
Compress-store on blockchain: a decentralized data processing
and immutable storage for multimedia streaming

Suayb S. Arslan1 • Turguy Goker2

Received: 15 February 2021 / Revised: 4 March 2022 / Accepted: 12 March 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Decentralization for data storage is a challenging problem for blockchain-based solutions as the blocksize plays a key role

for scalability. In addition, specific requirements of multimedia data call for various changes in the blockchain technology

internals. Considering one of the most popular applications of secure multimedia streaming, i.e., video surveillance, it is

not clear how to judiciously encode incentivization, immutability, and compression into a viable ecosystem. In this study,

we provide a genuine scheme that achieves this encoding for a video surveillance application. The proposed

scheme provides a novel integration of data compression, immutable off-chain data storage using a new consensus protocol

namely, Proof-of-WorkStore (PoWS) in order to enable fully useful work to be performed by the miner nodes of the

network. The proposed idea is the first step towards achieving greener application of a blockchain-based environment to the

video storage business that utilizes system resources efficiently.

Keywords DLT � Blockchain � Data compression � PoW � PoS � Multimedia � Decentralization

1 Introduction

According to recent estimations, there will be over 50

billion connected devices by 2022, all of which will gen-

erate and then require management, storage, and retrieval

of large size of data [1]. Connected devices, which typi-

cally goes by the name Internet of Things (IoT), combined

with consumer-based applications and the increasing need

to share data across different business lines, are all playing

their part in increasing demand for effective/efficient pro-

cessing and data storage. Some of these data inherently

require immutability and call for long-term retention. For

instance, think about government archiving or another

popular example of video/data surveillance. Businesses

desiring to launch new, data-driven applications are bound

to confront with an incredible amount of time, effort, and

coordination to provision new databases today. Now we

begin to see dominant commercial and revenue

dependency on data which leads to large volumes being

stored in vulnerable centralized databases (even in the

cloud), creating privacy and durability risks at a scale

seldom seen before in history.

Today, the dominant practice in unstructured data stor-

age is based on a local or remote single system architecture

or cloud-based file/block/object storages (such as Amazon

S3 [2], etc.) which are still highly centralized. Although

they can be distributed, they are still in the governance of a

single body of management and hence these systems are

definitely considered as a beacon for hackers (both external

and internal) looking to attack. They also have many points

of failure should the managing company’s ecosystem is

affected by an unpredictable system error or experiences

downtime as a result of a power outage. In addition, the

data type being stored has an immense effect on the

management decisions. For example, multimedia sources

are time dependent series of data and must carefully be

protected and communicated by paying attention to

streaming requirements. In contrast, decentralized storage

does not encounter these problems because it utilizes

geographically distributed anonymous or permitted indi-

vidual nodes, either regionally or globally. Hence, the

meeting point of any applications based on decentralized

& Suayb S. Arslan

arslans@mef.edu.tr

1 MEF University, Sarıyer, Istanbul, Turkey
2 Quantum Corporation, Irvine, CA, USA

123

Cluster Computing
https://doi.org/10.1007/s10586-022-03584-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3779-0731
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03584-5&domain=pdf
https://doi.org/10.1007/s10586-022-03584-5

video involves several challenges to tackle. One of the

proven paradigms for storage is known as Distributed

Ledger Technology (DLT) [3].

DLT can be implemented using different consensus

algorithms to ascertain that the world view of each node is

the same. The old traditional way is centered around vot-

ing-based consensus such as Paxos [4] then the more

understandable version that goes with the name Raft [5].

Most recently, random (probabilistic) consensus algorithms

have gained popularity. One of the consensus approaches

to DLT that became quite common in the decentralized

cryptocurrency market is blockchain [6]. For more details

about blockchain technology, future trends and challenges,

please see [7]. Considering some open-source public

blockchains (such as Bitcoin [8] and Ethereum [9]), the set

of transactions that are stored within the linked list of

blocks generates a type of decentralized database or storage

of structured data. However, due to scalability concerns,

the size of blocks cannot grow very large and hence it is

not hard to see that these public blockchains are not

designed for bulk data storage and management, and using

them to do so would consume too much local space, too

much time for processing and too much energy to fulfill all

the executions. In fact, it has the potential to make the

system centralized should the parties participating are be

possession of extensive resources.

A distributed replicated database, which stores data that

can be shared among all system participants, is one of

Blockchain’s most important applications. Such a frame-

work can be a basis for storage in IoT systems as evidenced

by recent works [10, 11]. However, the data storage must

be judiciously handled in the resource-constrained devices

of future IoT applications. Before diving into the details of

how the storage is handled in the proposed architecture, let

us explore some of the decentralized data storage or data-

base options previously devised and implemented.

1.1 Storing data on the blockchain

Blockchains are immutable constructs and hence do not

allow random access for write and frequent changes. Also,

only a limited number of blocks can be securely added to

the chain for a given time period, which makes the

throughput fail to meet most of the data storage require-

ments. In addition, since the size of the data might be

arbitrarily large and full nodes are supposed to store the

entire blockchain, the capacity required to store it will

eventually exceed the persistent storage space of many full

nodes of the network [12]. Thus, only a specific set of

nodes in the network would be able to hold the entire

blockchain. This will result in a centralization problem, in

which a small number of nodes will control the database

system, resulting in a loss of security since only a few

known and capable nodes will be able to actively engage in

the mining process.

1.2 Peer-2-Peer file systems

This approach is based on sharing files on client computers

and uniting them using a global file system interface. This

technology utilizes a similar protocol to BitTorrent [13]

and Distributed Hash Table (DHT) concepts. Unlike access

points such as IPs and ports, the data contents will be

content—addressable using hashes of the content allowing

the separation of storage location and data. Data is avail-

able only if the nodes storing the copies are online. Once

the data content is replicated sufficient enough number of

times, the availability/reliability of data is no longer a

concern. DHT-based technology serves only static files

which can not be modified or removed once uploaded. The

deletion of files cannot be ensured as this technology is not

intended to do so. In other words, the number of copies is

not determined by the system but rather the request pattern

on that data by the network nodes. Lastly, the stored files

cannot be searched by their meaningful content. One of the

well-known successful implementations of this idea is

known as InterPlanetary File System (IPFS) [14] based on

Kademlia DHT [15]. In IPFS, objects are immutable,

which means that new versions of an object contain dif-

ferent content and hence a different hash value than earlier

ones. For a more comprehensive survey about DHT-based

architectures, please see [16].

