack heap data which resides in the
application’s address space (Section 4.3).

4.1 Heap Meta-Data Organization

The efficiency of heap management implementation depends on
how the heap meta-data is stored and looked up. Specifically, it
should (1) use little extra storage, (2) allow efficient lookup of the
meta-data of a chunk for deallocation purpose, (3) allow efficient
lookup of the meta-data of a chunk’s neighbors for consolidation,
and (4) allow efficient lookup of a free chunk to reuse on an
allocation request.

If we expect the average heap object size to be large, we can
keep a heap object’s meta-data as a fixed-size node, and nodes can
be organized in a binary search tree or a hash table. To lookup the
meta-data of a chunk, we can use the chunk’s address to search the
tree or index the hash table. However, at any given time the number
of allocated chunks N can be large (sometimes in the millions),
there may also be many allocations/deallocations per unit time, and
the average chunk size may be very small (tens of bytes). In such
cases, a tree search and rebalance would incur Θ(log2N) time
on every allocation or deallocation request, which is clearly not
acceptable in terms of performance. A search on an m-entry hash
table would take Θ(1 + N

m
) which is expensive unless m is large

(i.e. the hash table is large).
As a result, we choose a bit-mapped implementation 3. In our

implementation, every eight bytes of heap data are associated with
2 bits of meta-data, for a 3.125% space overhead relative to the heap
data space. This bit-mapped organization is especially storage-
efficient when chunks are small, simple indexing (Θ(1) time) finds

3 Bit-mapped meta-data organization is standard in garbage collection tech-
niques [15] for tracking an object’s generation and accesses.

the meta-data for a chunk, and meta-data of a chunk’s neighbors
can be found in contiguous locations.
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Figure 4. Bit-mapped meta-data information that is kept
by the Heap Server.

Because correct alignment of allocated blocks requires every
chunk to begin at a multiple of eight bytes (double-word), we
associate each double-word of the application with one bit in a
delimiter bit array and another bit in a value bit array, as illustrated
in Figure 4. The delimiter bit is set to ’1’ if it corresponds to the first
double-word of a chunk, otherwise it is set to ’0’. Such encoding
implicitly stores the size of the chunk, which can be computed by
multiplying eight (bytes/bit) with the distance (in number of bits)
between two consecutive delimiter bits with values of ’1’. The bits
in the value bit array have two uses. The first and the last bits
for a chunk indicate whether the chunk is free (’F’) or allocated
(’A’). Other value bits for the chunk are ignored (’d’ stands for
“don’t care”) unless there are enough of them to store the chunk’s
size directly. Figure 4 shows an example meta-data information for
chunk X. The first delimiter bit is ’1’, indicating the start of chunk
X, while the value bit is ’A’ indicates that X is an allocated chunk.
All other delimiter bits for X are zero. The start of the next chunk
(Chunk Y) is indicated by a delimiter bit value of ’1’. Chunks that
are before and after X are free as indicated by their ’F’ value bits.

Given a chunk’s address, its meta-data is located by simple in-
dexing to the delimiter and value bit arrays, and the bits correspond-
ing to the chunk are extracted through bit masking. To compute
the sizes of a chunk and its neighbors, delimiter bits are fetched
as 32-bit words, and the locations of ’1’s are found using bit scan
forward (bsfl) and bit scan reverse (bsrl) x86 instructions. For
chunks whose value bits span over more than two 32-bit words, the
chunk’s size is stored and read directly from the value bit array.

To facilitate fast re-allocation of deallocated chunks, we also
maintain free-list structures similar to traditional C heap library
implementations [11]. However, instead of keeping the prev size
and size fields, we only keep the addresses of free chunks and
use them to access the bit-arrays where the rest of the meta-data
can be found. We additionally reduce storage overhead of the free
lists by using singly-linked lists, in which each node only stores the
chunk’s address and the list’s forward pointer.

On an allocation or deallocation request, the heap meta data
bitmap from the requested location is read and checked for validity,
e.g. that a deallocation is to a valid chunk that is currently allocated.
An invalid free is detected as a deallocation to a non-valid chunk:
the address is out of range, no bits exist for that address, or the
delimiter and value bits for the supposed start of the chunk are not
’1A’. A double free is detected as a deallocation to a free chunk:
the delimiter and value bits are already ’1F’, except if the chunk is
already consolidated in which case the Heap Server detects it as a
deallocation to a non-valid chunk.

