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COMPRESS MULTIPLE CIPHERTEXTS
USING ELGAMAL ENCRYPTION SCHEMES

MyuNcsuN Kim', Jinye Kim¥, aNp June HEE CHEON'

ABSTRACT. In this work we deal with the problem of how to squeeze mul-
tiple ciphertexts without losing original message information. To do so,
we formalize the notion of decomposability for public-key encryption and
investigate why adding decomposability is challenging. We construct an
ElGamal encryption scheme over extension fields, and show that it sup-
ports the efficient decomposition. We then analyze security of our scheme
under the standard DDH assumption, and evaluate the performance of
our construction.

1. Introduction

ElGamal encryption is one of fundamental public-key cryptosystems. One
of its main advantages is that it is simple and efficient, but also that its chosen-
plaintext security is clearly understood. Security overhead in terms of band-
width, however, often becomes obstacles against its publicly wide use. ElGamal
ciphertexts are typically at least as many bits as the prime modulus p. If the
plaintext size is small comparatively to the size of p (as we can see in many
practical scenarios), the relative size overhead becomes worse.

For example, assuming p is a 2048-bit prime, in a hybrid encryption scenario
where a symmetric key size is 256-bit, the size overhead of ElGamal is roughly
ten times the plaintext size. The situation becomes worse, as more computa-
tional power and more powerful mathematical analytic methods become avail-
able in the future, which results in a longer public key size. More specifically,
let consider the case where a server should receive from multiple clients each
shared secret-key encrypted under hybrid encryption. If the number of clients
grows linearly in the above example, the size overhead also increases linearly.
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Thus, efficiency can be improved if a router is given an accessory to compress
multiple ciphertexts. It might be possible to improve efficiency by optimizing
a particular encryption algorithm. Instead, we focus on the way where anyone
can have ability to optimize bandwidth overhead.

As an immediate application of our proposal we can consider the case in
which needs to aggregate ciphertexts from multiple sources, for example, a
network of low-cost sensor nodes that send sensitive data over the internet to
a recipient.

In this work, we study how to reduce unused spaces in ElGamal encryption.
The unused space results from imbalance between the real plaintext size used
during encryption and the prescribed plaintext size that a ciphertext can cover.
We call this unutilized space ciphertext overhead — the size difference between a
ciphertext and its embedded plaintext. When a single sender generates multi-
ple ciphertexts, there are several ways to reduce the ciphertext overhead (Refer
to related work for details). On the other hand, ciphertext overhead consider-
ably increases in a distributed setting where each ciphertext is generated by a
different sender on a relatively small plaintext in the size. We focus on how to
decrease the ciphertext overhead in the setting where multiple ciphertexts are
generated from distributed senders to the same receiver.

1.1. Our contributions

We show how to efficiently compress multiple ciphertexts and how to ef-
ficiently decompress each individual plaintexts. We define the notion of de-
composability over semantically secure encryption to formalize decompression
of a compressed ciphertext. We construct an ElGamal variant over extension
fields to support efficient decomposability. We define message rate in order to
measure the compression efficiency and analyze the message rate of our con-
structions.

1.2. Related work

In a setting of a single arbitrary message, compact encryption [2, 3, 50]
schemes can be a solution. Compact encryption allows to have an optimal
ciphertext overhead in this setting. One of well-known compact encryption
schemes is as follows: given a group G of prime order p with a generator g
and a public/secret key pair (y = ¢%,x), a ciphertext for a plaintext m is
(¢",m @ H(y")) where a random r is chosen from Z; and a hash function
H : G — {0,1}I"]. The ciphertext overhead contains only one group element,
regardless of the size of the plaintext. Moreover, when multiple ciphertexts
are generated by a sender in sequence, the compact encryption scheme allows
an optimal ciphertext overhead. When a new plaintext m; is given, a sender
computes (- (H(y") @ m1) @ mo2l™) @ ...) @ m; 2551 s by using H :
G — {0, 1}2;:1 mil - Then it is clear the compact encryption scheme has
an optimal ciphertext overhead. Given multiple ciphertexts generated from
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distributed sources, however, the size is not optimal any more because the
overhead increases linearly with the number of messages. Moreover, it is not
clear how to compress ciphertexts because the group structure is broken by the
hash function.