1.3 Decentralized cloud file storages

Most of the decentralized systems share some commonal-

ities with centralized cloud file storage such as Dropbox

[17]. In particular, peers in the network offer their unused

persistent storage space for rent and get rewards in return

for providing data storage space and services. Some of the

examples include Sia [18], Storj [19], Swarm [20], Filecoin

[21] and MaidSafe [22] which are listed and summarized in

Table 1 based on the technologies they are made of. These

storage systems provide highly reliable, enormous capacity

with varying degrees of access latency and security. As can

be seen most of them are based on a type of blockchain

implementation and backed by some kind of incentiviza-

tion mechanism. Thus, these projects are intended to serve

static files only, and no content search is allowed (unless a

specific feature gets added as they are all evolving projects)

and, since they are built on peer’s or anonymous rented

hardware, they are not free of charge. All these projects are

optimized for file storage (show decent performance with

file accesses) but fairly fall short in accommodating time-

series data (such as Multimedia or IoT data etc.) An

example of such data includes append-only data streams,

Cluster Computing

123

with a single writer and lots of readers. Although recently

few attempts are made towards creating archival data

storage and sharing ecosystems for IoT systems, none

adequately addresses the streaming data requirements [23].

1.4 Blockchain-based solutions for copyright
protection and video hashing

Blockchain technology is a very attractive solution for

online electronic notary services, document certification,

proof of ownership and authenticity. Most of such initia-

tives targeted mobile devices and application development

environments whereas the blockchain formed the back-end

registrar for document hashes and related information etc.

In some of these applications, decentralized database sys-

tems are preferred (such as BigChainDB [24] or TiesDB)

and the rest use content-addressable decentralized options

(such as IPFS). Examples include initiatives such as Block

Notary, Stampery [25], Verify [26]. On the other hand,

there are also available video sharing and video streaming

services based on blockchains [27]. These services verify

ownership of each video content as a whole. LIVEPEER

for instance is structured for broadcasting by transcoding

video sources into all formats and bitrates. Flixxo and

Viuly are video sharing platforms [28], in a way competitor

projects to Youtube Inc., by offering an entirely decen-

tralized platform in which, contrary to their competitor

cloud-based providers, not only content generators are

rewarded but also are the content viewers as well. Viuly is

based on Ethereum smart contracts and hence do not pos-

sess their own blockchain implementation. There are also

relatively new projects which combine different technolo-

gies to offer video content delivery, sharing, incentiviza-

tion, security at the same time (e.g., CoinTube [29]). As a

matter of fact, many of these initiatives can be classified as

one of the following combinations as shown in Fig. 1. By

choosing an open-source project for each layer, one can put

together a decentralized application (Dapp) and announce

an ICO easily if any sort of incentivization is desired.

Despite all these new technologies centered around

open-source platforms, today’s technology requirements

vary at a great scale as we move from one application to

another. For instance, we can note that none of these

studies

a. Guarantee the originality of uploaded files, integrity

and authenticity of the video content.

b. No verification process for recorded/uploaded videos

is explicitly defined.

c. No supporting proof of time, location, other sensor

data to help the verification process of the video

authenticity.

d. No genuine immutability (that comprises the full

content of data) concept other than the linked list of

hashing offered by classical blockchains.

e. No genuine consensus is best fitted for video pro-

cessing/surveillance data and applications.

To address some of these issues, the PROVER project

(through ICO) and a few later publications [30] have

recently been crowdsold and attracted attention since this

service addressed a, b and c to some degree. According to

PROVER, mobile device users use Swype ID by moving

their cell phone in a specific direction (generated pseudo-

randomly by the application) to generate code and hashes

of the content to be stored in the blockchain. PROVER

does not care about where the original content of the data is

stored or for some reason whether it is erased. It is par-

ticularly designed for checking authenticity and integrity

which alone opens up a wide range of applications

including video surveillance. However, PROVER is pow-

ered by Ethereum or NEM blockchains [31] which have

their own consensus algorithms predetermined and run by

their own development environments (PoW for Ethereum

at the time of writing this paper and PoI: Proof of Impor-

tance for NEM). In addition, PROVER does treat the video

Table 1 Some decentralized cloud data storage projects centered around distributed technologies

Project Smart

contracts

Multi-region

redundancy

Feature Consensus Scalability

(1–3)

Sia Yes Yes Archiving, very decentralized own BC BFT 2

Storj No Yes Object, ECC encrypted, sharded, DHT,

ETH

Proof of retrievability 1

ETH

swarm

Yes Yes DHT, ETH Proof of retrievability 1

FileCoin Yes Yes IPFS, replication Proof of replication 1–2

MaidSafe No Yes No blockchain Close group

Consensus

3

Provided is a rough and relative estimation of scalability using a range of 1–3. Larger the number is, better scalability it possesses.

BC: Blockchain, BFT: Byzantine Fault Tolerance

Cluster Computing

123

files as a whole and do not use its differentiating features

(such as allowing finer degradation of quality in case of

compression, storage or transmission [32]) that can be

combined with blockchain to provide more efficient and

useful recording experience which will contribute to scal-

ability and flexibility of the overall system. In this study,

we will be presenting general architectural components

when combined together will best fit in video streaming

and surveillance applications.

To the best of our knowledge, the closest study in

content to our work is VideoChain [33]. However,

VideoChain uses a permissioned blockchain i.e., there are

trusted parties in the architecture to be able to increase the

transaction rates. Their application scenario is based on

Campus video surveillance, a rather limited use case. Also,

Videochain’s blocks are based on video recordings, not on

the different types of frames as in our study. In Video-

Chain, the consensus is based on PoS i.e., no proof of work

is required, again thanks to the trusted parties in the system.

