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Compressed Beamforming in Ultrasound Imaging
Noam Wagner, Yonina C. Eldar and Zvi Friedman

Abstract—Emerging sonography techniques often require in-
creasing the number of transducer elements involved in the
imaging process. Consequently, larger amounts of data must be
acquired and processed. The significant growth in the amounts
of data affects both machinery size and power consumption.
Within the classical sampling framework, state of the art systems
reduce processing rates by exploiting the bandpass bandwidth of
the detected signals. It has been recently shown, that a much
more significant sample-rate reduction may be obtained, by
treating ultrasound signals within the Finite Rate of Innovation
framework. These ideas follow the spirit of Xampling, which
combines classic methods from sampling theory with recent
developments in Compressed Sensing. Applying such low-rate
sampling schemes to individual transducer elements, which detect
energy reflected from biological tissues, is limited by the noisy
nature of the signals. This often results in erroneous parameter
extraction, bringing forward the need to enhance the SNR of the
low-rate samples. In our work, we achieve SNR enhancement,
by beamforming the sub-Nyquist samples obtained from multiple
elements. We refer to this process as “compressed beamforming”.
Applying it to cardiac ultrasound data, we successfully image
macroscopic perturbations, while achieving a nearly eight-fold
reduction in sample-rate, compared to standard techniques.

Index Terms—Array Processing, Beamforming, Compressed
Sensing (CS), Finite Rate of Innovation (FRI), Ultrasound,
Xampling

I. INTRODUCTION

Diagnostic sonography allows visualization of body tissues,

by radiating them with acoustic energy pulses, which are

transmitted from an array of transducer elements. The image

typically comprises multiple scanlines, each constructed by

integrating data collected by the transducers, following the

transmission of an energy pulse along a narrow beam. As

the pulse propagates, echoes are scattered by density and

propagation-velocity perturbations in the tissue [1], and de-

tected by the transducer elements. Averaging the detected

signals, after their alignment with appropriate time-varying

delays, allows localization of the scattering structures, while

improving the Signal to Noise Ratio (SNR) [2]. The latter

process is referred to as beamforming. Performed digitally,

beamforming requires that the analog signals, detected by the

transducers, first be sampled. Confined to classic Nyquist-

Shannon sampling theorem [3], the sampling rate must be at

least twice the bandwidth, in order to avoid aliasing.

As imaging techniques develop, the amount of elements

involved in each imaging cycle typically increases. Conse-

quently, the rates of data which need to be transmitted from the
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system front-end, and then processed by the beamformer, grow

significantly. The growth in transmission and processing rates

inevitably effects both machinery size and power consumption.

Consequently, in recent years there has been growing interest

in reducing the amounts of data as close as possible to the

system front-end. In fact, such reduction is already possible

within the classical sampling framework: state of the art

devices digitally downsample the data at the front-end, by

exploiting the fact that the signal is modulated onto a carrier,

so that the spectrum essentially occupies only a portion of

its entire base-band bandwidth. The preliminary sample rate

remains unchanged, since the demodulation is performed in

the digital domain. Nevertheless, a key to significant data

compression lies beyond the classical sampling framework.

Indeed, the emerging Compressive Sensing (CS) frame-

work [4], [5] states, that sparse signals may be accurately

reconstructed from a surprisingly small amount of coefficients.

Complementary ideas rise from the Finite Rate of Innovation

(FRI) framework [6], in which the signal is assumed to

have a finite number of degrees of freedom per unit time.

Many classes of FRI signals can be recovered from samples

taken at the rate of innovation [7]. For a detailed review of

previously proposed FRI methods, the reader is referred to [8].

Combining the latter notions with classical sampling methods,

the developing Xampling framework [9], [10], [11] involves

methods for fully capturing the information carried by an

analog signal, by sampling it far below the Nyquist-rate.

Following the spirit of Xampling, Tur et. al. proposed

in [12], that ultrasound signals be described within the FRI

framework. Explicitly, they assume that these signals, formed

by scattering of a transmitted pulse from multiple reflectors,

may be modeled by a relatively small number of pulses, all

replicas of some known pulse shape. Denoting the number of

reflected pulses by L, and the signal’s finite temporal support

by [0, T ), the detected signal is completely defined by 2L de-

grees of freedom, corresponding to the replicas’ unknown time

delays and amplitudes. Based on [6], the authors formulate the

relationship between the signal’s Fourier series coefficients,

calculated with respect to [0, T ), and its unknown parameters,

in the form of a spectral analysis problem. The latter may be

solved using existing techniques, given a subset of Fourier

series coefficients, with a minimal cardinality of 2L. The

sampling scheme is thus reduced to the problem of extracting a

small subset of the detected signal’s frequency samples. Two

robust schemes are derived in [12], [13], extracting such a

set of coefficients from samples of the signal, taken at sub-

Nyquist rates. The system presented in [12] employs a single

processing channel, in which the analog signal is filtered

by an appropriate sampling kernel and then sampled with

a standard low-rate analog to digital converter (ADC). The

method of [13] employs multiple processing channels, each

http://arxiv.org/abs/1202.6037v2
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comprising a modulator and an integrator. These approaches

were shown to be more robust than previous FRI techniques

and also allow for arbitrary pulse shapes.

The initial motivation for our work stems from the need to

translate the ultrasound Xampling scheme proposed in [12],

into one which achieves the final goal of reconstructing a two-

dimensional ultrasound image, by integrating data sampled at

multiple transducer elements. In conventional ultrasound imag-

ing, such integration is achieved by the beamforming process.

The question is how may we implement beamforming, using

samples of the detected signals taken at sub-Nyquist rates.

A straightforward approach is to replace the Nyquist-rate

sampling mechanism, utilized in each receiver element, by an

FRI Xampling scheme. Having estimated the parametric rep-

resentation of the signal detected in each individual element,

we could reconstruct it digitally. The reconstructed signals

can then be further processed via beamforming. However,

the nature of ultrasound signals reflected from real tissues,

makes such an approach impractical. This is mainly due to

the detected signals’ poor SNR, which results in erroneous

parameter extraction by the Xampling scheme, applied to each

element independently.

Our approach is to generalize the FRI Xampling scheme

proposed in [13], such that it integrates beamforming into

the low-rate sampling process. The result is equivalent to that

obtained by Xampling the beamformed signal, which exhibits

significantly better SNR. Furthermore, beamforming practi-

cally implies that the array of receivers is dynamically focused

along a single scanline. Consequently, the resulting signal

depicts reflections originating in the intersection of the radiated

medium with a vary narrow beam. Such a signal better suits

the FRI model proposed in [12], which assumes the reflections

to be caused by isolated, point-like scatterers. We refer to our

scheme by the term compressed beamforming, as it transforms

the beamforming operator into the compressed domain [14],

[15]. Applied to real cardiac ultrasound data obtained from a

GE breadboard ultrasonic scanner, our approach successfully

images macroscopic perturbations in the tissue while achieving

a nearly eight-fold reduction in sampling rate, compared to

standard imaging techniques.

The paper is organized as follows: in Section II, we sum-

marize the general principles of beamforming in ultrasound

imaging. In Section III we outline the FRI model and its

contribution to sample rate reduction in the ultrasound con-

text. We motivate compressed beamforming in Section IV,

considering the nature of ultrasound signals reflected from

biological tissues. Beamforming and FRI Xampling are com-

bined in Section V, where we propose that the signal obtained

by beamforming may be treated within the FRI framework.

Following this observation, we derive our first compressed

beamforming scheme, which operates on low-rate samples

taken at the individual receivers. This approach is then further

simplified in Section VI. In Section VII we focus on image

reconstruction from the parametric representation obtained by

either Xampling scheme. In this context, we generalize the

signal model proposed in [12], allowing additional unknown

phase shifts of the detected pulses. We then discuss an alterna-

tive recovery approach, based on CS. Simulations comparing

Fig. 1. Imaging setup: M receivers are aligned along the x̂ axis. The origin
is set at the position of the reference receiver, denoted m0. δm denotes
the distance measured from the reference receiver to the mth receiver. The
imaging cycle begins when an acoustic pulse is transmitted at direction θ.
Echoes are then reflected from perturbations in the radiated medium.

the performance of several recovery methods are provided in

Section VIII. Finally, experimental results obtained for cardiac

ultrasound data are presented in Section IX.

II. BEAMFORMING IN ULTRASOUND IMAGING

In this section, we describe a typical B-mode imaging cycle,

focusing on the beamforming process, carried out during the

reception phase. The latter constitutes a significant block in

ultrasound imaging, and plays a major role in our proposed

FRI Xampling scheme.