Gentry [22] proposed a scheme to compress Rabin ciphertexts and signatures
(among other things) down to about (2/3)log N bits while ordinarily, RSA and
Rabin ciphertexts are log N bits, where N is a composite modulus.

An encoding scheme proposed by Catagnos and Chevallier-Mames [13] may
be used to compress multiple ciphertexts. However, an input plaintext size
should be prohibitively small (e.g., at most up to 10 bits). Further, Johnson
et al. [34] used as a message encoding a hash function from a bit string to a
prime number for obtaining homomorphic signature.

1.3. Organization

The rest of this paper is organized as follows. In Section 2 we formally de-
fine the notion of decomposability. Section 3.1 describes an ordinary ElGamal
encryption scheme is decomposable but inefficient. In Section 3.2, we give an
ElGamal encryption scheme that satisfies both decomposability and efficiency.
In Section 4, we further analyze that our decomposable encryption scheme runs
efficiently.

2. Preliminaries

In this section, we remind the background regarding public-key homomor-

phic encryption, introduce a new notion called decomposability, and then de-
scribe the security model.
NoTATION. For n € N, [n] denotes the set {1,...,n}. If A is a probabilistic
polynomial-time (PPT) machine, we use a < A to denote making A produce
an output according to its internal randomness. In particular, if U is a set,
then r < U is used to denote sampling from the uniform distribution on U.
For an integer a, |a| denotes the bit length of a.

We denote by A a security parameter. A function ¢ : N — R is called
negligible if for every positive polynomial u(-) there is an integer N such that
g(n) < 1/p(n) for all n > N. We use standard asymptotic (O, 0) notation
to denote the growth of positive functions. We say that f(n) = O(g(n)) if
f(n) = O(g(n)log®n) for some fixed constant c.

2.1. The model

This section gives a formal definition of decomposability in a public key
setting. We start with the definition of public key encryption.
PuBLIc-KEY ENCRYPTION. A public-key encryption scheme
& = (KeyGen, Enc, Dec)

consists of the following algorithms:
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o KeyGen is a randomized algorithm that takes a security parameter A
as input, and outputs a secret key sk and a public key pk; pk defines a
plaintext space P and a ciphertext space C.

e Encis a randomized algorithm that takes pk and a plaintext m € P as
input, and outputs a ciphertext ¢ € C.

e Dec takes sk and ¢ € C as input, and outputs the plaintext m.

We say that an encryption scheme is correct if, for any key-pair (pk, sk) «
KeyGen(1*) and any m € P, it is the case that: m < Decgy(Encyr(m)).

DECOMPOSABILITY. Informally speaking, a public-key encryption £ is decom-
posable if we can efficiently recover all original messages from a decrypted ci-
phertext which is obtained by compression of other multiple ciphertexts. Here
compression should be efficient. A formal definition is as follows:

Definition 1 (Decomposability). Let k,¢ € N. Let & = (KeyGen, Enc, Dec) be
a public-key encryption scheme as defined above. Let 77 be a set of polynomial-
time computable functions from C* to CU {L} and Tz a set of polynomial-
time computable functions from P to P U {1} where P C P and L is a
distinguished symbol indicating transformation failure. Then, decomposable
encryption is given by a tuple of PPT algorithms (KeyGen, Enc, Dec, Ty, T2)
having the properties below.

(1) Easy to compress: For any vector of ciphertexts ¢ = (¢1,...,¢;) and
for some Ty € T1, T1(c) outputs another ciphertext C' € C or L where
C; = Encpk (mz)

(2) Easy to decompose: For any plaintext M = Decyx(T1(c)) € P with
some vector of ciphertexts ¢ and for some Ty € T3, To(M) outputs a

set of messages m = {mq,...,my} or L where m; € P.
(3) Correctness: For any vector of plaintexts m = (my, ..., my) and for any
vector of ciphertexts ¢ = (c1, ..., cx) with ¢; = Encyi(m;), there exists

a pair of (T1,T2) € (71, T2) such that (mq,...,my) = TooDecoTy(c).

When getting an understanding of the meaning of the definition above, one
should notice that since the output of decomposing loses the order of original
messages, it should not be interpreted as a vector. Correctness of decompos-
ability is ensured only as a set.