On the other hand, we employ proof of useful work where

the usefulness is due to video compression which is

required in any multimedia communication scenario. Since

the consensus has both useful work and storage compo-

nents, we believe that the application possibilities of the

proposed architecture would be wider.

The organization of the paper is as follows. In Sect. 2,

we introduce a novel compress-store architecture and

provide the details of the proposed system including min-

ing and verification processes. In Sect. 3, we dive into the

details of the implementation and system-level decisions to

be made. We also provide advantages and disadvantages of

the proposed scheme compared to the state-of-the-art.

Finally, Sect. 4 concludes the paper with a few future

directions.

2 Compress-store architecture

In this section, we elaborate on the proposed architecture.

In particular, we use blockchain for metadata storage (de-

scription of which will follow later) while the main con-

tents of the data are stored off-chain using a distributed

hash table system. The off-chain choice is completely

arbitrary and could be replaced with existing cloud services

such as Azure [34] or S3 [2] for as long as they meet the

latency and scalability requirements. However, we provide

desirable properties of a blockchain applied to bulk data as

well such as chaining blocks before moving it to off-chain

storage. Here are some attractive features of the proposed

compress-store system that distinguishes it from the pre-

vious works; (a) Mining/Consensus is based on the novel

Proof-of-WorkStore(PoWS) consensus which we will

detail later, (b) processing/compression (main computation

framework) will be decentralized and some compression

related parameters will be stored in the blockchain for later

verification of recording time, recording place, various

sensor information, compression fidelity and finally,

(c) data is selectively chained and encrypted. We will detail

these properties of the system in the next section.

2.1 A Novel Consensus Algorithm:
‘‘Proof of WorkStore’’

Bitcoin’s network uses a Proof of Work (PoW) consensus

algorithm in which the blocks are mined by solving a

mathematical challenge [8, 35]. This challenge enables the

network nodes to reach a consensus and the network in

return rewards those nodes who participated in system

maintenance and security by offering their CPU resources

for solving the challenge. However, for practical use cases

which involve video streaming and storage, there are a

couple of problems with the original concept of PoW

which can be enumerated as follows:

– It leads to considerable and useless energy/power

consumption. Zero system efficiency results due to

finding a solution to a mathematical puzzle that leads to

no useful work done. Plus, PoW is typically used to

maintain the security of the network, typically

employed in a public domain.

– The time it takes to show PoW depends on a time-

dependent difficulty level. This level increases over

time as more miners participate in the ever-growing

blockchain network. The increased difficulty level will

lead to the block mining process to slow down, limiting

the scalability of the system. Also in order to limit the

chain forking to a minimum, the average time between

two mining instants is adjusted to meet some criteria.

Distributed Application

Processing Unit: Ethereum, HyperLedger,...

File Storage:
IPFS, Swarm, Sia...

Database:
BigChainDB, IPDB,...

Incentivization:
PoW, PoS, ...

Coin

Fig. 1 Layers of Functionality

for a decentralized/Incentivized

Computer System. PoW:

Proof of Work, PoS: Proof of

Stake. Coin represents some

form of currency used to

incentivize the system

Cluster Computing

123

Such adjustments lead to low transaction throughput

performance as the size of the block (and hence the

number of transactions that it contains) is usually not

larger than a predetermined threshold (1 MB in the

Bitcoin case-similar sizes apply for other popular public

blockchains such as Ethereum 2.0 [36]).

– In deflationary crypto ecosystems, when mining

rewards cease, only transaction fees will incentivize

the system. Once these fees drop, the number of miners

will decline for service leading to insecure and

unprotected system design.

The other alternative applicable consensus methods include

Proof of Stake (PoS) [36], Proof of Space (PoSpace),

Proof of Storage (PoSt) and Proof of Importance (PoI) etc

[37]. We immediately realize that none of these methods

require elevated CPU and ASIC requirements for better

throughput performance leading to greener decentraliza-

tion. In PoSt, miners have to show proof of enough storage

space to store the corresponding data and will have to

guarantee that it never erases data in their local or remotely

owned storage slots. There are a few ways of implementing

PoSt in the literature depending on what is exactly being

achieved. Some of PoSt schemes include Proof of

Retrievability (PoR) [38], Provable Data Possession (PDP)

[39], Proof of Replication (PoRep) [40] and the most

common implementations to all is to use cryptographic

operations and periodic auditing protocols [41]. In a typical

application, the provers generate a set of challenges that

requires access to random parts of the data. The genera-

tions of such proofs are performed at random times with a

limitation on the time between two consecutive challenges

generated for the same data.

Since the ideal decentralized computer system is

expected to establish both decentralized computing and

storage at the same time, it is essential that we provide in

our video surveillance system (1) Video Processing

(compression in our particular case) (2) Data storage (3)

Immutability and (4) Security all at the same time. Note

that providing such qualities in a conventional centralized

framework would lead to inefficient utilization of resour-

ces, governance of one body or organization in our

surveillance application (centralization) and increased

system costs.

In our context, video compression will have two

important advantages. First, it requires some form of

computation due to video processing (transformation,

quantization and subsequent entropy coding) and this can

be done in a decentralized fashion and yet does not pose a

lot of useless computations as in original PoW and the

difficulty of the challenge only changes as new compres-

sion algorithms and techniques or new quality require-

ments are integrated/imposed into/onto the network. This

will form the proof of work part of our consensus, namely

PoWS. The second advantage is that since raw video files

would be compressed at a specified quality, we can save a

lot of storage space (efficient utilization of data storage

resources). This does not only mean that we will be saving

storage resources but also computation resources that

might be due to encryption, digital signature generation,

etc. Note that one other advantage comes at no cost from

the incentivization point of view, because miners may want

to choose high compression performance to be able to find

a storage place quickly and hence be successful at their

mining process. Through such incentivization, it will lead

to total storage of the system to be used more wisely.

Video files are bulky and it is always hard to deal with

large volumes of data in general. In the compress-store

architecture, the data storage is provided off-chain using a

distributed hash table system. One possible realization is

the content-addressed data chunk storage technologies such

as IPFS. In that case, the data location is represented by a

unique hash and we separate the content location in the

network and the IP/port number of the server. However, all

location pointers will be stored in the blockchain. Finally,

since the metadata is stored in the blockchain, it is

immutable and cannot be changed by any easy means.