Compared to traditional interleaved meta-data implementation,
Heap Server incurs an extra 3.125% overhead to keep the delim-
iter and value bit arrays. Our experiments found that the perfor-
mance overhead due to our bitmapped organization is negligible.



In some cases, the organization improves performance because the
fragmentation due to heap meta-data and data storage interleaving
is removed, resulting in improved spatial locality for heap data.

4.2 Heap Server Communication

The heap meta-data organization alone can already separate the
storage of heap meta-data and heap data and improve security.
However, as long as the heap meta-data and data are located in the
same protection domain (i.e., same address space), it is still vulner-
able to targeted attacks. Consequently, we place the heap meta-data
in the Heap Server’s address space, and provide a communication
protocol between the application and Heap Server.

4.2.1 Modes of Operation and Optimizations
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Figure 5. Traditional heap management (a) and Heap Server
using blocking communication (b), non-blocking communica-
tion (c), non-blocking communication pre-allocation (d).

Figure 5a shows the timing of memory allocation and dealloca-
tion with a traditional implementation of heap management, where
allocations and deallocations are executed as part of the running ap-
plication and are blocking. On an allocation request, a free chunk
of a suitable size is found, book-keeping is performed, and the ap-
plication’s regular execution resumes. On a deallocation request,
book-keeping is performed and the library then returns to the ap-
plication’s code.

Heap Server is a separate process that is forked by the applica-
tion when it starts. Although it is possible to run Heap Server as
a daemon process which runs all the time and serves multiple dif-
ferent application processes, it has quite different implementation
issues and is beyond the scope of this work. Figure 5b shows the
“base” unoptimized Heap Server, while the remaining parts (c and
d) show different Heap Server modes of operation, which repre-
sent different levels of optimization. The base Heap Server imple-
mentation (Figure 5b) operates similarly to a traditional heap man-
agement implementation, but uses standard System V msgsnd()
and msgrcv() primitives [17] to pass heap management operations
to the Heap Server process. This fully blocking implementation of

Heap Server introduces a significant overhead due to the high inter-
process communication latency.
Non-Blocking Communication Optimization. Some of the high
inter-process communication latency can be hidden by making
Heap Server requests non-blocking (Figure 5c). In this mode of
operation, deallocation is completely non-blocking and the appli-
cation continues execution as soon as a deallocation request is sent
to Heap Server. Allocation requests still block the application, but
Heap Server sends its response as soon as a suitable chunk is found
and performs book-keeping in the background. In this way, part
of the communication latency for deallocations and book-keeping
latency for both allocations and deallocations are hidden from the
application and are done in parallel with the application’s execu-
tion. However, frequent deallocation requests can occupy the Heap
Server and delay processing of allocation requests, for which the
application is waiting.
Bulk Deallocation Optimization. To avoid delaying allocation re-
quests due to high Heap Server occupancy, our bulk deallocation
optimization groups multiple deallocation requests into a single re-
quest. The application temporarily stores each deallocation request
locally, and when a limit is reached (BULK DEALLOC PTRS
= 64 requests in our implementation), a new bulk deallocation
request is created and sent to the Heap Server. Upon receiv-
ing the bulk request, the Heap Server handles each dealloca-
tion sequentially. Although handling each deallocation in a bulk
deallocation request takes just as much time as handling each
deallocation request in the unoptimized case, the Heap Server
overhead is reduced because it spends a lot less time fetching
messages from the communication queue (a single message as
opposed to BULK DEALLOC PTRS messages). Note that
postponing the handling of a deallocation request does not af-
fect correctness, although it may lead to a bounded increase of
the memory footprint. Finally, since bulk deallocation targets
applications with a high deallocation frequency, its use is trig-
gered only after a certain number of deallocations are performed
(BULK DEALLOC THRESH = 1024 in our implementa-
tion).
Pre-allocation Optimization. Non-blocking and bulk dealloca-
tion optimizations do not tackle the high inter-process commu-
nication latency suffered by allocation requests, which is espe-
cially a problem in applications with frequent allocations. Fortu-
nately, we observe that, in such applications, such frequent re-
quests are typically caused by repeated allocations for only a few
different types of small data structures. We exploit this observa-
tion by pre-allocating several chunks of those sizes in anticipa-
tion of future allocations (Figure 5d). Pre-allocation is triggered
when the total number of allocation requests exceeds a certain
threshold PRE ALLOC THRESH = 1024, indicating that the
application probably has a high allocation frequency. Once pre-
allocation is triggered, the application sends a pre-allocation re-
quest to Heap Server, and Heap Server responds by returning point-
ers to PRE ALLOC PTRS = 512 chunks of the specified size
to the application. The heap library takes the addresses of the
chunks and places them in an array of pre-allocated chunks. On
an allocation request, the library first checks whether the requested
size is already pre-allocated. If so, it retrieves a chunk from the
pre-allocation array without communicating with the Heap Server.
When all the pre-allocated chunks for a certain size are consumed
and there is a new request for that size, a new pre-allocation re-
quest is sent to the Heap Server. Moreover, Heap Server attempts
to hide the allocation time, in addition to the communication time,
by pre-allocating new PRE ALLOC PTRS chunks as soon as
it replies to a pre-allocation request in anticipation of the next
pre-allocation request. This way, at any given time, there are 2 ×
PRE ALLOC PTRS pre-allocated chunks of every common