We can consider T; as a function to transform multiple ciphertexts to a single
ciphertext such that corresponding plaintexts are obliviously combined into a
single plaintext M. On the other hand, the transformation T, can be considered
as a function to decode the single plaintext M into a set {mq,...,my}. When
an encryption scheme has a decomposable property, we call it a decomposable
encryption scheme.

We notice that decomposability is meaningful only if the output size of T is
“shorter” than its input size. As an example, an encryption scheme using T; as
concatenation (denoted by ||) can be also decomposable: given an encryption
scheme we define Ty : C¥ — C as (Encpr(ma), . .., Encpr(mg)) — Encpr(mi) ||
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|| Encpr(mg), and T : P — P¥ asmy || -+ || mg = (ma,...,mg), re-
spectively. However, since the output size of the first transformation T; is the
same as the input size, decomposability does not help to compress the size of
ciphertexts. From now on, we consider only non-trivial schemes to reduce the
size overhead.

SECURITY. The semantic security game for a decomposable encryption scheme
is similar to the original semantic-security game for an encryption scheme [25],
except that additional transformations T, T4 are publicly given and the adver-
sary sends to the challenger two challenging vectors of plaintexts of his choice.
To distinguish from the semantic security of an encryption scheme denoted
by IND-CPA, we denote the semantic security for decomposable encryption
d-IND-CPA and define the d-IND-CPA game as follows:

Experiment ExpdA'IND‘CPA(l’\) :

(1) (pk,sk) < KeyGen(1*) and (Ty,Ta) & (T1,72), and then pk and
(T1, Ta) are given to .A.

(2) (mo, ml) < .A where mo= (moyl, ceey moﬁk) and mi= (mlyl, . ,mlyk)
for each m; ; € P,i € {0,1}, and for all j € [k].

(3) Choose b & {0, 1} and compute ¢, = (Encpr(mp 1), ..., Encpr(mpi)).
(4) b+ A(mg,m1,cp) where b’ € {0,1}.
(5) The output of the experiment is 1 if ' = b and 0 otherwise.

We say that a decomposable encryption £ scheme is d-IND-CPA secure if

the advantage of an adversary A defined as }Pr[l — Exp§NP-CPA ()] - i

is negligible for all PPT machines A. Note that the IND-CPA game for the
underlying encryption is a special case of k = 1.

The d-IND-CPA security of decomposable encryption is implied by the IND-
CPA security for the underlying encryption. Namely, an algorithm A that wins
the d-IND-CPA game above with advantage € can be used to construct an algo-
rithm B that breaks the IND-CPA security of the underlying encryption with
advantage 57. More specifically, when A makes a challenge query (mg, m;), B
chooses a random index j, makes the challenge query (mg,j,m1,;), and receives
¢p,; from the IND-CPA challenger. B picks a random bit b’ and responds to A
with a vector of ciphertexts (cy1,...,¢pj,--.,C k) hoping that b = b'. If A
outputs b* and b* = b’ then B outputs b’. Otherwise, B outputs a random bit.
Since the probability that the j-th element is a correct target (A distinguishes
with a non-negligible probability by the hybrid argument) and b = ¥’ is 57, the
adversary B has the advantage 5.

2.2. Cryptographic assumption

Let G4 be a cyclic group of prime order ¢, and let g be its generator. We
assume that the DDH problem are hard in G,. For example, G, could be a
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subgroup of order ¢ in the group of modular residues Z) such that ¢ |p—1,
|p| = 2048, and |g| = 256, or it can be a group of points on an elliptic curve
with order ¢ for |¢| = 256. For more examples of groups, where the DDH
assumption is assumed to hold, see [9)].

Definition 2. The DDH problem is (¢, t)-hard in G, if for every algorithm D
running in time ¢ we have:

‘PI‘ |:Oé>ﬁ ﬁ Z‘Z‘D(ghgaagﬁmgaﬁ) = 1:| —Pr [avﬂa’y ﬁ Z‘I‘D(gagamgﬂvg'y) = 1i|‘ S €.