The main idea behind inserting some kind of smarter

PoW into our system is to first dramatically increase the

scalability of the system and it would make it really hard to

generate compressed sequences of thousands of frames in a

relatively short period of time (unless application specific

hardware is used. However, it is advisable to keep in mind

that video encoders come in great variety of parameter

selections and algorithmic differences) which discourages

attackers and allows the network to use the proposed sys-

tem in the public domain.

2.2 Throughput of the surveillance system

Video files are typically partitioned into Group of Pictures

(GOP) and each is processed independently of the other. In

other words, each GOP is treated as the smallest unit

subject to processing and the processing of GOPs can be

concurrent if processed by different miner nodes. Hence we

can define throughput to be the processed frames com-

mitted to the blockchain per second. In a typical scenario, a

GOP can contain 25 frames and each block can contain

around 5 GOPs at the same time. In an optimistic scenario,

if each block is verified and added to the blockchain every

10 secs, this would make 12.5 frames per second (pps).

This is an extremely slow rate compared to the level of

video generation by the system in a typical surveillance

application. There are multiple ways of improving the

throughput of the system. One obvious way to improve the

throughput is to increase GOP size at the expense of lesser

Cluster Computing

123

quality compression and larger storage requirement. The

number of nodes to store the compressed content will be a

performance limiter. Another popular way to alleviate this

is the method of sharding [42] that is also being considered

to solve the scalability issues of popular public blockchains

such as Ethereum. In that scheme, miners choose a GOP or

a consecutive group of GOPs pseudorandomly and work on

their compression workload. This would allow parallelism

in the network and hence would ensure better throughput

performance. However, if the storage is offloaded,

accessing such storage nodes and committing the com-

pressed content will determine the final throughput per-

formance. On the other hand, the implementation of such a

scheme might be a bit tricky.

Note that due to the twin consensus used by the system

and dependence on the network bandwidth, the variance of

the throughput of the system is expected to be high. Thus,

another and more secure approach would be to make the

blockchain private. In that case, the security requirements

will be less of an issue due to trusted parties, communi-

cation links, routing and the traffic on such links would be

more controlled and hence more frequent block additions

to the chain could be realized. This would eventually lead

to better throughput.

2.3 Private/public blockchain applications

In a private blockchain implementation of the proposed

idea, compression workload can completely be handled by

the video generator node also called as initiator node. This

process can alternatively be handled completely decen-

tralized manner if need be. In that case, the PoW part of our

system can be avoided since the participants are assumed to

be trusted parties and pose no risk to the system. This way,

the number of committed video frames into the blockchain

can be increased dramatically and consensus can be

reached a lot easier. This will eventually increase the

throughput of the system. Although a form of centralization

may dominate (also due to a subset of the miner node

selection process), all other properties of the proposed

scheme will still serve a number of advantages regarding

the video surveillance applications.

In one public blockchain implementation of the pro-

posed idea, we shall use PoWS at full scale. Compared to

private counterparts, there is a number of differences in this

case. First, we decentralize the computation by allowing

miner nodes to compress and encrypt video frames, find an

appropriate storage location before preparing and adding

the related metadata into the blockchain. Since these are

third-party participants, we propose to incentivize them

with coins which will help them process more videos and

use storage space. We also incentivize better compression

(avoid dump compression styles) because finding an

appropriate storage location and space can only be found

through paying the required amount using coins. Miner

nodes are motivated to use better methods to be able to ask

for less storage space that also meets a predefined (just like

the difficulty level of a Bitcoin network) quality require-

ment. This quality requirement may be updated as the

network evolves or more miners participate. We refer the

reader to the mining process for details.

3 Implementation and system details

3.1 The procedure for verification and storage

We define three sorts of nodes in our compress-store

architecture, each with its own set of behaviors, as shown

below.

1. Initiator nodes These types of nodes are usually

equipped with video camcorders and are able to

capture, record the raw data and modify/edit the

recorded video streams. These streams can be divided

into one or more GOPs in an edit mode. The captured

GOPs are usually selected to be small and they

constitute the block of information to be processed

by the network.

2. Mining nodes These nodes are equipped with video

compression tools/encoding software or hardware and

ensure the security of the system throughout the

operation. They process received frames of a GOP

and send identification information (such as to show

the intended compression is performed) to the network

to initiate the verification process. Once their work is

verified, a block representing one GOP is added to the

blockchain and the mining nodes/addresses are

rewarded with fees.

3. Storage nodes These nodes are responsible for storing

bulk data which is in our case the compressed

multimedia source files. These files are stored

encrypted after compression. Storage nodes run a form

of PoSpace algorithm to make sure that they reserved

the amount of space that they promise to. Although

block verification verifies the availability of data and

the storage space, a traveling auditing service shall be

used by the network to check this verification process

on a regular basis. Storage nodes receive fees (or a

cryptocurrency as the incentivization mechanism) once

they complete all the requirements of the PoSt and as

long as they store the multimedia data.

Physical nodes of our peer-2-peer network can assume all

these three types of node capabilities. For instance, full

nodes can initiate video storage, mine frames and store

compressed multimedia data all at the same time. On the

Cluster Computing

123

other hand, verifier nodes are all participating network

nodes that store a copy of the blockchain and take on the

responsibility of verifying both the compression as well as

storage works done by the miners and storage nodes,

respectively.

The multimedia data itself is NOT stored in the block-

chain. Instead, their representative data is maintained on-

chain serving as pointers to their stored locations. We

define a subblock to include the following information: 1.

The time GOP is generated, 2. Hash of the GOP (through

Merkle root), 3. Access privileges, 4. The location of stored

GOP (this does not need to be a physical address, an

alternative is to use content addressing, also geographical

location can be incorporated), 5. Metadata about the stored

multimedia content such as compression algorithm,

parameters, 6. transactions regarding the awards for exe-

cuting compression and data storage operations, etc. In

addition, a variety of sensor information, GOP index and

order, video identification number/labeling could also be

part of the subblock for the further verification process.