size in the system, half of them at the application’s side, and the
other half at the Heap Server’s side.

Pre-allocation mispredictions are largely inconsequential. Un-
used pre-allocated chunks may result in memory fragmentation,
but large fragmentation is avoided by only using pre-allocation for
small chunk sizes (less than 512 Bytes). Overall, pre-allocation op-
timization hides the communication and allocation overhead for
most frequent allocations and, together with non-blocking and bulk
deallocation optimizations, allows the Heap Server and application
execution to proceed almost fully in parallel.

4.2.2 Communication Protocol

Communication between the application and its Heap Server pro-
cess uses standard System V message-passing. The application sets
up two message queues: a Request Queue for sending heap requests
to the Heap Server, and a Reply Queue for receiving Heap Server’s
replies. A message M small has three fields: type identifies the
type of the message, mem ptr is a pointer to a memory location, and
integer value contains additional information for some requests.

Table 2 lists the request and reply message types and their asso-
ciated mem ptr and value contents. When the application process
performs its first heap allocation, it uses an sbrk system call with
a zero argument to request the starting address of its heap memory
space from the operating system, which returns a pointer to the base
address of the heap memory. Then the application creates the mes-
sage queues and forks a Heap Server process. The Heap Server then
initializes its meta-data structures using the application’s heap base
address, and connects to the request and reply message queues.

Due to space limitation, we will only describe communication
protocol for malloc request. For a malloc library call, a MALLOC
request is sent to Heap Server. The Server replies with a MPTR
message that contains the address of the newly allocated chunk.
If Heap Server cannot satisfy an allocation request because the
application’s current heap region is too small, it requests additional
heap memory by sending a positive value in the sbrk size field
of the MPTR reply. The application then extends its heap region by
the requested size through an sbrk call. We note that Heap Server
cannot directly use sbrk on behalf of the application because it
runs in a separate address space. The sbrk size value may also be
a negative value indicating that the application must trim its heap
region through an sbrk call. This ensures that the application’s
memory footprint is kept to a minimum.

When the application process completes execution, it can send
a DONE message to the Heap Server, which deallocates the process’
heap meta-data and terminates execution.

4.2.3 Security Considerations

One potential vulnerability of the standard messaging system in
System V implementation is that the message queues are global
and any process that belongs to the same user ID (UID) can listen
to them. Although it is unlikely that remote attackers have an access
to such a process, a combination of attackers’ effort and the local
users’ carelessness in handling the message queue IDs can break
the heap server protection. To avoid that, we could add process id
authentication to the messaging system. A message queue contains
the list of process ids that can read from or write to the queue, and
only the owner of the queue (the application) can modify the list.
Furthermore, the queue can only be closed by the owner, or by the
OS if it detects that the queue has been orphaned, i.e. the owner
process has died but the queue and Heap Server are still around.