3. Our decomposable encryption scheme

In this section, we construct a decomposable encryption scheme from mul-
tiplicative homomorphic ElGamal encryption. We describe our construction
in two steps: In Section 3.1, solely for presentation purposes, we explain how
ElGamal encryption over a prime field is possibly converted into a decompos-
able encryption scheme. The resulting scheme helps to understand intuition of
our construction and why message encoding/decoding algorithms are addition-
ally needed. However, the first scheme is not efficient enough to be practical
because of its inefficient transformation. In Section 3.2, we construct our pro-
posed scheme based on another ElGamal variant, ElGamal encryption over an
extension field. Similar techniques in Section 3.1 are used to have decompos-
ability. Interestingly, unlike the first scheme, the resulting scheme is efficient
and does not incur any inefficient transformation. However, security of ElGa-
mal encryption over an extension field should be carefully examined because
different types of attack can be applied.

3.1. Basic but inefficient scheme

An IND-CPA secure ElGamal is defined on a subgroup in which the DDH
assumption holds. Let p,q be primes such that p — 1 = sq for some s. The
size of p and ¢ are determined by a security parameter. Given g, a generator
of a subgroup G, the public/secret key pair is (y = ¢*, z) for & [¢ — 1], and
P = G, and C = (G,)?. For any message m € G, the encryption algorithm is
Encpr(m) = (¢", my") (mod p) = (u,v) with r & [¢ — 1]. Given a ciphertext
¢ = (u,v) € (G4)?, the decryption algorithm is Decgy(c) = vu™ (mod p) = .

To integrate decomposability into this ElGamal encryption scheme, we de-
fine two transformations T; and T5. For Ty, we utilize multiplicative homomor-
phism embedded in ElGamal encryption as follows: Ty(c1,...,cx) = H§:1 C;
where ¢; = (¢", m;y"") with random r;. Let

k
C = Hci = <92f1 ”7 (H ﬁ%) .nyzl ”) .
1=1

i=1
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Then given M = Dec,(C) it is natural to relate Ty with a factoring algorithm
of an integer M. However, unless all m;’s are primes, factorization cannot
determine a unique set of plaintexts.

To cope with this problem, we consider a map from a given message to a
prime number.! We define a bijective map ¥ : P — P, which converts a
message m € P into a prime number m € P,, C P, where P, is a set of primes
equal to or less than w bits for some w € N. The resulting encryption algorithm
is Encpr(m) = (¢",my") where m = ¥(m). The map ¥ is discussed in more
detail later in this section.

Correctness in decomposability is provided because a prime factorization
determines a unique set of plaintexts, {m1,...,my} for some k and the set
of original messages {11, ...,m;} are extracted through ¥~ to each m;. It
is obvious that this construction is a decomposable encryption scheme for a
set of primes P, and some k < 10%. The decomposable encryption scheme is
correct with k < 10% since my -+ - my, < 2k <p,and somy---mE =mq--- My
(mod p).

In the following we describe our techniques to construct a bijective map W.
MESSAGE ENCODING AND DECODING. We assign a message to a prime num-
ber by using a small-sized random padding and checking whether the padded
message is a prime number. Namely, we append a padding v to the message
m, and then check whether m = m || v is a prime number. When we define
m || v = M2l + 4, the size of v is determined by the distribution of primes.
Let m(x) be the number of primes equal to or less than z. Huxley [32] proved
that

A(z)
~ log x

(3.1) m(z + A(z)) — w(x)

is true for almost all x if A(z) = 2/ (¢ > 0 fixed) (See [46] for a survey
on this topic). This result implies that there exists at least a prime number if

v =[] (e.g., if w =32 and |y| = 6, then ﬁ(gmm) = 2; when we increase the ||
by 8, we can expect to have eight primes at least). The follow lemma shows

that our encoding algorithm runs well with high probability.

Lemma 1. Let x be the maximum value of messages and vy be a padded message
as defined in above. Let p > 0 and define s = [|y|log(1/p)]. Then the procedure
outputs a prime number in G4 with probability at least 1 — pllog o1,

Proof. Assume that the procedure runs s times. The probability that all s
trials do not give any prime number is at most

IOg-T ° —logz/A(x) (] 1og(1/p)] _ llogzlogp] _ ,[logz]
(1-56) < ) - ~’

1A technique mapping messages to primes has been used by Kim et al. [41] for private
set intersection which runs on additive homomorphism by using Paillier encryption.
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by A(xz) = |vy| and Equation (3.1). Hence the procedure outputs at least a
prime number with probability 1 — pl'°&#1 as required. O

The inverse map of ¥ is clear by simply removing the random padding.