Consider the array depicted in Fig. 1, comprising M trans-

ducer elements, aligned along the x̂ axis. Denote by δm the

distance from the mth element to the reference receiver m0,

used as the origin, namely δm0
= 0. The imaging cycle begins

when, at time t = 0, the array transmits acoustic energy into

the tissue. Subsequently, the elements detect echoes, which

originate in density and propagation-velocity perturbations,

characterizing the radiated medium. Denote by ϕm (t) the

signal detected by the mth receiver. The acoustic reciprocity

theorem [16] suggests, that we may use the signals detected

by multiple transducer elements, in order to probe arbitrary

coordinates for reflected energy. Namely, by combining the

detected signals with appropriate time delays, echoes scattered

from a chosen coordinate will undergo constructive interfer-

ence, whereas those originating off this coordinate will be

attenuated, due to destructive interference.

In practice, the array cannot effectively radiate the entire

medium simultaneously. Instead, a pulse of energy is con-

ducted along a relatively narrow beam, whose central axis

forms an angle θ with the ẑ axis. Focusing the energy pulse

along such a beam is achieved by applying appropriate time

delays to modulated acoustic pulses, transmitted from multiple

array elements. Rather than arbitrarily probing the radiated

tissue, we are now forced to adjust the probed coordinate in

time, in coordination with the propagation of the transmitted

energy. This practically implies that, combining the detected

signals with appropriate time-varying delays, we may obtain a

signal, which depicts the intensity of the energy reflected from

each point along the central transmission axis. Throughout
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the rest of this section, we derive an explicit expression for

creating this beamformed signal.

Assume that the energy pulse, transmitted at t = 0,

propagates at velocity c in the direction θ. At time t ≥ 0,

the pulse crosses the coordinate (x, z) = (ct sin θ, ct cos θ).
Consider a potential reflection, originating in this coordinate,

and arriving at the mth element. The distance traveled by such

a reflection is:

dm(t; θ) =

√

(ct cos θ)
2
+ (δm − ct sin θ)

2
. (1)

The time in which the reflection crosses this distance is

dm (t; θ) /c, so that it reaches the receiver element at time

τ̂m(t; θ) = t+
dm (t; θ)

c
. (2)

It is readily seen that τ̂m0
(t; θ) = 2t. Hence, in order to

align the reflection detected in the mth receiver with the one

detected in the reference receiver, we need to apply a delay

to ϕm (t), such that the resulting signal, ϕ̂m (t; θ), satisfies

ϕ̂m (2t; θ) = ϕm (τ̂m (t; θ)). Denoting τm (t; θ) = τ̂m (t/2; θ),
and using (1), we obtain the following distorted signal for

t ≥ 0:

ϕ̂m (t; θ) = ϕm (τm (t; θ)) ,

τm (t; θ) =
1

2

(

t+
√

t2 − 4γmt sin θ + 4γ2
m

)

,
(3)

with γm = δm/c. The aligned signals may now be averaged,

resulting in the beamformed signal

Φ (t; θ) =
1

M

M
∑

m=1

ϕ̂m (t; θ), (4)

which exhibits enhanced SNR compared to {ϕ̂m (t; θ)}
M

m=1.

Furthermore, by its construction, Φ (t; θ) represents, for every

t ≥ 0, the intensity which was measured when focusing the

array to p (t) = (ct/2 sin θ, ct/2 cos θ). Therefore, it may

eventually be translated into an intensity pattern, plotted along

the corresponding ray.

Although defined over continuous time, ultrasound systems

perform the process formulated in (3)-(4) in the digital domain,

requiring that the analog signals ϕm (t) first be sampled.

Confined to the classic Nyquist-Shannon sampling theorem,

these systems sample the signals at twice their baseband

bandwidth, in order to avoid aliasing. The detected signals

typically occupy only a portion of their baseband bandwidth.

Exploiting this fact, some state of the art systems manage

to reduce the amount of samples transmitted from the front-

end, by down-sampling the data, after demodulation and low-

pass filtering. However, since such operations are carried out

digitally, the preliminary sampling-rate remains unchanged.

To conclude this section, we evaluate the nominal number of

samples needed to be taken from each active receiver element

in order to obtain a single scanline using standard imaging

techniques. Consider an ultrasound system which images to a

nominal depth of r = 16cm. The velocity at which the pulse

propagates, c, varies between 1446m/sec (fat) to 1566m/sec

(spleen) [17]. An average value of 1540m/sec is assumed by

scanners for processing purposes, such that the duration of the

detected signal is T = 2r/c ≈ 210µsec. The signal’s baseband

bandwidth requires a nominal sampling rate of fs = 16Mhz,

resulting in an overall number of Tfs = 3360 real-valued

samples. Assuming that the signal’s passband bandwidth is

only 4MHz, the data sampled at Nyquist-rate may be finally

down-sampled to 1680 real-valued samples. These samples,

taken from all active receivers, are now processed, according

to (3)-(4), in order to construct the beamformed signal. Since

standard imaging devices carry out beamforming by applying

delay and sum operations to the sampled data, the amount of

operations required for generating a single scanline is directly

related to the sample rate.

Regardless of our computational power, physical constraints

imply that the time required for constructing a single scanline

is at least T . This takes into account the round-trip time re-

quired for the transmitted pulse to penetrate the entire imaging

depth, and for the resulting echoes to cross a similar distance

back to the array. Nevertheless, sufficient computational power

may allow construction of several scanlines, within that same

time interval, increasing the overall imaging rate. By using

compressed beamforming, we aim at capturing significant

information in the imaging plane, while reducing the sampling

rate and consequently the processing rate. This, in turn, may

improve the existing trade-off between imaging rates and both

machinery size and power consumption.

III. SAMPLE RATE REDUCTION USING THE FRI MODEL

In a pioneer attempt to implement Xampling methodology

in the context of ultrasound imaging, [12] suggests that the

signal detected in each receiver element may be sampled at a

rate far below Nyquist, by modeling it as an FRI signal. The

authors propose that ϕm (t), detected in the mth element, be

regarded as sum of a relatively small number of pulses, all

replicas of some known pulse shape. Explicitly:

ϕm (t) =

L
∑

l=1

al,mh (t− tl,m). (5)

Here L is the number of scattering elements, distributed

throughout the sector radiated by the transmitted pulse, tl,m
denotes the time in which the reflection from the lth element

arrived at the mth receiver, and al,m denotes the reflection’s

amplitude, as detected by the mth receiver. Finally, h (t)
denotes the known pulse shape, regarded, in our work, by the

term two-way pulse. The signal in (5) is completely defined

by 2L real-valued parameters, {tl,m, al,m}
L

l=1.

Sampling FRI signals was first treated by Vetterli et. al.

[6]. Their approach involves projecting the FRI signal, char-

acterized by 2L degrees of freedom per unit time, onto a 2L-

dimensional subspace, corresponding to a subset of its Fourier

series coefficients. Having extracted 2L frequency samples of

the signal, spectral analysis techniques (e.g. annihilating fil-

ter [18], matrix pencil [19]) may be applied, in order to extract

the unknown signal parameters. Applying this solution to the

problem formulated in (5), [12] formalizes the relationship

between the ultrasound signal’s Fourier series coefficients to

its unknown parameters, as a spectral analysis problem.
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Let T be the duration of ϕm (t). We can then expand ϕm (t)
in a Fourier series, with coefficients

φm [k] =
1

T

∫ T

0

ϕm (t) e−i 2π
T

ktdt

=
1

T

∫ T

0

L
∑

l=1

al,mh (t− tl,m)e−i 2π
T

ktdt

=
1

T
H

(

2π

T
k

) L
∑

l=1

al,me−i 2π
T

ktl,m ,

(6)

where H (ω) denotes the Continuous Time Fourier Transform

(CTFT) of h (t). Consider the sequence {kj,m}
Km

j=1, compris-

ing Km integers, and define the length-Km vector Φm with

jth element φm [kj,m]. Then (6) may be written in matrix

form:

Φm =
1

T
HmVmam, (7)

where Hm is a diagonal matrix with diagonal elements

H
(

2π
T
kj,m

)

, Vm contains e−i 2π
T

kjtl,m as its (j, l)th element,

and am is the length L vector, with elements al,m. Choosing

kj,m such that H
(

2π
T
kj,m

)

6= 0,we can express (7) as:

ym = Vmam, (8)

where ym = TH−1

m Φm. If the values kj,m are a sequence

of consecutive indices, then Vm takes on a Vandermonde

form, and has full column rank [18] as long as Km ≥ L and

the time-delays are distinct, i.e., ti,m 6= tj,m, for all i 6= j.