A second concern specific to Heap Server is related to the bulk
deallocation and pre-allocation optimizations, where the applica-
tion maintains bulk deallocation requests and pre-allocated pointer
list in its address space. These structures can be considered as a new
type of meta-data that may be targeted by attacks. Consequently,
we protect them rigorously. First, because the amount of new meta-

data is small and bounded in size, we can duplicate it by writing
N identical copies at different random locations. Before meta-data
is used, all copies are fetched, compared, and an attack is detected
if not all copies are identical. Note that keeping separate identical
copies of meta-data cannot be easily or cheaply done if the appli-
cation maintains all of its heap meta-data in its address space be-
cause of the sheer amount of meta-data involved. Our current Heap
Server implementation includes two separate copies of bulk deallo-
cation requests and pre-allocated pointers at the application’s side.
Secondly, we delimit both meta-data copies with write-protected
pages so that a contiguous meta-data overwrite attempt will be in-
stantly detected. Finally, the meta-data in the pre-allocation array
is not the only copy in the system, since Heap Server maintains
a redundant meta-data information. Thus, Heap Server has some
ability to detect anomalies. For example, when an address of a pre-
allocated chunk is corrupted, the subsequent deallocation request
of the chunk will fail to correspond to the valid chunk information
and be detected by the Heap Server.

4.3 Heap Layout Obfuscation

While heap meta-data is separately protected and only accessible
by Heap Server, heap data needs to be protected as well. To protect
heap data, Heap Server uses address obfuscation [5], which inserts
random padding between heap chunks to prevent attackers from
knowing exact locations of critical heap data. The padding size
is between zero bytes (no padding) and the minimum of N bytes
and X% of the requested chunk size (we use N = 64 and X =
12.5%). The choice of N and X is a tradeoff between protection
and fragmentation. We skip padding for very small chunks to avoid
fragmentation.

In order for different program instances to have different ran-
domization, the random seed to use can be determined at run-time
by hashing together the high-resolution real-time clock, application
characteristics, and system state such as the number of currently-
waiting processes, total available memory, etc. This randomization
does not necessarily restrict debuggability of the program since the
heap meta-data state maintained by the Heap Server can itself be
used as valuable debugging information.

However, address obfuscation alone still leaves the system too
vulnerable. First, although padding between chunks is random, al-
location and deallocation sequences are not random. This means
that different instances of a program, given the same input, will
have the same sequential layout of chunks in memory, albeit with
different amount of paddings between chunks. For example, if in
one instance of a program chunk A and B are consecutive, then
in another instance they will also be consecutive. We refer to this
as layout predictability. Layout predictability allows a brute-force
guessing of padding amount, in which an attack that works on one
instance of a program can also work on another as long as the
padding amount is correctly guessed. We already note in Section 2
that padding-based obfuscation techniques have low entropy, so a
small number of guesses are needed to successfully break it. An-
other factor contributing to layout predictability is the way current
chunk recycling algorithms work. To optimize for temporal local-
ity, in many libraries a deallocated chunk is often immediately re-
cycled (re-allocated) when there is an allocation request to the same
size. Such temporal locality optimization creates a predictable pat-
tern that allows attackers to guess which chunks are likely to be
consecutive in the heap, and then use the previous chunk to over-
flow into the function pointer in the next chunk.

In order to remove layout predictability and predictability in
the recycling pattern, our proposed layout obfuscation randomizes
chunk recycling patterns by selecting a random chunk to reallocate
from the free list. To implement the random recycling, we wait until
a free list has at least four chunks before allowing a chunk from the
list to be recycled for allocation (this requirement is relaxed for



Table 2. Types of request and reply messages. * indicates that it is only generated for blocking communication.
Request Message Reply Message

Request type mem ptr value type mem ptr value
malloc() MALLOC N/A request size MPTR new chunk ptr sbrk size
calloc() CALLOC N/A request size MPTR new chunk ptr sbrk size
realloc() REALLOC old chunk new size MPTR new chunk ptr sbrk size

free() FREE memory region to be freed N/A ACK* N/A N/A
BULK DEALLOCATE N/A N/A N/A N/A N/A