Although we construct a decomposable encryption scheme as above, it is not
practical due to the inefficiency of Ty based on factorization. More specifically,
trial division by primes demands a complexity of |/p for extracting a prime
factor m;. The expected time for Pollard’s rho algorithm to find a factor m;
of M is O(y/my) [11]. If for any prime factor m; of M, m; — 1 is smooth with
respect to some relatively small bound B, we can use Pollard’s p — 1 factoring
algorithm whose running time for finding the factor m, is O(wB/log B) [51].
When one fails to factor a given message using Pollard’s p — 1 algorithm, we
can apply the elliptic curve factoring algorithm whose expected running time is
Lo, [3,V/2] [42]. For example, recovering 128-bit messages from its compression
would take 264,

Thus, this construction could be practical only for small-sized messages.
In the next section, we construct a decomposable encryption scheme which
efficiently covers medium or large messages.

3.2. Our efficient construction

In the multiplicative homomorphic encryption, decomposability can be add-
ed by utilizing multiplicative homomorphism as T; and a factoring algorithm
as T, and defining an encoding/decoding scheme for correct message recov-
ery. The challenge is how to combine all these algorithms efficiently, while
preserving the security of an encryption scheme. To have efficient T and T,
transformations we consider the following facts:

e The ring of polynomials over a finite field is unique factorization do-
mains (UFD) in which every non-zero element is uniquely written as a
product of irreducible elements.

e Factoring a given polynomial over a finite field into irreducibles is car-
ried out efficiently.

Thus, we examine an ElGamal encryption scheme over extension fields which
satisfy the above properties and construct efficient transformations on it. In-
terestingly, ElGamal encryption over extension fields is also used for a different
application of privacy-preserving set union. However, we notice that the se-
curity analysis in [30] is not rigorous and misses even attacks executable in
extension fields.

In the following we overview the ElGamal encryption scheme over extension
fields, demonstrate efficient transformations and encoding/decoding schemes,
respectively, and discuss about the security of ElGamal encryption over exten-
sion fields focusing on the attack overlooked in [30].
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OVERVIEW OF ELGAMAL OVER EXTENSION FIELDS. The description of the
ElGamal encryption scheme over extension fields consists of the following al-
gorithms.

e KeyGen(1*): The key generation algorithm chooses a large prime p and
n such that p™ — 1 = sq for some prime ¢ and an integer s. Then select
an irreducible polynomial f(X) € F,[X] of degree n and a generator

g(X) from G, where g(X) = h(X)" 7, where h(X) is a generator
of (Fp[X]/(f(X)))*. It computes y(X) = g(X)* mod f(X) where a
secret key x is randomly chosen from [p™ — 2] publishes a public key
Pk = (Gy,(X), y(X), F(X)).

e Enc,;(M(X)): Encryption with the public key pk and message M (X)
= (X —m) € G, proceeds as follows. First, a random value r € [¢ — 1]
is chosen. The ciphertext is then published as:

C(X) = (u(X),v(X)) := (9(X)" mod f(X), M(X)-y(X)" mod f(X)).

e Decy,(C(X)): Suppose that a ciphertext C(X) is encrypted with a
public key pk and we have a secret key. Then, the ciphertext can be
decrypted as:

M(X)=v(X)u(X)™® (mod f(X)).

To make ElGamal encryption semantically secure, a subgroup where the
DDH assumption holds should be used: if a generator of (F,[X]/(f(X)))*
is used, this ElGamal encryption scheme is not IND-CPA secure since it is
easy to test elements of the multiplicative group. In fact, in this setting if
messages are small, the ElGamal encryption scheme is subject to the Boneh-
Joux-Nguyen attack [10]. Thus, we use the subgroup G, as above, generated
by g(X) = h(X)".

We note that there exists a sufficiently small number s such that p™ —1 = sq.
Furthermore, when n is prime, we have that p"—1 = (p—1)®,,(p) where ®,,(p) is
the n-th cyclotomic polynomial. Assuming the Bateman-Horn conjecture [5, 6],
the number of primes of the form (p™ — 1)/(p — 1) = ®,,(p) not exceeding x,
denoted by H(x), is given by

1/2

H(z)~0.76 - - /2 (logu) " ?du.