These additional information is important for the recon-

struction of the video files. Once a subblock (with 1–5) is

formed it is digitally signed with the initiators’ private key

before sending into the network. Miner nodes shall collect

enough number of such subblocks and the associated

multimedia data frames/GOPs to start the compression

process immediately after such subblocks make up a pre-

determined block size (determined by the overall network).

This predetermined block size is analogous to the block

size of other crypto-networks such as Bitcoin. If miner

nodes do not store compressed video themselves then they

are required to find out storage nodes to store compressed

content and their addresses. After securing storage space

and committing, they insert necessary metadata as well as

transactions (6) into the subblocks for further verification.

For compression to make sense, an initiator must set a

quality measure such as Mean Square Error (MSE) or a

Peak Signal to Noise Ratio (PSNR) or another subjective

multimedia quality indicator that will help identify that the

original files and the compressed version are the same

visually subject to a quality measure. There are few tech-

nologies/algorithms that can differentiate two video files

whether they are compressed or not. Miners’ time to mine a

block requires the miner to complete the compression

process (by going through each sub-compression steps such

as transformation, quantization and entropy coding, etc.),

meet the quality measure requirement, compute the Merkle

hash tree of a GOP, chain the video frames, encrypt the

content, find a storage node (or uses his own local

resources) which ensures storage space required to store the

compressed content (generate a proof). In order to make

the size of a block even smaller, we employ Merkle hash

tree of GOPs as well. Hence, multiple trees can be

combined to make up a second layer of the Merkle hash

tree. The way the common Merkle root is computed is

shown in Fig. 2.

Once this work is done, the mining node broadcasts the

block/s to the network that has all the information about the

GOP except the raw data itself. All verifier nodes which

receive this block begin the verification process. The ver-

ification process involves:

a. A comprehensive check of whether GOPs are stored in

the designated locations. This requires preparing

intelligent challenges for provers (miners) for PoSt.

For instance, hash values of randomly selected parts of

the compressed data may be requested. In case the

storage nodes could not provide that information on

time, their fees are not paid. This is accomplished

through either canceling the corresponding transactions

or adding transactions to undo the previous payments.

b. A comprehensive check for the Merkle hash by

requesting hashes of the frames and GOPs from

storage node/s. a separate Merkle tree root check is

also conducted for the transactions.

c. A comprehensive check for the quality measure

whether the compression work meets it or not, using

the uncompressed GOP data. This is to ensure that the

miner nodes are legitimately compressed and stored in

the compressed multimedia file. This effort in fact

characterizes a form of Proof of Compression (PoC).

Once verified, all uncompressed copies are removed from

verifier node caches to open space for the next uncom-

pressed GOP/s. We keep the size of the blocks that contain

metadata for GOP/s to around only a fraction of KBs. This

is to limit the total size of the blockchain stored in all of the

verifier nodes. One can realize that as we include more

metadata (transactions, sensor information, etc.) in the

blockchain, we can increase the security, authenticity and

reliability of the system at the expense of reduced scala-

bility and throughput, which is infact the fundamental

trade-off of any blockchain system faces today.

Depending on the compression scheme, video frames

can be predicted. In a typical compression scenario, we can

classify frames as I and P where I is an intra-coded frame

i.e., the image gets compressed all by itself whereas P

frames are predicted from the associated I frame and one

previous P frame. In addition, we can have B frames that

shall be predicted from two or more P frames. A GOP will

contain one I frame in the beginning and all the rest would

be P (and/or B) frames. In order to chain the data for

immutability, I frames of a video source file are selected to

contain a hash value of the previous I frame and the latest P

frame in the previous GOP. Due to the predictive nature of

the compression algorithm, P frames are automatically

chained to I frames and hence are not separately chained

Cluster Computing

123

using cryptographic functions. This will reduce the com-

putation requirements due to hashing. A detailed illustra-

tion of how the prediction and the hashing are done all

together in the compress-store architecture is briefly shown

in Fig. 3. Let us provide the summary of steps for a full

node to initiate, mine, store and verify a recorded video.

(1) After the video file is captured, it is streamed/

broadcasted to the miner network nodes GOP by

GOP (GOPs can be thought of as image transactions

in crypto context and to be able to differentiate them

from real transactions these are referred to as GOP

transactions (gtxns) in our context) where each gtxns

is digitally signed by the issuer for authentication.

This step is used to prevent potential outsourcing and

authenticate the work (both for PoW and PoSt). The

specific format of GOP transactions is implementa-

tion-specific. If GOP transmission overwhelms the

available network, then the content address of these

GOPs can be shared instead and the participating

mining and verifier nodes can download them for

processing, paying both for network bandwidth and

CPU clock time.

(2) Miner nodes collect/pack a set of gtxns, authenticate

them, process (compress) them and then compose a

(associated) set of subblocks to make up a block

(block size determines the number of subblocks that

can be bundled together) that also contains the

hashes (Merkle roots) of the previous block.

(3) In an application, miners’ PoW may include com-

pression and encryption of the set of col-

lected/packed gtxns. Real transactions could be part

of the PoW directly (using the standard nonce

calculation etc.) or can become part of compression

and encoded into the blockchain through compres-

sion and encryption. One such possibility is to hide

transaction data inside the video. The way we insert

this data into the GOP can be done randomly and

hence miners can compress the same GOP multiple

times and send the one with the highest quality.