PRE ALLOCATE N/A request size new message with the pre-allocated chunks
Terminate DONE N/A N/A ACK N/A N/A

free lists that manage huge chunks since there are very few of such
chunks). On an allocation request, we generate a random number
and traverse the list by that number of nodes, and select the node
at the end of the traversal for recycling. To reduce the overhead
of traversal, the maximum nodes traversed is set to 16. Through
random recycling, consecutiveness of chunks in one instance of
a program do not imply consecutiveness of the same chunks in
another instance.

5. Evaluation Methodology
Machine configuration. We evaluate our protection scheme on a
bus-based symmetric multiprocessor (SMP) with two 2GHz Intel
Xeon processors. Each processor has two thread contexts, a small
L1 data cache, a small L1 instruction trace cache, and a unified
512KB L2 cache. The memory controller is part of the Intel 860
Chipset and the main memory is 512MB of Rambus RDRAM.
The operating system on the machine is Red Hat Linux 8.0, kernel
version 2.4.20. The machine is run under a relatively light load,
where normal Linux OS processes and daemons run, but we do not
run major applications except the application and the Heap Server.

Benchmarks. To evaluate the Heap Server, we use all 16 C/C++
benchmarks from the SPEC CPU 2000 benchmark suite [27] with
reference input sets: ammp, art, bzip2, crafty, eon, equake, gap, gcc,
gzip, mcf, mesa, parser, perlbmk, twolf, vortex, and vpr. In order
to stress the performance of our scheme, we use eight additional
C/C++ allocation-intensive benchmarks: boxed, cfrac, deltaBlue,
espresso, lindsay, LRUsim, richards, and roboop. These bench-
marks are widely used for testing heap management implementa-
tions due to their high allocation/deallocation rates [4, 10].

Each experiment is run ten times 4 and the wall-clock times are
averaged when reporting them to reduce measurement noise. The
benchmarks and the Heap Server are compiled with gcc version
3.2 with a -O3 optimization level. All benchmarks are run from
start to completion without skipping or sampling. Table 3 lists all
the benchmarks, their sources, programming languages, inputs, and
run times in seconds.

Heap Management Library. For ease of statistics collection
and timing, we develop a base heap management library that faith-
fully implements all major features of Doug Lea’s heap manage-
ment library v.2.7.2 [11], which is a very popular heap management
library used in GNU C and in other systems. We compared the per-
formance of our library versus GNU C library and verified that both
always perform within 1% of another for all the applications we use
in this paper.

Attacks. To evaluate our scheme’s security protection ability,
we obtained two real-world exploits that perform heap attacks:
(1) Wu-Ftpd File Globbing Heap Corruption Vulnerability [24]
against Washington University’s FTP daemon (ftpd), and (2) Sudo
Password Prompt Heap Overflow Vulnerability [25] against the
Linux/Unix sudo utility. Because these attacks were not specifically

4 except for roboop and deltaBlue which are run for 20 times because of
their very short run times.

Table 3. The 24 benchmarks, their sources, languages, inputs,
and run times in seconds.

Benchmark Source Lang. Input Time(s)

ammp SpecFP2000 C ref 644
art SpecFP2000 C ref 465
bzip2 SpecINT2000 C ref (input.source) 90
crafty SpecINT2000 C ref 158
eon SpecINT2000 C++ ref (cook) 101
equake SpecFP2000 C ref 180
gap SpecINT2000 C ref 160
gcc SpecINT2000 C ref (200.s) 59
gzip SpecINT2000 C ref (input.source) 45
mcf SpecINT2000 C ref 319
mesa SpecFP2000 C ref 274
parser SpecINT2000 C ref 318
perlbmk SpecINT2000 C ref (splitmail) 62
twolf SpecINT2000 C ref 597
vortex SpecINT2000 C lendian2 87
vpr SpecINT2000 C ref (place) 172

boxed Heap Layers C -n 50 -s 1 85
cfrac Heap Layers C a 40 digit number 34
deltaBlue Other C++ 100000 4
espresso Heap Layers C largest.espresso 251
lindsay Heap Layers C++ script.mine 92
LRUsim Heap Layers C++ 20,000,000 accesses 48
richards Other C++ 100000 447
roboop Heap Layers C++ bench 4

designed to break Heap Server, we also inject our own heap attacks
based on buffer overflow vulnerability exploit [2]: backward con-
solidation attack (backon), forward consolidation attack (forcon),
and data overwrite that targets a function pointer in heap chunks
(funptr). In all the injected attacks, we vary the number of words
that are overflowed from 1 word to the maximum padding amount.