The formulation derived in (8) is a standard spectral analysis

problem. As long as Km ≥ 2L, it may be solved for the

unknown parameters {tl,m, al,m}L
l=1, using methods such as

annihilating filter [18] or matrix pencil [19].

Having obtained (7), the sampling scheme reduces to the

problem of extracting Km frequency samples of ϕm (t), where

Km ≥ 2L. A single-channel Xampling scheme, such as the

one derived in [12], allows robust estimation of such coeffi-

cients from point-wise samples of the signal, after filtering it

with an appropriate kernel. The estimation is performed by

applying a linear transformation to p complex-valued samples

(equivalently, 2p real-valued samples) of the filtered signal,

requiring that p ≥ Km. In this context, [12] introduces the

Sum of Sincs kernel, which satisfies the necessary constraints,

and is additionally characterized by a finite temporal support.

Combining the requirements that Km ≥ 2L and p ≥ Km, the

Xampling scheme proposed in [12] allows reconstruction of

the signal detected in each receiver element from a minimal

number of 4L real-valued samples. Considering the nominal

figures derived in the previous section for standard beamform-

ing, we conclude that, as long as 4L ≪ 1680, such a Xampling

method may indeed achieve a substantial rate reduction.

IV. WHY COMPRESSED BEAMFORMING?

Applied to a single receiver element, the Xampling scheme

proposed in [12] achieves good signal reconstruction for an

actual ultrasound signal, reflected from a setup of phantom

targets. In principle, we could apply this approach to each

receiver element individually, resulting in a parametric rep-

resentation for each of the signals {ϕm (t)}
M

m=1. Being able

to digitally reconstruct the detected signals, we could then

proceed with the standard beamforming process, outlined in

Section II, aimed at constructing the corresponding scanline.

Computational effort would have been reduced, by limiting

the beamforming process to the support of the estimated

pulses. In fact, we could possibly bypass the beamforming

stage, by deriving a geometric model which maps the set

of delays, {tl,m}
M

m=1, associated with the lth reflector, to

its two-dimensional position pl = (xl, zl). However, apply-

ing the proposed FRI Xampling scheme to signals reflected

from biological tissues, we face two fundamental obstacles:

low SNR and proper interpretation of the estimated signal

parameters, considering the profile of the transmitted beam.

These two difficulties may be better understood by examining

Fig. 2, which depicts traces acquired for cardiac images of a

healthy consenting volunteer using a GE breadboard ultrasonic

scanner.

In the left plot (a), are signals detected by 32 of 64 active

array elements, following the transmission of a single pulse.

The pulse was conducted along a narrow beam, forming an

arbitrary angle θ with the ẑ axis. The right plot (b) depicts

the signal obtained by applying beamforming to the detected

signals, as outlined in Section II. Examining the individual

traces, one notices the appearance of strong pulses, possibly

overlapping, characterized by a typical shape, as proposed in

(5). Let us assume that we could indeed extract the delays

and amplitudes of these pulses, by applying the proposed FRI

Xampling scheme to each element. We suggested that beam-

forming could be bypassed, by deriving a geometric model

for estimating the two-dimensional position of a scattering

element, based on the delays of pulses associated with it,

yet estimated in different receivers. In order to apply such

a model, we must first be able to match corresponding pulses

across the detected signals. However, referring to the practical

case depicted in (a), we notice that such a task is not at all

trivial - the individual signals depict reflections, originating

from the entire sector, radiated by the transmitted pulse. These

reflections may, therefore, vary significantly across traces. In

fact, some pulses, visible in several traces, are not at all

apparent in other traces. In contrast, the beamformed signal,

by its construction, depicts intensity of reflections originating

from along the central transmission axis, while attenuating

reflections originating off this axis.

Attempting to apply FRI Xampling to each receiver element

individually, we encounter an even more fundamental obsta-

cle, at the earlier stage of extracting the signal’s parametric

representation from its low-rate samples. The individual traces

contain high levels of noise. The noisy components, especially

noticeable in traces 54 and 64, rise mainly from constructive

and destructive interference of acoustic waves, reflected by

dense, sub-wavelength scatterers in the tissue. The latter are

typically manifested as granular texture in the ultrasound im-

age, called speckle, after a similar effect in laser optics [2]. The

noisy components inherently induce erroneous results, when

attempting to sample and reconstruct the FRI components

using the Xampling approach. In extreme scenarios, where

the noise masks the FRI component, the extracted parameters

will be meaningless, such that any attempt to cope with errors
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(a) (b)

Fig. 2. (a) Signals detected for cardiac images following the transmission of a single pulse. The vertical alignment of each trace matches the index of the
corresponding receiver element. (b) Beamformed signal obtained by combining the detected signals with appropriate, time-varying time delays. The data is
acquired using a GE breadboard ultrasonic scanner.

in the parametric domain will turn out useless.

The motivation to our approach rises from the observa-

tion, that we may resolve the aforementioned obstacles by

Xampling the beamformed signal, Φ (t; θ), rather than the

individual signals ϕm (t). Whereas beamforming is a funda-

mental process in ultrasound imaging since its early days, our

innovation regards its integration into the Xampling process.

We derive our compressed beamforming approach, beginning

with conceptual Xampling of the beamformed signal, using

the scheme proposed in [13]. We then show that an equivalent

result may be obtained from low-rate samples of the individual

signals ϕm (t).
A necessary condition for implementing our approach is

that Φ (t; θ), generated from {ϕm (t)}
M

m=1 satisfying (5), is

also FRI of similar form. Examining Fig. 2 we notice that

Φ (t; θ) exhibits a structure similar to that of the individual

signals, comprising strong pulses of typical shape, which may

overlap. In this case, there are several obvious advantages in

Xampling Φ (t; θ). First, since {ϕm (t)}
M

m=1 are averaged in

Φ (t; θ) (after appropriate distortion, derived from the acoustic

reciprocity theorem) it naturally exhibits enhanced SNR with

respect to the individual signals. The attenuation of noise in

the beamformed signal, compared to the individual signals, is

apparent in Fig. 2, especially in the interval 50mm − 80mm.

Second, Φ (t; θ) is directly related to an individual scanline.

This means that we are no longer bothered with the ambiguous

problem of matching pulses across signals detected in different

elements. Finally, recall that the signal model derived in (5)

assumes isolated point-reflectors. Such a model is better justi-

fied with respect to Φ (t; θ) since, by narrowing the effective

width of the imaging beam, we may indeed approximate its

intersection with reflecting structures to be point-like. This

effect is noticeable in Fig. 2 where some pulses, visible in

individual traces, appear attenuated in the beamformed signal.

Such pulses correspond to reflectors located off the central

axis of the transmission beam.

In the next section, we focus on justifying the assumption

that Φ (t; θ) may be treated within the FRI framework. An

additional challenge, implied in Section II, regards the fact

that Φ (t; θ) does not exist in the analog domain - standard

ultrasound devices generate it digitally, from samples of the

signals detected in multiple receiver elements, taken at the

Nyquist-rate. Our goal is, therefore, to derive a scheme, which

manages to estimate the necessary samples of Φ (t; θ), from

low-rate samples of filtered versions of {ϕm (t)}
M

m=1.

V. COMPRESSED BEAMFORMING

Our approach is based on the assumption that the FRI

scheme, outlined in Section III, may be applied to the beam-

formed signal Φ (t; θ), constructed according to (3)-(4). The

latter exhibits much better SNR than signals detected in

individual receiver elements. Additionally, it depicts reflections

originating from a sector much narrower than the one radiated

by the transmission beam. Its translation into a single scanline

is therefore straightforward. In Section V-A we prove that if

the signals ϕm (t) obey the FRI model (5), then Φ (t; θ) is

approximately of the form:

Φ (t; θ) =

L
∑

l=1

blh (t− tl), (9)

where tl denotes the time in which the reflection from the lth
element arrived at the reference receiver, indexed m0. Φ (t; θ)
may thus be sampled using the Xampling schemes derived

in [12], [13]. In practice, we cannot sample Φ (t; θ) directly,

since it does not exist in the analog domain. In Second V-B

we show how the desired low-rate samples of Φ (t; θ) can be

determined from samples of ϕm (t).