Thus we know that the probability that ®,,(p) is prime for an integer p < x is
not, small.

MESSAGE ENCODING AND DECODING. For a message m € F, we take the
smallest positive integer v such that (X —m || v)? = 1 mod f(X), where
(m | 7) denotes M2l + 4 € F,. Assuming the linear polynomials of order
g are uniformly distributed over all linear polynomials in F,[X]/(f(X)), the
expected number of trials becomes s. Thus we know that the encoding process
can be performed efficiently and its output is an irreducible element in G,.



370 M. KIM, J. KIM, AND J. H. CHEON

Alternatively, we can directly use (X —m)® € G, when s is sufficiently smaller
than n. However, this method is less efficient than the random-padding tech-
nique due to the condition & < - in terms of message rate. For the discussion
about message rate refer to the next section.

Decoding is straightforward by using a constant term in each linear polyno-
mial after removing the random padding of fixed size.

TRANSFORMATIONS. We take T; as multiplication on C since the ElGamal en-
cryption scheme is multiplicatively homomorphic. When the transformation T,
is given by factoring polynomials over a finite field IF},, we have polynomial-time
algorithms for factoring in F,[X], which is a key difference from the ElGamal
encryption given in Section 3.1.

Lemma 2. Let P, be a set of irreducible polynomials of degree less than or
equal to w in Fy[X]. The ElGamal encryption scheme given in Section 3.2 is
decomposable on P, for k < 2.

Proof. The proof is straightforward from the fact that F,[X], the ring of poly-
nomials over a field [, is a UFD, and there exist efficient transformations T,
and Ts. O

3.3. Security analysis

In this section we show that the ElGamal encryption on extension fields is
IND-CPA secure, so that our decomposable construction is d-IND-CPA secure.

As mentioned above, the ElGamal encryption is secure against the Boneh-
Joux-Nguyen attack [10]. Let v(X) = M (X)-y(X)" be the second component of
a ciphertext from the encryption algorithm. The Boneh-Joux-Nguyen attack
works only if an adversary can make y(X)™? € G, by raising v(X) to the
power of ¢ and manage to compute discrete logarithms in Gg. However, as
y(X)™ € G, and G, has a large prime order, the adversary cannot efficiently
find the random exponent 7.

Next we should check our encryption scheme would be subject to index
calculus attacks, since we moved from the multiplicative group of a prime
field to the multiplicative group of an extension field. Recall that the en-
cryption scheme works on such a subgroup G, of the multiplicative group
(Fp[X]/(f(X)))* = F,.. During parameter selection, p is a prime such that
p" — 1 = sq for a small even number s and a large prime number ¢q. Note
that p is not a prime power and the extension degree n is a prime number.
Then we can see that an attacker has complexity of /g to compute discrete
logarithms in G, using a square-root algorithm directly in G4, such as Pol-
lard’s rho algorithm. We have two efficient methods of calculating the index
calculus: the number field sieve method [26] in a prime field and the function
field sieve method [4] in a finite field with a large extension degree. However,
the function field sieve by Adleman can efficiently extract discrete logarithms
over finite fields of small characteristic. In the case of a medium-size charac-
teristic, we should consider variations of the number field sieve method and
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the function field sieve method [35, 36]. In particular, they are efficient when
logp < O(y/nlogn) holds. Using medium-sized values of prime p with large-
size subgroup prevents from being affected by these algorithms. Moreover,
Gower [27, §1.3] pointed out that when p is a prime, the attacker will not be
able to mount the Granger-Vercauteren attack [28].

Finally we check whether the ElGamal variant on extension fields is IND-
CPA secure and the decomposable construction relying on this variant is secure.

Theorem 1. The ElGamal scheme on extension fields given in Section 3.2 is
IND-CPA secure assuming the DDH assumption holds in a cyclic subgroup G,

of (Fp[X]/(f(X)))*

Proof. We prove security by defining two hybrid experiments Gamey and Game;
where Gamey is the real IND-CPA game.