6. Heap Server Evaluation
6.1 Attack Avoidance

We tested two real-world attacks WU-ftpd and Sudo on GNU C
library and confirm that control flow is hijacked as a result. The
two attacks attempt to overwrite heap meta-data through buffer
overflows. We then test them on Heap Server, and they complete
execution without suffering any effect from the attacks. This is
because heap meta-data is no longer in the application’s address
space, so the attacks do not corrupt it. Furthermore, the buffer
overflow amount is small and falls in the padding area inserted
through layout obfuscation.

To test the Heap Server further, we inject attacks (forcon, back-
con, and funptr) to both GNU C library and to our Heap Server. The
application is a simple linked list program in which each node has
a function pointer and a large vulnerable buffer. To attack the appli-
cation, attackers only need to overflow one buffer into the follow-
ing chunk. All the attacks successfully hijack the control flow with
GNU C library. For Heap Server, we increase the buffer overflow
size up to 128 bytes (the maximum padding size) to specifically
break our layout obfuscation scheme. All attempts of forward and
backward consolidation fail to hijack the control flow. However,



the impact on the application varies with the overflow amount. If
the overflow is entirely within the chunk’s padding, the attack has
no effect on the application. If the overflow overwrites heap data
in the next chunk, the application either crashes or produces wrong
computation results.

Function pointer overwrite attempts, however, sometimes suc-
ceed in hijacking the control flow when the actual padding amount
is correctly guessed. When the overflow is larger than the padding
amount, the overflow also corrupts data in the next chunk. Since our
attack kernels are applied against a very regular application which
only has heap objects of the same size and each object has both a
function pointer and a vulnerable buffer, any overflow into the next
chunk results in a successful control flow hijack. Real applications
have fewer vulnerable buffers and function pointers in the heap and
are much less prone to data overwrite attacks.

6.2 Benchmark Characteristics

Average Heap Requests per Second
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Figure 6. Average heap requests per second (logarithmic scale)

Heap request frequency. Figure 6 shows the heap request fre-
quency, measured as the total number of allocation and deallocation
requests per second, for each application. SPEC2000 benchmarks
are shown on the left, while the allocation-intensive benchmarks
are shown on the right of the figure. The figure shows that the
benchmarks have a wide range of heap requests frequency: high
– more than 2,000 up to 3,367,281 (deltaBlue, equake, espresso,
lindsay, perlbmk, richards, roboop, and vortex), medium/low – the
rest of the benchmarks. We pay particular attention to benchmarks
with high heap request frequencies, because they stress the perfor-
mance of our heap protection mechanisms the most. Most of the
allocation-intensive benchmarks except cfrac and LRUsim are in
this category. Note that roboop, a C++ object-oriented robotic ma-
nipulator simulation, has at least one order of magnitude higher
heap request frequency compared to all other benchmarks. On av-
erage, it makes one heap request every 594 processor cycles, and
does very little computation beyond making heap requests. Hence,
roboop represents a good worst-case scenario to test our schemes.

Heap request types and sizes. Due to the space limitations, we
only provide a summary of our data on heap request type and size.
We found that in all benchmarks with high heap request frequen-
cies, deallocation requests account for roughly half of all heap re-
quests. This makes sense because allocations are frequent, and heap
memory would grow quickly without frequent deallocations. As a
result, these benchmarks are expected to benefit from our dealloca-
tion optimizations (bulk deallocations and non-blocking commu-
nication) as well as from allocation optimizations (pre-allocations
and non-blocking communication). We also found that all bench-
marks with high heap request frequencies have a small average
heap request size, ranging from 2 bytes for lindsey to 235 bytes for
deltaBlue. This makes sense because large objects would take more
time to initialize and use, preventing the application from making

heap requests as frequently. The inverse, however, is not true: some
applications with low heap request frequencies also have small
request sizes. Both heap request types and sizes for benchmarks
with high heap request rates support our choice of bit-mapped heap
meta-data organization because they are efficient in storage when
the average heap chunk size is small, and allow fast lookups for
these demanding benchmarks.