A. FRI Modeling of the Beamformed Signal

Throughout this section we apply three reasonable assump-

tions. First, we assume that 2γm ≤ tl. Practically, such

a constraint may be forced by appropriate apodization, as

often performed in ultrasound imaging. Namely, ϕm (t) is

combined in Φ (t; θ) only for t ≥ 2γm. As an example, for

the breadboard ultrasonic scanner used in our experiments, the

array comprised 64 receiver elements, distanced 0.29mm apart.
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The proposed apodization implies that the receivers located

farthest from the origin are combined in the beamformed

signal for imaging depth greater than 9.1mm. Second, we

assume the two-way pulse, h(t), to be compactly supported on

the interval [0,∆). Finally, we assume that ∆ ≪ tl. The last

assumption may also be forced by appropriate apodization. As

an example, the nominal duration of the pulse acquired by the

breadboard ultrasonic scanner used in our experiments was

4µsec. In this case, echoes scattered from depth greater than

3.1cm already satisfy tl > 10∆.

Suppose that ϕm (t) can be written as in (5). Applying the

beamforming distortion (3), we get

ϕ̂m(t; θ) =

L
∑

l=1

al,mh (τm (t; θ)− tl,m). (10)

The resulting signal comprises L pulses, which are distorted

versions of the two-way pulse h (t). Suppose that some of

the pulses originated in reflectors located off the central beam

axis. Beamforming implies that, once averaging the distorted

signals according to (4), such pulses will be attenuated due

to destructive interference. Being interested in the structure of

the beamformed signal Φ (t; θ), we are therefore concerned

only with pulses which originated in reflectors located along

the central beam. For convenience, we assume that all pulses

in (10) satisfy this property (pulses which do not satisfy it,

will vanish in Φ (t; θ)). We may thus use τm (t; θ), defined in

(3), in order to express tl,m in terms of tl. Substituting t = tl
into τm (t; θ), we get tl,m = τm (tl; θ), so that (10) becomes

ϕ̂m(t; θ) =

L
∑

l=1

al,mh̃l,m (t; θ), (11)

where we defined h̃l,m (t; θ) = h (τm (t; θ)− τm (tl; θ)).

Applying our second assumption, the support of h̃l,m (t; θ)
is defined by the requirement that

0 ≤ τm (t; θ)− τm (tl; θ) < ∆. (12)

Using (12) and (3), it is readily seen that h̃l,m (t; θ) is

supported on [tl, tl +∆′), where

∆′ = 2∆

√

t2l − 4γmtl sin θ + 4γ2
m +∆

√

t2l − 4γmtl sin θ + 4γ2
m + 2∆+ tl − 2γm sin θ

.

(13)

Further applying our assumption that 2γm ≤ tl, we obtain

∆′ ≤ 2∆.

We have thus proven that h̃l,m (t; θ) = 0 for t /∈
[tl, tl + 2∆). Next, let us write any t in [tl, tl + 2∆) as

t = tl + η, where 0 ≤ η < 2∆. Then

h̃l,m (t; θ) = h (τm (tl + η; θ)− τm (tl; θ)) . (14)

We now rely on our assumption that ∆ ≪ tl. Since η < 2∆,

we also have η ≪ tl. The argument of h (·) in (14) may

therefore be approximated, to first order, as

τm (tl + η; θ)− τm (tl; θ) = σm,l (θ) η + o
(

η2
)

, (15)

where

σm,l (θ) =
1

2

(

1 +
tl − 2γm sin θ

√

t2l − 4γmtl sin θ + 4γ2
m

)

. (16)

Up until this point, we assumed that 2γm ≤ tl. Further

assuming that γm ≪ tl, σm,l (θ) → 1. Replacing η by

η = t− tl, (14) may therefore be written as

h̃l,m (t; θ) ≈ h (t− tl) t ∈ [tl, tl + 2∆) . (17)

Combining (17) with the fact that h (t− tl) is zero outside

[tl, tl + 2∆), (11) may be approximated as

ϕ̂m(t; θ) ≈

L
∑

l=1

al,mh (t− tl). (18)

Averaging the signals {ϕ̂m(t; θ)}
M

m=1 according to (4), we get:

Φ (t; θ) ≈

L
∑

l=1

(

1

M

M
∑

m=1

al,m

)

h (t− tl) =

L
∑

l=1

blh (t− tl),

(19)

which is indeed the FRI form (9). Additionally, assuming

that the support of ϕm (t) is contained in [0, T ), we show

in the Appendix that there exists TB (θ) ≤ T , such that the

support of Φ (t; θ) is contained in [0, TB (θ)) and, additionally,

τm (TB (θ); θ) ≤ T .

As γm grows towards tl, σm,l (θ) decreases, resulting in

a larger distortion of the lth pulse. Consequently, the ap-

proximation of ϕ̂m(t; θ) as a sum of shifted replicas of the

two-way pulse becomes less accurate. The Xampling schemes

used by [12], [13] rely on the projection of the detected

signal onto a subspace of its Fourier series coefficients. We

therefore examine the dependency of the projection error

on the distortion parameters, γm, tl and θ. In Fig. 3, we

show projection errors calculated numerically, for a signal

comprising a single pulse of duration ∆ = 2µsec. The pulse

was simulated by modulating a Gaussian envelope with carrier

frequency 3MHz. It was then shifted by multiple time delays,

tl, where 0 ≤ tl ≤ T , and T = 210µsec, corresponding

to an imaging depth of 16cm. For each delay, we generated

the signals ϕm (t), assuming that the reflector is positioned

along the ẑ axis (θ = 0), and that the receiver elements are

distributed 0.29mm apart, along the x̂ axis. We chose M = 63,

such that the center (reference) receiver was indexed m0 = 32.

The beamforming distortion was then applied to the simulated

signals, based on (3). Finally, the distorted signals were

projected onto a subset of K = 121 consecutive Fourier series

coefficients, taken within the essential spectrum of the two-

way pulse. The coefficients extracted from the mth distorted

signal were arranged into the length K vector, Φm. As implied

by (3), no distortion is applied to the signal detected at the

reference receiver. We therefore evaluate the projection error

by calculating the SNR defined as 20 log10
‖Φm0

‖2

‖Φm−Φm0
‖2

.

The traces obtained for several values of 1 ≤ m < 32
are depicted in the figure. As tl grows, σm,l (θ) approaches

1, and the approximation (18) becomes more valid. As a

result, the projection error decreases. For receivers located

near the origin, such that δm ≪ 10mm, the error decreases
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Fig. 3. Projection error caused by beamforming distortion with θ = 0 vs.
pulse delay, tl , for several receiver elements. The elements are distributed
0.29mm apart, such that δ1 = 8.99mm (element farthest from array center)
and δ31 = 0.29mm. Zero error is obtained for the center element, δ32 , since
no distortion is required in this case.

very quickly. For instance, examining δ31 = 0.29mm, the

SNR grows above 25dB for a reflection originating at distance

greater than 1/50 of the imaging depth. The SNR improves

more moderately for receivers located farther away from the

origin. Nevertheless, considering the receiver located farthest

away from the origin, δ1 = 8.99mm, the SNR grows above

10dB for a reflection originating at distance greater than 1/5
of the imaging depth.

Concluding this section, our empirical results indeed justify

the approximation proposed in (9), where appropriate apodiza-

tion may further improve this approximation. Assuming (9) to

be valid, we may reconstruct the beamformed signal using the

Xampling schemes proposed in [12], [13].

B. Compressed Beamforming with Distorted Analog Kernels

An obvious problem is that Φ (t; θ) does not exist in the

analog domain, and therefore may not be Xampled directly.

We now propose a modified Xampling scheme, which allows

extraction of its necessary low-rate samples, by sampling

filtered versions of ϕm (t) at sub-Nyquist rates.

Since the support of Φ (t; θ) is contained in [0, TB (θ)),
where TB (θ) ≤ T , we may define Φ (t; θ)’s Fourier series

with respect to the interval [0, T ). Denoting by cj the kj th

Fourier series coefficient of Φ (t; θ), we have

cj =
1

T

∫ T

0

I[0,TB(θ)) (t)Φ (t; θ) e−i 2π
T

kjtdt, (20)

where I[a,b) (t) is the indicator function, taking the value 1 for

a ≤ t < b and 0 otherwise. Plugging the indicator function in

(20) may seem unnecessary. However, once transforming (20)

into an operator applied directly to {ϕm (t)}Mm=1, it serves an

important role in zeroing intervals, which are assumed zero

according to (5), but, in any practical implementation, contain

noise. Substituting (4) into (20), we can write

cj =
1

M

M
∑

m=1

cj,m, (21)

Fig. 4. Xampling scheme utilizing distorted exponential kernels.

where, from (3),

cj,m =
1

T

∫ T

0

I[0,TB(θ)) (t)ϕm (τm (t; θ)) e−i 2π
T

kjtdt

=
1

T

∫ T

0

gj,m(t; θ)ϕm (t) dt,

(22)

and

gj,m(t; θ) =qj,m(t; θ)e−i 2π
T

kjt,

qj,m(t; θ) =I[|γm|,Tm(θ)) (t)

(

1 +
γ2
m cos2 θ

(t− γm sin θ)2

)

×

exp

{

i
2π

T
kj

γm − t sin θ

t− γm sin θ
γm

}

,

Tm (θ) =τm (TB (θ); θ) .