Gamey. Fix an efficient adversary A. To make things more precise and more
concrete, we give an algorithmical description of the attack game as follows:

$ [e3
Q< an y(X) = g(X)
My(X), M1(X) < A(7,y(X)) where 7 is sampled uniformly at random
fro;n some set 5
b {0,1}, B Zg, u(X) = g(X)?, t(X) = y(X)?, v(X) = Mp(X) -
t(X)
b= A7, y(X), u(X), v(X))
It is clear that this algorithm faithfully represents the IND-CPA game. If

we define Eg to be the event that b = b, then the adversarys advantage is
| Pr[Eo] — 1/2).
Game;. We now make one small change to the above game. Namely, instead

of computing ¢(X) as y(X)”, we compute it as g(X)” for randomly chosen
v € Zq. We can describe the resulting game algorithmically as follows:

a & 7y, y(X) = g(X)*
My(X), Mq1(X) « A(7,y(X)) where 7 is sampled uniformly at random
from some set
b (0.1}, B¢ Zy, u(X) = g(X)P, 7 & Ly t(X) = y(X),0(X) =
My (X) - 1(X)
b A7, y(X), u(X), v(X))

Let E; be the event that b = b' in Game;. We first show that Pr[E;] = 1/2.

Claim 1. Pr[E{] = 1/2.

In this claim we would like to prove that the adversarys output b’ is indepen-
dent of the challenger’s bit b. It is enough to show that b, 7, y(X), u(X), v(X)
are mutually independent, which implies that b and b’ < A(7, y(X), u(X), v(X))
are independent. If b, 7, y(X), u(X) are fixed, then so are My(X), M1(X), since
they are determined by 7, y(X). Moreover, the conditional distribution of ¢(X)



372 M. KIM, J. KIM, AND J. H. CHEON

is the uniform distribution on G4, and hence from this, we see that the con-
ditional distribution of v(X) = My(X) - ¢(X) is the uniform distribution on
Gy

Claim 2. Let € be an advantage of an efficient algorithm which distinguishes
between a DDH tuple and a random tuple. Then, | Pr[Ey] — Pr[E1]| = e.

We know that e is negligible under the DDH assumption. The proof of
this is essentially the observation that in Gamey, the tuple (y(X), u(X), (X))
is of the form (g(X)%, g(X)?, g(X)*#), while in Game, it is of the form
(9(X)*, g(X)P,g(X)7), and so the adversary should not tell the difference,
under the DDH assumption. More precisely, our distinguishing algorithm D
works as follows:

Distinguishing Algorithm D(y(X), u(X), (X))
b 0,1}, v(X) = My(X) - t(X)

b = A(7, y(X), u(X), v(X))

if b =¥, then output 1; otherwise output 0

If the input to D is of the form (g(X)%, g(X)?, g(X)*?), then computation
proceeds just as in Gameg, and therefore

Pr [a,ﬁ & 2,D (9(X)*, g(X)?, g(X)*P) = 1} = Pr[E].

If the input to D is of the form (g(X)®, g(X)?, g(X)?), then computation pro-
ceeds just as in Game;, and therefore

Pr[a, 8,7 & Z,|D (9(X)",9(X)",g(X)") = 1] = Pr[E1].

From this, it follows that the advantage of D is equal to [Pr[Ey] — Pr[E4]|.
Combining Claim 1 and Claim 2, we see that |Pr[Fy] — Pr[E;]| = €, and this

is negligible. That completes the proof of security of the ElGamal encryption

on extension fields. O

The following theorem states that the decomposable encryption scheme sat-
isfies the d-IND-CPA security.

Theorem 2. Assuming the DDH problem is intractable, the decomposable en-
cryption based on ElGamal variant is d-IND-CPA secure.

Proof. As we discussed in Section 2.1, the security of our decomposable en-
cryption scheme is naturally implied by the security of the above ElGamal
encryption. O

4. Performance analysis

In this section, we analyze efficiency of our decomposable encryption schemes
in terms of message rate and computation efficiency. To estimate compression
efficiency, we define message rate and give an analysis on message rate. Then
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we analyze the efficiency of transformations used in Section 3.2. We also present
the whole computational complexity of the decomposable encryption scheme
given in Section 3.2.

4.1. Compression efficiency

We analyze how our scheme effectively compresses given multiple cipher-
texts. For this purpose, we define message rate. Roughly speaking, the mes-
sage rate is the percentage of plaintexts that occupies an output ciphertext of
T1 when a decomposable encryption scheme works correctly.