(4) On the other hand, miners’ PoSt includes proof for

the storage of the compressed and encrypted content

FRAME 1
I

FRAME 2
P

FRAME 3
P

FRAME 4
P

FRAME 1
I

FRAME 2
P

FRAME 3
P

FRAME 4
P

4XC890GH31 GYU091XIP3 65HJ0XO01G 0098YHXVQ1

FXCX9KL0P1 KJI0OYXC34

KH00TXYO1R Merkle Tree

GOP GOP

Fig. 2 An example of two GOPs

and the procedure of Merkle

root computation within and

across GOPs. In other words,

Merkel roots of each GOP are

combined to compute one

common Merkel root that stays

at the top of the hierarchy

I Frame I Frame

P Frame P Frame P Frame P Frame P Frame P Frame

Hash Value of I and the last P frame of previous GOP

Prediction Path

Hash Path

Fig. 3 The idea of data chaining combined with video compression and predictive frame coding. The hash value of the previous block/s can also

be included

Cluster Computing

123

included with the prepared block. In an attempt to

replicate the stored compressed content, the miner

shares the final processed GOP with multiple storage

nodes. The storage can be provided with cloud

services or any other peer of the network with local

persistent storage. Miner uses a challenge question to

check whether the storage nodes store the final

compressed content. On the other hand, with a digital

signature requirement, outsourcing may be forbidden

or unincentivized (such as reducing the fees earned)

on purpose by the internal system management. If

not forbidden, then It is typical that if the miner and

storage node are the same physical node, then fees

paid may be higher to make storage offloading less

attractive.

(5) After storage, miners place the location of the

compressed data (content address), associated hash

values such as Merkle tree root of gtxns or txns or

leaf node hashes, compression algorithm name and

parameters, quality measure, any additional data

(such as proofs) that would be useful for verification

into the (subblocks) blocks and broadcast it for

verification.

(6) Verification nodes (also referred to as verifiers) read

the contents of the block and easily verify whether

the content is accurately compressed, properly

encrypted, and stored by contacting the appropriate

storage nodes, according to a predefined quality

measure (using the proofs included with the blocks).

(7) Once the verification process successfully ends, the

block is added to the local blockchain. If more than

one miner’s subblock arrives, and all of them checks,

then the one with the highest quality metric is added

to the blockchain. Also, if any one of the require-

ments is not satisfied, the block is not added to the

blockchain and the verifier node moves on to the

next verification process waiting in the network.

(8) Additionally, verifier nodes can also create challenge

questions based on the previous GOP compression

works which are present in the blockchain. In case,

one of the storage nodes fails to show evidence, then

a corresponding transaction is generated and sent to

miners for further processing. This way fees already

assigned to storage nodes can be deducted for not

complying with the protocol of the system.

A representative functional diagram is depicted in Fig. 4

to picture the details of the operation (Fig. 5).

3.2 Analysis of the proposed system

First of all, the correctness analysis of the system is quite

close to that of [33]. In other words, each verifier can

authenticate the proof on their own, and no initiator node

can unilaterally delete the encoded and stored video.

Moreover, due to PoSt, proofs generated based on the

challenge questions also ensure the integrity of the data

stored. Although due to compression, encoding the integ-

rity into the blockchain may be slow, however, ordering

based on the quality of the compression work ensures only

one of the mining jobs is to be mined into the blockchain

and hence guarantee convergence. The proposed scheme is

also resilient against Sybil attacks. This is due to the

adversary should control more than 50% of all the nodes in

the blockchain. This means that one needs to possess more

than 50% of overall compression and storage resources in

the system to violate all the guarantees, which is almost

impossible to achieve. Finally, all compression work and

decisions made on the storage space are traceable and

tamper-proof due to the characteristics of the blockchain

and hashing involved in the production of the blocks in the

proposed scheme.

3.3 Some potential problems and workarounds

One of the risks is about the bandwidth requirements of the

proposed system as the system heavily deals with bulky

data communications. Particularly in the public domain,

broadcasting the whole raw video, even GOP by GOP

might be too bandwidth-consuming and will lead to data

traffic. Most of this traffic is useless (except for the node

that successfully fulfills all the requirements of mining). As

a solution, initiator nodes may store their raw videos either

locally or remotely before broadcasting the location and

content address-hash value of data for the miners to

download and check later. This will make download speed

and bandwidth be part of the equation in our PoWS defi-

nition. In the case of sharding, miners may only download

GOPs that are not mined yet which will lead to efficient use

of network resources as well.

The other important issue is known as the forking of the

blockchain which comes out due to the multiple copies of

the blockchain that result due to concurrent verification

processes. As the verifiers connect to multiple and poten-

tially distinct miners, and since transaction data introduces

a form of randomness in the compression framework, the

way the instructions are included in the compression pro-

cess is quite different, the quality of the compression would

be different. Therefore, as the verifiers add blocks to the

blockchain, they can keep track of the accumulated quality

of the compressed video and in the case of forking, through

an exchange, they adapt the one with the highest quality in

the network. Consensus is achieved as the blockchain with

the highest quality score is adapted by all the nodes in the

network.

Cluster Computing

123

3.4 Advantages compared to the state-of-the-art

First of all, the proposed scheme ensures data immutability

through the use of a blockchain as well as the data chaining

process that connects I frames (self-compressed frames) of

the compressed video. The predictive nature of the com-

pression process is used to add an extra layer of chaining

between different kinds of compressed video frames in

addition to hash chaining of the blockchain. Thus, any

tempering on data can immediately be detected since this

attempt will change all hash outputs in a propagated

fashion. Plus, changing a block content will require all the

following blocks to change which will require PoWS for all

GOPs, represented by these blocks. This would require a

large volume of specific computation as well as large

amounts of secured storage space. Secondly, the concept of

PoWS does not allow our system to have solely CPU-based

mining which can lead to hardware-specific implementa-

tions and hence centralization. Additionally unlike bit-

coin’s consensus mechanism, the PoW component of

PoWS requires miners to perform useful work, i.e., in an

application of the proposed idea, a miner can compress a

video file using his CPU and network resources. This way,

the miner will make his job easier when finding external

nodes to store the compressed content. More sophisticated

compression will help miners spend less for data storage

and bandwidth at the expense of more CPU power. On the

other end, Miners can choose to go with a simpler com-

pression technique at the expense of the larger storage

space committed for the compressed content. Such varia-

tions of the proposed idea lead miners to complete the total

work of PoWS at different instants of time and hence block

generation happens at relatively different times. As a result

of that, potential (soft) forks (in the blockchain conver-

gence process) will be eliminated without getting too

lengthy i.e., the convergence of consensus will be faster.