(23)

The process defined in (21)-(23) can be translated into

a multi-channel Xampling scheme, such as the one de-

picted in Fig. 4. Each signal ϕm (t) is multiplied by

a bank of kernels {gj,m (t; θ)}
K

j=1 defined by (23), and

integrated over [0, T ). This results in a vector cm =
[

c1,m c2,m ... cK,m

]T
. The vectors {cm}Mm=1 are then

averaged in c =
[

c1 c2 ... cK
]T

, which has the desired

improved SNR property, and provides a basis for extracting

the 2L parameters which define Φ (t; θ). Since Φ (t; θ) satisfies

(9), we apply a similar derivation to that outlined in Section IV,

yielding

c =
1

T
HVb, (24)

where H is a diagonal matrix with jth diagonal element

H
(

2π
T
kj
)

, V contains e−i 2π
T

kjtl as its (j, l)th element, and

b is the length L vector, with elements bl. The matrix V

may be estimated by applying spectral analysis techniques,

allowing for the vector of coefficients b to be solved by a

least squares approach [19]. Fig. 5 illustrates the shape of the

resulting kernels gj,m (t; θ), setting θ = 0 and choosing two

arbitrary values of kj . For each choice of kj we plot the kernels

corresponding to 7 receiver elements, selected from an array

comprising 64 elements, distanced 0.49mm apart.
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(a)

(b)

Fig. 5. Real part of gj,m(t; θ = 0) for T = 210µsec and kj satisfying: (a)
kj = 3, (b) kj=5. We assume an array comprising M = 64 elements,
distanced 0.49mm apart, and plot 7 traces which were obtained for the
elements indexed {m0, m0 + 5,m0 + 10, ...,m0 + 30}.

VI. SIMPLIFIED XAMPLING MECHANISM

In the previous section, we developed a Xampling approach

to extract the Fourier series coefficients of Φ (t; θ). However,

the complexity of the resulting analog kernels, together with

their dependency on θ, makes hardware implementation of

the scheme depicted in Fig. 4 complex. Here, we take an

additional step, which allows the approximation of {cj,m}
K

j=1,

and consequently {cj}
K

j=1, from low-rate samples of ϕm (t),
obtained in a much more straightforward manner.

We begin by substituting ϕm (t) of (22) by its Fourier series,

calculated with respect to [0, T ). Denoting the nth Fourier

coefficient by φm [n], we get:

cj,m =
∑

n

φm [n]
1

T

∫ T

0

qj,m(t; θ)e−i 2π
T

(kj−n)tdt

=
∑

n

φm [kj − n]Qj,m;θ [n],
(25)

where Qj,m;θ [n] are the Fourier series coefficients of

qj,m(t; θ), also defined on [0, T ). Let us replace the infinite

summation of (25) by its finite approximation:

ĉj,m =

N2
∑

n=N1

φm[kj − n]Qj,m;θ [n]. (26)

The following proposition shows that this approximation can

be made sufficiently tight.

Proposition 1. Assume that
∫∞

−∞ |ϕm (t)|
2
dt < ∞. Then,

for any ǫ > 0, and for any selection (j,m; θ), there

exist finite N1 (ǫ, kj,m; θ) and N2 (ǫ, kj ,m; θ) such that

|cj,m − ĉ
j,m

|2 < ǫ.

Proof: Let l2 be the space of square-summable sequences,

with norm ‖x‖22 =
∑

n |xn|
2. Let a = {φm [kj − n]}

∞
n=−∞

and b =
{

Q∗
j,m;θ [n]

}∞

n=−∞
. Since ϕm (t) is of finite energy,

a ∈ l2. We may calculate the l2 norm of b, based on the defini-

tion of qj,m (t; θ) in (23), resulting in ‖b‖2 ≈ Tm (θ) /T < ∞.

This implies that b ∈ l2 as well. Let bt be the truncated

sequence b for N1 ≤ n ≤ N2 and zero otherwise. We may

then write the approximation error as:

|cj,m − ĉj,m|2 = | 〈a,b− bt〉 |
2 ≤ ‖a‖22‖b− bt‖

2
2, (27)

where 〈·, ·〉 is the inner product defined as 〈x,y〉 =
∑

n xny
∗
n.

The last transition in (27) is a result of Cauchy-Schwartz

inequality. By definition of bt and b, it is readily seen that

‖b−bt‖
2
2 = ‖b‖22 − ‖bt‖

2
2. Denoting ρ2 = ‖bt‖

2
2/‖b‖

2
2, (27)

becomes

|cj,m − ĉj,m|2 ≤ ‖a‖22‖b‖
2
2

(

1− ρ2
)

. (28)

Since ‖b‖2 < ∞, ρ2 can approach 1 as close as we desire,

by appropriate selection of N1 and N2. For any ǫ > 0, there

exists ρ2 (ǫ) < 1, such that the right side of (28) is smaller

than ǫ. Selecting N1 and N2 for which ‖bt‖
2
2/‖b‖

2
2 ≥ ρ2 (ǫ),

results in |cj,m− ĉj,m|2 < ǫ, as required. Furthermore, setting

an upper bound on the energy of ϕm (t), and thereby on

‖a‖22, N1 and N2 may be chosen off-line, subject to the decay

properties of the sequence {Qj,m;θ [n]}
∞
n=−∞.

Using Proposition 1, we can compute ĉj,m as a good approx-

imation to cj,m. We now show how ĉj,m can be obtained

directly from the Fourier series coefficients φm [n] of each

ϕm (t).
We first evaluate N1 and N2 for a certain choice of m

and θ, such that cj,m may be approximated to the desired

accuracy using (26). Equivalently, we obtain the minimal

subset of ϕm (t)’s Fourier series coefficients, required for the

approximation of cj,m. Performing this for all 1 ≤ j ≤ K , we

obtain K such subsets. Denoting the union of these subsets

by κm, we may now simultaneously compute {ĉj,m}
K

j=1 from

{φm [n]}n∈κm
by a linear transformation. Define the length-

Km vector Φm, with lth element φm [kl], and kl being the lth
element in κm. Using (26), we may write

ĉm = Am (θ)Φm, (29)

where ĉm is the length-K vector with jth element ĉj,m, and

Am (θ) is a K ×Km matrix with elements

aj,l =

{

Qj,m;θ [kj − kl] N1 (kj) ≤ kj − kl ≤ N2 (kj)
0 otherwise

.

(30)

Notice, that we have omitted the dependency of N1 and N2 on

ǫ, m and θ, since, unlike kj , these remain constant throughout

the construction of Am (θ).
The resulting Xampling scheme is depicted in Fig. 6.

Based on [12], we propose a simple mechanism for obtaining

the Fourier coefficients in each individual element: a linear

transformation, Wm, is applied to point-wise samples of the

signal, taken at a sub-Nyquist rate, after filtering it with an

appropriate kernel, s∗m (−t), such as the Sum of Sincs. In this

scheme, while we do need to extract larger number of samples

at the output of each element, as Km > K , we avoid the use

of complicated analog kernels as in Section V-B. Furthermore,

as we show in Section IX, in an actual imaging scenario good

approximation is obtained with just a small sampling overhead.
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Fig. 6. Xampling scheme utilizing Fourier samples of ϕm (t).

VII. SIGNAL RECONSTRUCTION

So far we derived our approach for extracting the param-

eters {tl, bl}
L
l=1 which determine Φ (t; θ) from sub-Nyquist

samples, taken at the individual receiver elements. In this

section we focus on the reconstruction of Φ (t; θ) from these

parameters. Once Φ (t; θ) is constructed for multiple values

of θ, a two-dimensional image may be formed, by applying

standard post-processing techniques: first, Φ (t; θ)’s envelope

is extracted using the Hilbert transform [20]; logarithmic

compression is then applied to each envelope, resulting in a

corresponding scanline; finally, all scanlines are interpolated

onto a two-dimensional grid. Having obtained the parametric

representation of Φ (t; θ), the first two steps may be calculated

only within the support of the recovered signal.

In Section VII-A we describe the reconstruction of Φ (t; θ)
from its estimated parameters, while generalizing the model

proposed in (9): we assume that the detected signals are

additionally parametrized by unknown carrier phases of the

reflected pulses, and show that the Xampling approach allows

estimation of these unknown phases.

In Section VII-B we propose an alternative approach for

reconstructing Φ (t; θ), using CS methodology.