6.3 Heap Server’s Performance

Execution time overheads. Figure 7 shows the execution time
overheads of Heap Server when some or all of its components are
implemented, compared to the execution time of the base (no pro-
tections) library. The Bitmap bars show the overheads when the
bitmapped heap meta-data organization is used, but is stored in
the application’s address space and no obfuscation is used. The
Bitmap+Obfus bars show when layout obfuscation is added. Fi-
nally, the FullHS bars show a full Heap Server implementation that
includes the bitmapped heap meta-data organization, layout obfus-
cations, keeping meta-data in the Heap Server process, and using
all Heap Server communication optimizations. The figure shows
that our bit-mapped meta-data organization (Section 4.1) has nearly
negligible performance overheads of -0.5% and 2.5% on average
for SPEC2000 and allocation-intensive benchmarks, respectively.
In some cases, it even speeds up execution (9% in equake and 4%
in twolf), because the more compact heap data layout produces bet-
ter spatial locality. In other cases, it slows down the execution: 6%
in ammp, deltaBlue, and espresso, 9% in roboop, and 2% in lind-
say and eon. This is due to the extra meta-data lookup time and due
to the storage overhead to store the meta-data. The Bitmap+Obfus
bars indicate that our layout obfuscation leaves average perfor-
mance largely unchanged. However, the fragmentation in the heap
data space due to random padding and longer traversal for heap
object recycling penalize roboop by 29%. The FullHS bars show
that a fully-optimized full implementation of Heap Server, on aver-
age, produces -0.4% overhead for SPEC2000 benchmarks and 2%
overheads for the allocation-intensive benchmarks. The full imple-
mentation even speeds up seven benchmarks (bzip2, crafty, equake,
gap, twolf, deltaBlue, and LRUsim), and in three benchmarks the
speedups are significant: 14% in deltaBlue, 10% in equake, and 7%
in twolf. FullHS implements everything in Bitmap+Obfus and also
suffers from the high inter-process communication latencies. If it
were unoptimized, its execution time overheads would be strictly
higher. The fact that FullHS performs better than Bitmap+Obfus
in most cases signifies that the parallelism between the application
and the optimized Heap Server more than offsets the inter-process
communication latencies.

Execution time overheads of an alternative to Heap Server.
One may imagine an alternative to the Heap Server in which we use
bitmapped heap meta-data to separate the storage of heap meta-data
from heap data, layout obfuscation to protect heap data, but add
page-level write-protection to the heap meta-data. The heap man-
agement library unprotects the pages that hold the heap meta-data
when it needs to modify them, but immediately write-protects the
pages before returning to the user code. To implement this, we sim-
ply wrap the heap management library functions with mprotect
system calls to unprotect and protect the heap meta-data pages. Fig-
ure 8 shows the resulting performance overheads, which are huge
for benchmarks with high heap request frequency: the slowdown is
more than 20X in deltaBlue, espresso, perlbmk, and roboop. We in-
vestigated this further by counting the number of mprotect calls,
and found out that on average, one such system call introduces
thousands of cycles of overhead due to an exception, pipeline flush,
context switch latency, TLB flush, and some cache flushes. Even
if the system calls are highly optimized (e.g. through fast system
calls), it is unlikely that these overheads can be reduced to the level
of our Heap Server implementation.
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Figure 7. Execution time overheads of Heap Server with some or all its components implemented.
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Figure 9. Execution time overhead of Heap Server with different optimizations.
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Figure 8. Execution time overhead using kernel-level page pro-
tection.