4 Conclusion and future work

In this study, a genuine video surveillance system based on

DLTs is presented. the proposed scheme uses data com-

pression and storage as means of proof in order to provide

green consensus to help network participants to commit

Initiator Node Mining Nodes Storage
Node 1

Storage
Node 2

Storage
Node 3

Verification
Node

Choose A storage Node

Decode & Check
Quality

Add block to the
chain

Compression

Check Proofs

Prepare Blocks and
send for verification

Capture Raw Video

Answer
a challenge Answer

a challenge
Answer

a challenge

Send transactions
if does not check

Fig. 4 Initialization, mining and

verification processes are all

subject to the availability of

enough storage space and

computation power. Miners

select multiple storage nodes to

maintain availability and

prevent compressed data loss.

Challenge questions are at the

heart of PoSt besides PoW. We

used different colors to indicate

requests and responses.

Alternative methods such as

erasure coding can be used in

place of replication to save

storage space

Replication
Factor

Transaction Counter (gtxns/txns)

Merkle Tree of gtxns Merkle Tree of txns

Compression AlgorithmQuality
Measure

Parameters

GOP indexes

GOP storage addresses and proofs

timestamps

Block version

Hash of Previous I/P frames of the
last GOP of the previous block

Hash of previous block

Quality
Target

Transaction List (gtxns/txns)

Block Number and Size

B
lo

ck
 H

ea
de

r

Fig. 5 The block structure and format are heavily dependent on the

use of the techniques mentioned in the text as well as the

implementation details. Here we provide a sample block format that

can be used to implement the proposed scheme. The number of bits

used for each field is again a function of the techniques used and

implementation requirements

Cluster Computing

123

their resources for useful work. Finally, the details of the

proposed scheme are presented by providing comparisons

to state-of-the-art schemes along with some theoretical

evidence. As future work, we would like to extend the

implementation details of the system to include image files.

The application areas can be extended to include image

restoration, multimedia regeneration and data mining.

Finally, large-scale simulations are envisioned to demon-

strate the performance and effectiveness of the proposed

idea in real testbeds.

References

1. Nordrum, A.: The internet of fewer things [news]. IEEE Spectr.

53(10), 12–13 (2016)

2. Palankar, M. R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.:

Amazon S3 for science grids: a viable solution? In: Proceedings

of the 2008 International Workshop on Data-Aware Distributed

Computing, pp. 55–64. ACM (2008, June)

3. Pilkington, M.: 11 Blockchain technology: principles and appli-

cations. Research Handbook on Digital Tansformations, 225

(2016)

4. Lamport, L.: Paxos made simple. ACM Sigact News 32(4),
18–25 (2001)

5. Ongaro, D., Ousterhout, J.: In search of an understandable con-

sensus algorithm. In: 2014 USENIX Annual Technical Confer-

ence (USENIXATC 14) (pp. 305–319) (2014)

6. Baliga, A.: Understanding blockchain consensus models. In:

Persistent (2017)

7. Mermer, G. B., Zeydan, E., Arslan, S. S.: An overview of

blockchain technologies: principles, opportunities and challenges.

In: 2018 26th Signal Processing and Communications Applica-

tions Conference (SIU), pp. 1–4 (2018)

8. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system

(2008)

9. Wood, G.: Ethereum: a secure decentralised generalised trans-

action ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)

10. Tseng, L., Yao, X., Otoum, S., Aloqaily, M., Jararweh, Y.:

Blockchainbased database in an iot environment: challenges,

opportunities, and analysis, Cluster Computing, pp. 1–15 (2020)

11. Arslan, S.S., Jurdak, R., Jelitto, J., Krishnamachari, B.:

Advancements in distributed ledger technology for internet of

things. Internet Things 9(1), 10114 (2020)

12. Karafiloski, E., Mishev, A.: Blockchain solutions for big data

challenges: a literature review. In: IEEE EUROCON 2017-17th

International Conference on Smart Technologies, pp. 763–768.

IEEE (2017, July)

13. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The bittorrent

p2p file-sharing system: measurements and analysis. In: Inter-

national Workshop on Peer-to-Peer Systems, pp. 205–216.

Springer, Berlin (2005, February)

14. Benet, J.: Ipfs-content addressed, versioned, p2p file system.

arXiv preprint (2014). arXiv:1407.3561

15. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer

information system based on the xor metric. In: International

Workshop on Peer-to-Peer Systems. Springer, pp. 53–65 (2002)

16. Hassanzadeh-Nazarabadi, Y., Taheri-Boshrooyeh, S., Otoum, S.,

Ucar, S., Ozkasap, O.: DHT-based Communications Survey:

Architectures and Use Cases (2021). arXiv preprint arXiv:2109.

10787

17. Drago, I., Mellia, M., M Munafo, M., Sperotto, A., Sadre, R.,

Pras, A.: Inside dropbox: understanding personal cloud storage

services. In: Proceedings of the 2012 Internet Measurement

Conference, pp. 481-494. ACM (2012, November)

18. Vorick, D., Champine, L.: Sia: Simple decentralized storage.

White paper (2014). https://sia.tech/sia.pdf

19. Wilkinson, S., Boshevski, T., Brandoff, J., Buterin, V.: Storj a

peer-to-peer cloud storage network (2014)

20. Hartman, J. H., Murdock, I., Spalink, T.: The swarm scalable

storage system. In: Distributed Computing Systems, 1999. Pro-

ceedings on 19th IEEE International Conference on. IEEE,

pp. 74–81 (1999)

21. Techical Report. Filecoin: A Cryptocurrency Operated File Net-

work. http://filecoin.io/filecoin.pdf (2014)

22. Paul, G., Hutchison, F., Irvine, J.: Security of the MaidSafe vault

network. In: Wireless World Research Forum Meeting 32

(WWRF32) (2014, May)

23. Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.:

Towards blockchain-based auditable storage and sharing of iot

data. In: Proceedings of the 2017 on Cloud Computing Security

Workshop, pp. 45–50. ACM (2017, November)