A. Signal Reconstruction Assuming Unknown Carrier Phase

Consider the signal defined in (5). Modeling a signal of

physical nature, it is obviously real-valued, implying that al,m
are real. Consequently, by (19), bl must also be real-valued.

However, when we apply spectral analysis techniques aimed

at solving the system formulated in (24), there is generally no

constraint that b be real-valued. Indeed, solving it for samples

obtained using our proposed Xampling schemes, the resulting

coefficients are complex, with what appears to be random

phases. In fact, a similar phenomenon is observed when solv-

ing (8) for samples taken from the individual signals, ϕm (t),
as proposed in [12]. Below we offer a physical interpretation

of the random phases, by generalizing the model proposed

in (9). The result is a closed-form solution for reconstructing

the estimated signal, using the complex coefficients. When

applied, a significant improvement is observed, comparing the

envelope of the reconstructed signal, with that of the original

signal.

The ultrasonic pulse h (t) may be modeled by a baseband

waveform, g (t), modulated by a carrier at frequency f0:

h (t) = g (t) cos (ω0t+ β), where ω0 = 2πf0 and β is the

phase of the carrier. The model proposed in (9), just like the

one in (5), assumes the detected pulses to be exact replicas

of h (t). However, a more accurate assumption is that each

reflected pulse undergoes a phase shift, based upon the relative

complex impedances involved in its reflection [21]. We thus

propose to approximate the beamformed signal as:

Φ (t; θ) =

L
∑

l=1

|bl| g (t− tl) cos (ω0 (t− tl) + βl), (31)

βl being an unknown phase. The jth Fourier series coefficient

of Φ (t; θ) is now given by

cj =
1

T

∫ T

0

L
∑

l=1

|bl| g (t− tl) cos (ω0 (t− tl) + βl)e
−i 2π

T
kjtdt

=
1

2T

L
∑

l=1

|bl|
(

eiβlG (ωj − ω0) + e−iβlG (ωj + ω0)
)

e−iωjtl ,

(32)

where G (ω) is the CTFT of g (t) and ωj =
2π
T
kj .

Let g (t) be approximated as a Gaussian with variance σ2

and assume that kj ≥ 0. It is readily seen that
∣

∣

∣

∣

G (ωj + ω0)

G (ωj − ω0)

∣

∣

∣

∣

= e−2σ2ωjω0 . (33)

We can then choose

kj ≥
5T

4πσ2ω0
, (34)

so that
∣

∣

∣

∣

G (ωj + ω0)

G (ωj − ω0)

∣

∣

∣

∣

< 10−2. (35)

This allows (32) to be approximated as

cj ≈
1

2T
G (ωj − ω0)

L
∑

l=1

|bl|e
iβle−i 2π

T
kj tl , (36)

and additionally

H (ωj) ≈
1

2
eiβG (ωj − ω0) . (37)

Combining (36) and (37), we get

cj ≈
1

T
H

(

2π

T
kj

) L
∑

l=1

ble
−i 2π

T
kjtl , (38)

where we define bl = |bl|e
i(βl−β).

Denoting by c the length K vector, with cj as its jth ele-

ment, the last result may be brought into the exact same matrix

form written in (24). However, now we expect the solution to

extract complex coefficients, of which phases correspond to the

unknown phase shifts of the reflected pulses, ∠bl = βl − β.

Having obtained the complex coefficients, we may now re-

construct Φ (t; θ) according to (31), and then proceed with

standard post-processing techniques. The constraint imposed

in (34) is mild, considering nominal ultrasound parameters.

Assuming, for instance, T = 210µsec, f0 = 3MHz, and

σ = 630nsec, we must choose kj ≥ 12. The requirement that

H of (25) be invertible, already imposes a stronger constraint

on kj , the jth Fourier coefficient, since H
(

2π
T
kj
)

drops below

−3dB for |kj − 630| > 44.
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B. CS Approach for Signal Reconstruction

Throughout the previous sections, we addressed the problem

of ultrasound signal reconstruction, within the FRI framework.

As shown in [6], for various FRI problems, the relationship be-

tween the unknown signal parameters and its subset of Fourier

series coefficients takes the form of a spectral analysis prob-

lem. The latter is then typically solved by applying techniques

such as annihilating filter [18] or matrix pencil [19]. In this

section, we consider an alternative approach for reconstructing

the signal defined in (9), based on CS methodology [4], [5].

Assume that the time delays {tl}
L

l=1 in (31) are quantized

with a ∆s quantization step, such that tl = ql∆s, ql ∈ Z.

Using (38), we may write the Fourier series coefficients of

Φ (t; θ) as:

cj ≈
1

T
H

(

2π

T
kj

) L
∑

l=1

ble
−i 2π

T
∆skjql . (39)

Let N be the ratio ⌊T/∆s⌋. Then (39) may be expressed in

the following matrix form:

c ≈
1

T
HV̂x = Ax, (40)

where H is the K ×K diagonal matrix with H
(

2π
T
kj
)

as its

jth diagonal element, and x is a length N vector, whose jth

element equals bl for j = ql, and 0 otherwise. Finally, V̂ is a

K × N matrix, formed by taking the set κ of rows from an

N ×N FFT matrix.

The formulation obtained in (40), is a classic CS problem,

where our goal is to reconstruct the N -dimensional vector x,

known to be L-sparse, with L ≪ N , based on its projection

onto a subset of K orthogonal vectors, represented by the rows

of A. This problem may be solved by various CS methods, as

long as the sensing matrix A satisfies desired properties such

as the Restricted Isometry Property (RIP) or coherence.

In our case, A is formed by choosing K rows from the

Fourier basis. Selecting these rows uniformly at random it

may be shown that if

K ≥ CL (logN)
4
, (41)

for some positive constant C, then A obeys the RIP with large

probability [22]. As readily seen from (41), the resolution of

the grid, used for evaluating {tl}
L

l=1, directly effects the RIP.

Recall that, by applying spectral analysis methods, one may

reconstruct x from a minimal number of 2L samples, if it is

indeed L-sparse. However, these samples must be carefully

chosen. Using matrix pencil, for instance, the sensing vectors

must be consecutive. Moreover, in any practical application,

the measured data will be corrupted by noise, forcing us to use

oversampling. In contrast, the bound proposed in (41) regards

random selection of the sensing vectors. Additionally, applying

the CS framework, we may effectively cope with the more

general case, of reconstructing x which is not necessarily L-

sparse.

VIII. COMPARISON BETWEEN RECOVERY METHODS

In this section, we provide results obtained by applying

three recovery algorithms to ultrasound signals which were

Fig. 7. Field II simulation setup: M = 64 elements are aligned along the
x̂ axis with a 0.05mm kerf. The width of each element is 0.44mm. Speckle
pattern is simulated by randomly distributing 105 point reflectors within the
box B. Additionally, L = 6 point reflectors are aligned along the ẑ axis, also
within the boundaries of the box. The pulse is transmitted along the ẑ axis,
and the beamformed signal is constructed along the same line.

simulated using the Field II program [23]. The evaluation

was performed based on multiple beamformed signals, each

calculated along the ẑ axis (θ = 0) for a random phantom

realization. The phantom comprised L strong reflectors, dis-

tributed along the ẑ axis, and multiple additional reflectors,

distributed throughout the entire imaging medium. A mea-

surement vector was obtained by projecting the beamformed

signal onto a subset of its Fourier series coefficients. Finally,

each algorithm was evaluated for its success in recovering the

strong reflectors’ positions from the vector of measurements.

The first two algorithms which were evaluated were matrix

pencil [19] and total least-squares approximation, enhanced

by Cadzow’s iterated algorithm [24]. Both algorithms may be

considered spectral analysis techniques. The third algorithm

was Orthogonal Matching Pursuit (OMP) [25], which is a CS

method.

The simulation setup is depicted in Fig. 7. We created

an aperture comprising 64 transducer elements, with cen-

tral frequency f0 = 3.5MHz. The width of each element,

measured along the x̂ axis, was c/f0 = 0.44mm, and the

height, measured along the ŷ axis, was 5mm. The elements

were arranged along the x̂ axis, with a 0.05mm kerf. The

transmitted pulse was simulated by exciting each element with

two periods of a sinusoid at frequency f0, where the delays

were adjusted such that the transmission focal point was at

depth r = 70mm. Additionally, Hanning apodization was used

during transmission, by applying an appropriate excitation

power to each element.