Impact of various optimizations. Figure 9 shows the execu-
tion time overheads for Heap Server with various optimizations,
relative to the base (no-protection) heap library. Unopt implements
the Heap Server with layout obfuscation in the fully blocking mode,
NB adds non-blocking communication, NB+BD adds bulk deallo-
cation optimization, and NB+BD+PA adds pre-allocation optimiza-
tion. Finally, NB+BD+PA+Prot adds extra protection to the bulk-
deallocation and pre-allocated pointers at the application’s side, by
keeping two identical copies of this new meta-data, and delimiting
both copies with write-protected pages (Section 4.2.3). Note that
NB+BD+PA+Prot is equivalent to FullHS in Figure 7. Figure 9
demonstrates that essentially Unopt, NB, and NB+BD have low
overheads for many benchmarks, but quickly jump to unacceptably
high overheads for benchmarks with high heap request rates. When
pre-allocation optimization is added (NB+BD+PA bars), overheads
drop to almost-negligible levels, and we even observe speedups

in some benchmarks. The overhead in roboop goes down from
1,343% to only 17%, while deltaBlue’s 400% overhead becomes
a 14% speedup. The reason for this speedup is that an allocation
request is often quickly followed by initialization code that uses
the block’s address, and this data dependence stalls the processor
significantly if allocation is not serviced quickly. This is in contrast
to a deallocation request, which typically has no data dependences
with the subsequent code.

Effectiveness of Bulk Deallocation and Pre-Allocation opti-
mizations. Due to space limitations, we only summarize our data.
On average, pre-allocation eliminates 49% and 97% of all alloca-
tion requests for Spec2000 and allocation-intensive benchmarks,
respectively. We investigated further and found that high heap re-
quest frequencies are usually caused by a small number of data
structures with a large number of same-sized nodes being allo-
cated and deallocated frequently. Thus, there are very few alloca-
tion sizes that are repeated very frequently, leading to a pattern that
is easily predictable by our pre-allocation optimization. On aver-
age, bulk deallocation eliminates 42% and 85% of all deallocation
requests in Spec2000 and allocation-intensive benchmarks, respec-
tively. The low coverage of pre-allocation and bulk deallocation
in SPEC2000 benchmarks is due to the small number of alloca-
tion/deallocation requests in some benchmarks, or large allocation
sizes in others. None of the low-coverage benchmarks can benefit
from pre-allocation and bulk deallocation optimizations since they
have low heap request frequencies.

Heap Server’s processor occupancy. Heap Server incurs
almost-negligible storage and execution time overheads for all the
benchmarks tested. However, it occupies a thread context or a pro-
cessor. We have argued in Section 4 that the trend towards Chip
Multi-Processor architectures plays in favor of trade-offs between
execution time and the number of processors used. However, we



are still interested in finding just how much Heap Server utilizes a
processor. Figure 10 shows a breakdown of time the Heap Server
process spends on servicing heap requests from the application.
waiting indicates that the Heap Server is idle, not having a heap
request to service. The figure shows that the Heap Server is busy
less than 6% of the time for all but one benchmark. Even for ro-
boop, the Heap Server is busy only 24% of the time. Hence, the
extra processor utilization of Heap Server is actually very small.
We leave how this observation can be exploited for future study.

Heap Server's Occupancy
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Figure 10. Heap Server’s occupancy.

7. Conclusions
We have proposed and evaluated a new scheme for comprehen-
sively protecting the heap meta-data as well as heap data from
security attacks. In its full implementation, our scheme protects
against contiguous and non-contiguous overwrites on heap meta-
data, and makes overwrites of heap data more difficult. We show
that our approach uses minimal assumptions on the mechanisms
of the latter stages of an attack, utilizes existing hardware pro-
tection mechanisms, and requires modifications only to the allo-
cation/deallocation routines.

We demonstrate that an alternative heap meta-data protection
through existing kernel-level page protection produces unaccept-
able performance overheads. In contrast, our schemes achieves
nearly-negligible performance overheads for applications with a
wide-range of heap behavior. We achieve such low performance
overheads using aggressive optimizations and by exploiting paral-
lelism between the application and its Heap Server. Since many
techniques have been proposed for stack protection but few for
heap protection, we believe that the heap protection offered by our
scheme is a significant contribution towards the overall security of
an application.
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