Definition 3 (Message Rate). The message rate, denoted by MR, over the
ciphertext with respect to T is the total bits of plaintexts contained in ci-
phertexts T takes as input divided by the total number of bits it produces as
output:

logV
R= 8P
logVc¢
where Vp is the total number of bits of messages in (c1,...,cx) given to Ty as

input and V¢ is the total number of bits T; gives as output in C.

We first compute the message rate of the ElGamal-based decomposable con-
struction given in Section 3.1. We demand that k < J‘ﬁs I for correctly recov-
ering the original messages. We can easily see that the message rate of this

construction becomes 21’2“;1). For example, let p be a 1024-bit prime, w a 32-
bit message, and || a 10-bit random padding. Since k < 24, in this setting
MR = 88 = 0.375.

When a decomposable encryption is used by the ElGamal encryption in

Section 3.2, we require that k < n because w = 1. Its message rate becomes

gécl)f;;. For a fair comparison, let m be a 32-bit message, p be a 42-bit prime,
and n be a 27-bit prime. Then we have £ < 26. Hence, this decomposable
encryption scheme has M R = % ~ 0.367.

Now let us consider the transmission of k£ ElGamal ciphertexts without use of
a decomposable encryption scheme. For simplicity, suppose that all plaintexts
are of the same size w. We then see that the message rate M R in this setting

is 21;"?. If the same values above, i.e., w = 32 and logp = 1024, are used, we

have MR = % ~ 0.016. Hence a decomposable ElGamal encryption scheme
allows us to have the message rate 23 times higher than an ordinary ElGamal
encryption scheme. This means that we can utilize bandwidth more efficiently

with a decomposable encryption scheme.

Remark 1. If k is larger than n, the messages can not be recovered from the
compressed ciphertext, since Hle(Xfmi) # Hle(Xfmi) mod f(X). When
there are more than k ciphertexts, one way we can use is to compress after
partitioning them into groups of k or less elements. We conjecture that a
decomposable encryption scheme using an IND-CPA secure encryption has the
message rate less than % due to the random part of its underlying encryption.
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4.2. Computation efficiency

The major bottleneck of our decomposable encryption scheme described
in 3.2 is the transformation To, which factors a given polynomial of degree
n into irreducibles. Milestones in the development of polynomial-time algo-
rithms for factoring in F,,[X] are the algorithms of Berlekamp [8], Cantor &
Zassenhaus [12], von zur Gathen & Shoup [19] and Kaltofen & Shoup [38].
See the surveys [18, 37, 17]. A straightforward implementation of Berlekamp’s
algorithm [8] uses O(n® + n'*°() logp) operations in F,. Presently, there are
practical algorithms that factor degree n polynomials over [, in O~(n2 +nlogp)
operations, and sub-quadratic algorithms that rely on fast matrix multiplica-
tion [38]. When the Cantor-Zassenhaus algorithm [12] is used, it requires an
expected number of O(n2+"(1) log p) operations in F,. One of the asymptoti-
cally fastest algorithms for factoring polynomials, due to von zur Gathen and
Shoup [19], requires an expected number of O(n?t°() 4 plte(M) log p) opera-
tions in F,,. Further, Umans [53] proposed randomized algorithms for factoring
degree n univariate polynomials over I, that use O(n1'5+°(1) + nplte®) log p)
field operations, when the characteristic is small.

In our decomposable encryption scheme, the encryption algorithm requires
two exponentiations in F,,». Since two exponentiations involve a constant num-
ber of multiplications over Fpn, it takes O(n!°82?) using Karatsuba method [39]
or O(n) by fast Fourier transform [15]. Therefore, the total computational com-
plexity is bounded by O(n?T°(M) logp).

5. Conclusion and further work

In this work we gave an answer to the problem of how to squeeze multiple
ciphertexts without losing original message information. We present the notion
of decomposability for public-key homomorphic encryption and construct an
efficient ElGamal encryption over extension fields to support decomposability.
Our scheme on a subgroup of order ¢ in F,» is efficient when i

L is small.
An interesting question is to find an encoding algorithm of a message into
21 is Jarge. Another open problem

an order ¢ group even when the cofactor
is to find an upper bound of the message rate and further design the “optimal”
encryption scheme that achieves this rate.
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