In each iteration, we constructed a random phantom, for

which we simulated the beamformed signal. The phantom

was constructed in two stages. We first created a speckle

phantom, by drawing positions of 105 point reflectors uni-

formly, at random, within the three-dimensional box B =
{(x, y, z) : |x| ≤ 25mm, |y| ≤ 5mm, |z − 60| ≤ 30mm}. The

corresponding amplitudes were also drawn randomly, with

zero-mean and unit-variance Normal distribution. We then

generated a signal phantom, by drawing positions of L = 6
point reflectors, {pl}

L

l=1, with xl = yl = 0 and zl uniformly

distributed in the interval [35mm, 85mm). These reflectors

were assigned identical amplitudes, which were adjusted ac-

cording to the SNR requirement, in the following manner: for

each of the two phantoms, we simulated the beamformed sig-

nal, acquired along θ = 0 following pulse transmission in the
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Fig. 8. Image obtained by applying standard imaging techniques to an
individual phantom realization. Our goal is to recover the L = 6 strong
reflectors aligned along the ẑ axis. 105 point reflectors were distributed in
the imaging plain, resulting in echoes which corrupted the detected signals.
In the ultrasound image, these reflections are manifested in a speckle pattern.
The phantom was calibrated such that the SNR of the beamformed signal,

calculated along ˆθ = 0, defined in (42), was 15dB.

same direction. Denoting the beamformed signal obtained for

the first (speckle) phantom by n (t; θ = 0) and that obtained

for the second (signal) phantom by Φ (t; θ = 0), we defined

SNR = 10 log10

∫ T

0 |Φ (t; θ = 0)|
2
dt

∫ T

0 |n (t; θ = 0)|
2
dt

. (42)

The amplitudes of the reflectors comprising the second phan-

tom were modified, such that (42) complied with the desired

SNR value. After this calibration, we combined the two phan-

toms into a single one, for which we generated an individual

beamformed signal realization. The detected signals and the

resulting beamformed signal were simulated at sampling rate

fs = 100MHz. Since the spectrum of the detected pulses

decayed to −50dB at ≈ 6MHz, this rate was far beyond

Nyquist. Hanning apodization was used for constructing the

beamformed signal, by applying appropriate weights to the

detected signals. This type of apodization may be easily

implemented with both our Xampling schemes, by replacing

the average in (21) by a weighted one.

Fig. 8 illustrates the method by which we simulated a

realization of the noisy beamformed signal. This image was

obtained by applying standard imaging techniques to an in-

dividual phantom. We are interested in recovering the strong

reflections aligned along the ẑ axis. The corresponding beam-

formed signal was corrupted by speckles, originating in the

multiple point reflectors scattered throughout the medium. The

phantom was calibrated such that the SNR of the beamformed

signal along θ = 0, defined in (42), was 15dB.

Having generated the beamformed signal, we obtained a

measurement vector, by projecting the signal onto a subset

of its K Fourier series coefficients, where K = 2⌈ηL⌉ + 1,

and η > 1 is the desired oversampling factor. For the spectral

analysis techniques, we chose the coefficients consecutively,

around k0 = ⌈f0T ⌉. OMP was tested using both this se-

lection of coefficients, and a random selection, taken such

that H
(

2π
T
kj
)

is above −2dB. With this selection, we obtain

samples which are better spread in the frequency domain.

We emphasize, that the coefficients were drawn once, for

Fig. 9. h (t) evaluated from the beamformed signal, calculated for a
single reflector using Field II simulator. The reflector was positioned at the
transmission focal point.

each choice of η. An additional degree of freedom, using

the OMP method, regards the density of the reconstruction

grid, determined by N . We set N = 1860, complying with a

sampling frequency fs = 20MHz, of order typically used in

imaging devices.

Recovery was evaluated based on the estimated time delays.

These were compared to the delays associated with the known

reflector positions, tl = 2zl/c. At the ith iteration, we

examined, for each algorithm, all possible matches between

actual delays {tl}
L
l=1, and estimated delays

{

t̂l
}L

l=1
. Of all

possible permutations (a total number of L!), we selected the

one for which the number of matches, achieving error smaller

than the width of h (t), was maximal. Denoting this number by

S
(q)
i , q ∈ {1, 2, 3, 4} corresponding to the evaluated method,

we estimate the probability of recovery by the qth method as

P (q) =
1

LI

I
∑

i=1

S
(q)
i , (43)

where I is the total number of iterations, set to 500 in

our simulation. We note that all reconstruction algorithms

require that we first calculate H
(

2π
T
kj
)

. For this purpose, we

simulated the signal beamformed along θ = 0, for a phantom

which comprised a single reflector at the transmission focal

point (x, y, z) = (0, 0, 70mm). We used the detected signal,

depicted in Fig. 9, for calculating H
(

2π
T
kj
)

.

The simulation results obtained for multiple combinations

of SNR and oversampling factor are illustrated in Fig. 10.

The calculated recovery probabilities are represented by gray-

levels, where a common color-bar was used for all plots. For

clarity, we plotted a line separating between probabilities lower

than 0.85 and probabilities above 0.85, and a line separating

between probabilities lower than 0.97 and probabilities above

0.97. Of the two spectral analysis techniques, matrix pencil

appears preferable, as it obtains high probability values over

a wider range of SNR and oversampling. Both OMP methods

outperformed the spectral analysis ones, with an obvious

advantage to random OMP.

An additional aspect which should be taken into consider-

ation, when choosing the reconstruction method, regards the

complexity of the Xampling hardware. Using the Xampling

scheme proposed in [12], random selection of Fourier series

coefficients will increase the hardware complexity: in such

case, the sampling kernel, e.g. SoS, must be specifically
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(a) (b) (c) (d)

Fig. 10. Probability of reconstruction vs. SNR and oversampling factor, η, using four methods: (a) Total least-squares, enhanced by Cadzow’s iterated
algorithm, (b) matrix pencil, (c) OMP with consecutive Fourier series coefficients, (d) OMP with Fourier series coefficients randomly distributed, such that
H

(

2π
T

kj
)

is above −2dB, ∀kj ∈ κ. Signals were simulated using Field II program, where SNR is defined in (42).

designed for the choice of coefficients. This is in contrast with

the relatively simple kernel, applied for a consecutive choice

of coefficients. On the other hand, the Xampling scheme

proposed in [13] is practically invariant to the manner in which

the coefficients are selected.

IX. EXPERIMENTS ON CARDIAC ULTRASOUND DATA

In this section, we examine results obtained by applying

our Xampling schemes, illustrated in Figs. 4 and 6, to raw

RF data, acquired and stored for cardiac images of a healthy

consenting volunteer. The acquisition was performed using a

GE breadboard ultrasonic scanner of 64 acquisition channels.

The transducer employed was a 64-element phased array

probe, with 2.5MHz central frequency, operating in second

harmonic imaging mode: 3 half cycle pulses are transmitted at

1.7MHz, resulting in a signal characterized by a rather narrow

bandpass bandwidth, centered at 1.7MHz. The corresponding

second harmonic signal, centered at 3.4MHz, is then acquired.

The signal detected in each acquisition channel is amplified

and digitized at a sampling-rate of 50MHz. Data from all

channels were acquired along 120 beams, forming a 60◦

sector, where imaging to a depth of z = 16cm, we have

T = 207µsec. The imaging results are illustrated in Fig. 11.

The first image (a) was generated using the standard tech-

nique, applying beamforming to data first sampled at the

Nyquist-rate, and then down-sampled, exploiting its limited

essential bandwidth. For a single scanline, sampling at 50MHz,

we acquire 10389 real-valued samples from each element,

which are then down-sampled, to 1662 real-valued samples,

used for beamforming. The resulting image is used as refer-

ence, where our goal is to reproduce the macroscopic reflectors

observed in this image with our Xampling schemes.

We begin by applying the scheme illustrated in Fig. 4,

utilizing the analog kernels defined in (23). Modulation with

the kernels is simulated digitally. Assuming L = 25 reflectors,

and using two-fold oversampling, κ comprises K = 100
consecutive indices. With such selection, the corresponding

frequency samples practically cover the essential spectrum of

h (t). Since each sample is complex, we get an eight-fold

reduction in sample-rate. Having estimated the Fourier series

coefficients of Φ (t; θ), we obtain its parametric representation

by solving (40) using OMP. We then reconstruct Φ (t; θ)
according to (31), that is we apply phase shifts to the modu-

lated pulses, based on the extracted coefficients’ phases. The

resulting image (b) depicts the strong perturbations observed

in (a). Moreover, isolated reflectors at the proximity of the

array (z ≈ 6cm) remain in focus.

We next apply the approximated scheme, illustrated in

Fig. 6: for every kj ∈ κ, 1 ≤ m ≤ M and θ, we find

N1 and N2 of (26) such that ρ2 ≈ 0.95. This process is

performed numerically, off-line, based on our imaging setup.