24. McConaghy, T., Marques, R., Müller, A., De Jonghe, D.,

McConaghy, T., McMullen, G., Granzotto, A.: BigchainDB: a

scalable blockchain database. White paper, BigChainDB (2016)

25. Dillet, R.: Stampery Now Lets You Certify Documents Using the

Blockchain and Your Real Identity. Nov, 20, 6 (2015)

26. Verify: Blockchain Solution For Sustainable Self-Sovereign

Identity. https://verif-y.com

27. Teutsch, J., Reitwießner, C.: A scalable verification solution for

blockchains (2017). https://people.cs.uchicago.edu/teutsch/

papers/truebit.pdf

28. Liu, M., Teng, Y., Leung, V. C., Song, M.: A Novel Resource

Management Scheme for Blockchain-Based Video Streaming

with Mobile Edge Computing

29. COintube: Decentralized Video Platform. https://cointube.org/

30. Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla,

L.: Provchain: A blockchain-based data provenance architecture

in cloud environment with enhanced privacy and availability. In:

Proceedings of the 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, pp. 468–477. IEEE Press

(2017, May)

31. NEM Technical Reference, Version 1.2. 2018. [Online]. https://

nem.io/wp-content/themes/nem/files/NEM_tech

32. Al-hammouri, M., Madani, B., Aloqaily, M., Ridhawi, I.A.,

Jararweh, Y.: Scalable Video Streaming for Real-Time Multi-

media Applications over DDS Middleware for Future Internet

Architecture, 2018 IEEE/ACS 15th International Conference on

Computer Systems and Applications (AICCSA), pp. 1–6 (2018)

33. Liu, M., Shang, J., Liu, P., Shi, Y., Wang, M.: VideoChain:
trusted video surveillance based on blockchain for campus. In:

Sun, X., Pan, Z., Bertino, E. (eds.) Cloud Computing and Secu-

rity-ICCS (Lecture Notes in Computer Science), vol. 11066,

pp. 48–58. Springer, Cham (2018)

34. Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A.,

McKelvie, S., Haridas, J.: Windows Azure Storage: a highly

available cloud storage service with strong consistency. In: Pro-

ceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, pp. 143–157. ACM (2011, October)

35. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-

work vs. BFT replication. In: International workshop on open

problems in network security, pp. 112–125. Springer, Cham

(2015, October)

36. Ethereum 2.0 phases. https://docs.ethhub.io/ethereum-roadmap/

ethereum-2.0/eth-2.0-phases/ (2019)

37. Sankar, L. S., Sindhu, M., Sethumadhavan, M.: Survey of con-

sensus protocols on blockchain applications. In: 2017 4th

Cluster Computing

123

http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/2109.10787
http://arxiv.org/abs/2109.10787
https://sia.tech/sia.pdf
http://filecoin.io/filecoin.pdf
https://verif-y.com
https://people.cs.uchicago.edu/teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/teutsch/papers/truebit.pdf
https://cointube.org/
https://nem.io/wp-content/themes/nem/files/NEM_tech
https://nem.io/wp-content/themes/nem/files/NEM_tech
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/

International Conference on Advanced Computing and Commu-

nication Systems (ICACCS), pp. 1–5. IEEE (2017, January)

38. Shacham, H., Waters, B.: Compact proofs of retrievability. In:

International Conference on the Theory and Application of

Cryptology and Information Security, pp. 90–107. Springer,

Berlin (2008, December)

39. Li, Y., Yu, Y., Chen, R., Du, X., Guizani, M.: IntegrityChain:

provable data possession for decentralized storage. IEEE J.

Select. Areas Commun. 38(6), 1205–1217 (2020)

40. Benet, J., Dalrymple, D. Greco, N.: Proof of replication. Protocol

Labs Technical Report, July, 27, 20 (2017)

41. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L.,

Peterson, Z., Song, D.: Provable data possession at untrusted

stores. In: Proceedings of the 14th ACM Conference on Com-

puter and Communications Security, pp. 598–609. ACM (2007,

October)

42. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S.,

Saxena, P.: A secure sharding protocol for open blockchains. In:

Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pp. 17–30. ACM (2016, October)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Suayb S. Arslan received the

B.Sc. degree in electrical and

electronics engineering from

Bogazici University, Istanbul,

Turkey, in 2006, and the M.Sc.

and Ph.D. degrees in electrical

engineering from the University

of California, San Diego, CA,

USA, in 2009 and 2012,

respectively. He was with Mit-

subishi Electric Research Labo-

ratory, Boston, MA, USA, in

2009, where he was involved in

research and development of

image and video processing

algorithms for biomedical applications. In 2011, he joined Quantum

Corporation, Irvine, CA, USA, where he conducted research on

advanced detection and coding algorithms for increased capacity

Tape storage and cloud systems. He is currently affiliated with MEF

University as an associate professor. He serves as vice-chair for IEEE

ComSoc Turkey and Treasurer for IEEE Data Storage Technical

committee. His research interests include digital communication and

storage, cloud and Quantum computing, information and reliability

theory, image/video processing, and cross-layer design optimizations

at the edge. He has been serving as an associate editor for Elsevier

IoT Journal since 2018.

Turguy Goker is a technologist

and the manager of adv. dev.

lab. in Quantum Corporation,

Irvine, CA. He is an active

member of INSIC, SNIA and

few other data storage consor-

tiums. He has extensive experi-

ence in data storage business.

He wrote more than 10 papers in

peer-reviewed journals and

owns more than 60 patents

related to cold data storage,

erasure coding, LTO format and

distributed databases.

Cluster Computing

123

	Compress-store on blockchain: a decentralized data processing and immutable storage for multimedia streaming
	Abstract
	Introduction
	Storing data on the blockchain
	Peer-2-Peer file systems
	Decentralized cloud file storages
	Blockchain-based solutions for copyright protection and video hashing

	Compress-store architecture
	A Novel Consensus Algorithm: ‘‘Proof of WorkStore’’
	Throughput of the surveillance system
	Private/public blockchain applications

	Implementation and system details
	The procedure for verification and storage
	Analysis of the proposed system
	Some potential problems and workarounds
	Advantages compared to the state-of-the-art

	Conclusion and future work
	References