Consequently, we construct {Am}
M

m=1 off-line, according to

(30). Choosing this level of approximation, we end up with a

seven-fold reduction in sample rate, where, for the construction

of a single scanline, an average of 116 complex samples

must be taken from each element. We point out that in this

scenario, the maximal number of samples, taken from certain

elements, reaches 133 for specific values of θ. Thus, if a

common rate is to be used for all sensors, for all values of θ,

we may still achieve a six-fold reduction in sample rate. As

before, we use OMP in order to obtain Φ (t; θ)’s parametric

representation, and reconstruct it based on our generalized FRI

model proposed in (31). The resulting image (c) appears very

similar to (b).

Table I gathers SNR values, calculated for the beamformed

signals estimated using both our Xampling schemes, after

envelope detection with the Hilbert transform. The values were

calculated with respect to the envelopes of the beamformed

signals, obtained by standard imaging. Explicitly, let Φ (t; θi)
denote the beamformed signal obtained by standard beam-

forming along the direction θi, i = 1, 2, ..., I , let Φ̂ (t; θi)
denote the beamformed signal reconstructed from the param-

eters recovered by compressed beamforming along the same

direction, and let H (·) denote the Hilbert transform. For the

set of I = 120 scanlines, we defined the SNR as

SNR = 10 log10

∑I
i=1

∫ T

0 |H(Φ (t; θi))|
2
dt

∑I

i=1

∫ T

0

∣

∣

∣
H(Φ̂ (t; θi))− H(Φ (t; θi))

∣

∣

∣

2

dt

.

(44)

This calculation was repeated when reconstructing the sig-

nals without the random phase assumption, proposed in Sec-

tion VII-A. For the latter case, reconstruction of a real-valued

Φ̂ (t; θi), given complex coefficients, may be heuristically

achieved by either ignoring the coefficients’ imaginary part, or

by taking their modulus. It may be seen that, weighting over

all 120 beamformed signals, the random phase assumption
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(a) (b) (c)

Fig. 11. Cardiac images generated by Xampling and using traditional methods. (a) standard beamforming applied to data sampled at the Nyquist-rate. (b)
applying the non-approximated Xampling scheme of Fig. 4. (c) applying the final Xampling scheme of Fig. 6.

achieves a relatively minor improvement (0.1-0.15dB) com-

pared to reconstruction using the modulus of the coefficients.

However, when examining individual signals, we observed

that, for certain values of θi, the improvement exceeded 1.5dB.

TABLE I
SNR IN [DB] OF Φ (t; θ) OBTAINED WITH THE PROPOSED XAMPLING

SCHEMES AND THREE RECONSTRUCTION METHODS

Xampling Method
Reconstruction Method Distorted Kernels

(Fig. 4)
Approximated
Scheme (Fig. 6)

Random Phase 6.47 5.89

Real part of Residues 4.59 4.03

Modulus of Residues 6.32 5.79
.

We emphasize, that the calculated SNR values provide

a useful measure for quantitatively comparing the different

Xampling and reconstruction approaches. However, they are

of smaller value when attempting to evaluate the overall

performance of Xampling, compared to standard imaging:

recall that our scheme is aimed at reproducing only strong

pulses, reflected from macroscopic reflectors. The reference

signal, on the other hand, generated by standard technique,

already contains the additional speckle component, caused

by multiple microscopic perturbations. A possible approach

for evaluating the overall performance of either Xampling

scheme, would be to examine its success rate in recovering

strong reflections, detected by standard beamforming. For this

purpose, we tracked the L strongest local maxima in each

beamformed signal. If the Xampling scheme recovered a pulse

within the range of 1.2mm from a certain maximum, we say

that this maximum was successfully detected. Certain pulses,

detected by Xampling, may match more than one maximum

in the beamformed signal. In such case, we choose the one-

to-one mapping which achieves smallest MSE. Applying this

evaluation method to signals Xampled using our approximated

scheme, and reconstructed with the random phase assumption,

we conclude that the reconstruction successfully retrieves

70.4% of the significant maxima, with standard deviation of

the error being approximately 0.42mm.

X. CONCLUSION

In this work, we generalized the Xampling method proposed

in [12], to a scheme applied to an array of multiple receiv-

ing elements, allowing reconstruction of a two-dimensional

ultrasound image. At the heart of this generalization was the

proposal that the one-dimensional Xampling method derived

in [12] be applied to signals obtained by beamforming. Such

signals exhibit enhanced SNR, compared to the individual

signals detected by the array elements. Moreover, they depict

reflections which originate in a much narrower sector, than

that initially radiated by the transmitted pulse. A second key

observation, which made our approach feasible, regarded the

integration of the beamforming process into the filtering part

of the Xampling scheme.

The first approach we purposed comprised multiple modula-

tion and integration channels, utilizing analog kernels. We next

showed that the parametric representation of the beamformed

signal may be well approximated, from projections of the

detected signals onto appropriate subsets of their Fourier series

coefficients. The contribution of our schemes regards both

the reduction in sample rate, but additionally, the resulting

reduction in the rate of data transmission from the system

front-end to the processing unit. In particular, our second

approach is significant even when preliminary sampling is

performed at the Nyquist-rate. In such a case, it allows a

reduction in data transmission rate, by a relatively simple

linear transformation, applied to the sampled data.

An additional contribution of our work regards the method

by which we reconstruct the ultrasound signal, assumed to

obey a specific FRI structure, from a subset of its frequency

samples. Rather than using traditional spectral analysis tech-

niques, we formulate the relationship between the signal’s

samples to its unknown parameters as a CS problem. The

latter may be efficiently solved using a greedy algorithm

such as the OMP. We show that, in our scenario, CS is

generally comparable to spectral analysis methods, managing

to achieve similar success rates with sample sets of equal

cardinality. Moreover, working in a noisy regime, CS typically

outperformed spectral analysis methods, provided that the fre-

quency samples were highly spread over the essential spectrum

of the signal. Using actual cardiac data, a relatively large

number of reflectors was assumed. Consequently, by simply

choosing the Fourier series coefficients consecutively, as in

the spectral analysis techniques, we end up with the necessary

wide distribution. However, as shown in our simulations, CS

approach inherently allows a wide distribution of samples,

even when the cardinality of the sample set is small, since
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we are not obliged to unique configurations of samples.

A final observation discussed in our work, regards the

generalization of the signal model proposed in [12], allowing

additional, unknown phase shifts, of the detected pulses.

We show that these shifts may be estimated by appropriate

interpretation of the extracted coefficients, without changing

the recovery method.

Combining the random phase assumption with our proposed

Xampling schemes and the CS recovery method, we construct

two-dimensional ultrasound images, which well depict strong

perturbations in the tissue, while achieving up to seven-

fold reduction of sample rate, compared to standard imaging

techniques.

APPENDIX A

BEAMFORMED SIGNAL SUPPORT

We assume h (t) to be supported on [0,∆), and that the

support of ϕm (t) is contained in [0, T ). The last assumption

may be justified by the fact that the pulse is transmitted at

t = 0, such that reflections may only be detected for t ≥ 0.

Additionally, the penetration depth of the transmitted pulse

allows us to set T , such that all reflections arriving at t ≥ T
are below the noise level.

For all 1 ≤ l ≤ L and 1 ≤ m ≤ M :

tl,m +∆ ≤ T, (45)

Applying the relation tl,m = τm (tl; θ), justified in Sec-

tion V-A, and using the fact that τm (t; θ) is non-decreasing

for t ≥ 0 we conclude that

tl ≤ τ−1
m (T −∆; θ) , (46)

τ−1
m (t; θ) being the inverse of τm (t; θ). Explicitly:

τ−1
m (t; θ) =

t2−γ2

m

t−γm sin θ
, t ≥ γm. (47)

Assuming that ∆ ≪ T , then, since (46) is true for every

1 ≤ m ≤ M , we may write:

tl ≤ min
1≤m≤M

τ−1
m (T ; θ). (48)

This allows us to set the following upper bound on the support

of Φ (t; θ):

TB (θ) = min
1≤m≤M

τ−1
m (T ; θ), (49)

once again, using the assumption that ∆ ≪ T . From (47) it

is readily seen that TB (θ) ≤ T , since we can always find γm
with sign opposite to that of sin θ, such that:

τ−1
m (T ; θ) =

T 2 − γ2
m

T + |γm sin θ|
≤

T 2 − γ2
m

T
≤ T. (50)

Finally, by construction of TB (θ) we see that, for all 1 ≤
m ≤ M , τm (TB (θ) ; θ) ≤ T .
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