
1

Compressed Data Aggregation: Energy Efficient

and High Fidelity Data Collection
Liu Xiang, Student Member, IEEE, Jun Luo, Member, IEEE, and Catherine Rosenberg, Fellow, IEEE

Abstract—We focus on wireless sensor networks (WSNs) that
perform data collection with the objective of obtaining the whole
data set at the sink (as oppose to a function of the data set). In
this case, energy efficient data collection requires the use of data
aggregation. Whereas many data aggregation schemes have been
investigated, they either compromise the fidelity of the recovered
data or require complicated in-network compressions. In this
paper, we propose a novel data aggregation scheme that exploits
compressed sensing (CS) to achieve both recovery fidelity and
energy efficiency in WSNs with arbitrary topology. We make
use of diffusion wavelets to find a sparse basis that characterizes
the spatial (and temporal) correlations well on arbitrary WSNs,
which enables straightforward CS-based data aggregation as
well as high fidelity data recovery at the sink. Based on this
scheme, we investigate the minimum energy compressed data
aggregation problem. We first prove its NP-completeness, and
then propose a mixed integer programming formulation along
with a greedy heuristic to solve it. We evaluate our scheme by
extensive simulations on both real datasets and synthetic datasets.
We demonstrate that our compressed data aggregation scheme
is capable of delivering data to the sink with high fidelity while
achieving significant energy saving.

Index Terms—Wireless sensor networks (WSNs), data col-
lection, data aggregation, compressed sensing (CS), diffusion
wavelets, energy efficiency

I. INTRODUCTION

Energy efficiency of data collection is one of the dominating

issues of wireless sensor networks (WSNs). It has been tackled

from various aspects since the outset of WSNs. This includes,

among others, energy conserving sleep scheduling (e.g., [35],

[20]), topology control (e.g., [26], [21]), mobile data collectors

(e.g., [28], [39], [29]), and data aggregation1 (e.g., [23]). While

the first three approaches (and many others) focus on the

energy efficiency of protocols, data aggregation directly aims

at significantly reducing the amount of data to be transported,

and it hence complements other approaches.

Although data aggregation techniques have been heavily

investigated, there are still imperfections to be improved on.

Existing WSN applications fall into two classes depending on

the information that is needed at the sink. The first class corre-

sponds to cases where only simple function values of the data

Preliminary results were presented in the Proceedings of the 8th IEEE
SECON, 2011 [38]. This work is supported in part by AcRF Tier 1 Grant RG
32/09, the Start-up Grant of NTU, and AcRF Tier 2 Grant ARC15/11.

L. Xiang and J. Luo are with the School of Computer Engineer-
ing, Nanyang Technological University, 639798 Singapore. E-mail: xian-
gliu@pmail.ntu.edu.sg; junluo@ntu.edu.sg.

C. Rosenberg is with the Department of Electrical and Computer Engineer-
ing, University of Waterloo, Canada. Email: cath@ece.uwaterloo.ca.

1We define data aggregation in a general sense. It refers to any transfor-
mation that summarizes or compresses the data acquired and received by a
certain node and hence reduces the volume of the data to be sent out.

are needed at the sink (e.g., MAX/AVG/MED); we call this

class “functional”. In that case, the aggregation functions only

extract certain statistical quantities from the collected data [31]

and the original data are thus not fully recoverable. The second

class of applications refers to cases where the sink wants

to obtain the full data set. We call this class “recoverable”.

The recoverability can be achieved by applying distributed

source coding technique, such as Slepian-Wolf coding [34],

[23], to perform non-collaborative data compression at the

sources. However, it is not exactly practical due to the lack

of prior knowledge on the spatial data correlation structure.

Collaborative in-network compression makes it possible to

discover the data correlation structure through information

exchange [14], [19] but it either requires a simple correlation

structure [14], or often results in high communication load

[19] that may potentially offset the benefit of recoverable

aggregation technique.

As a newly developed signal processing technique, com-

pressed sensing (CS) promises to deliver a full recovery of

signals with high probability from far fewer samples than

their original dimension, as long as the signals are sparse

or compressible in some domain [8]. Although this technique

may suggest a way of reducing the volume of the data to

transmit over WSNs without the need for adapting to the data

correlation structure [22], the complexity of the interaction

between data routing and CS-based aggregation has postponed

the development on this front until very recently [27], [25].

Moreover, as these recent studies rely on conventional sig-

nal/image processing techniques (e.g., DCT, wavelets) to spar-

sify the collected data, they require regular WSN deployments

(e.g., grids), which make them less practical.

In this paper, we propose a new data aggregation tech-

nique derived from CS, and we aim at minimizing the

total energy consumption when collecting data from nodes

of an arbitrarily deployed WSN for an application requiring

full data recovery. We make use of diffusion wavelets; this

facilitates a high fidelity recovery of data sensed by nodes in

an arbitrary network by allowing both spatial and temporal

correlations to be naturally taken into account. To the best of

our knowledge, we are the first to address the problem of CS-

based data aggregation and recovery in arbitrary networks.

More specifically, we are making the following contributions:

• We propose a scheme that exploits compressed sensing

for data aggregation.

• We employ diffusion wavelets to design the sparse basis

for data recovery. This technique delivers high fidelity

recovery for data collected in arbitrary WSNs by naturally

taking into account spatial (and temporal) correlations.

2

• We show that, by choosing a proper sparse basis, we can

partition a WSN into subnetworks and apply compressed

data aggregation to these subnetworks individually. Com-

pared with non-partitioning case, this significantly im-

proves energy efficiency without sacrificing the fidelity

of data recovery.

• We study, for our CS-based aggregation scheme, the

minimum energy data gathering problem. We first provide

the characterization of the optimal solutions and prove the

hardness of the problem. Then both optimal and heuristic

approaches are presented to solve the problem.

• We demonstrate the superiority of our compressed data

aggregation scheme through experiments on extensive

datasets: compared with non-aggregation, our proposal

achieves significant energy saving while delivering data

to the end with high fidelity.

In the remainder of this paper, we first introduce the

framework for our compressed data aggregation scheme in

Sec. II. Then we explore the applicability of CS on arbitrary

networks in Sec. III, by designing proper sparse basis with

the help of diffusion wavelets. In Sec. IV, we formulate the

minimum energy compressed data aggregation problem and

address it by both optimization and heuristic approaches. We

evaluate the recovery fidelity and energy efficiency in Sec. V,

before concluding our work in Sec. VII.

II. COMPRESSED DATA AGGREGATION

We introduce our novel compressed data aggregation

(CDA) scheme in this section. After preparing readers with

necessary background on compressed sensing, we define the

network model and then present the CDA framework.

A. Compressed Sensing

Given a set of data that can be sparsely represented in a

proper basis, CS theory asserts that one can recover the data

set from far fewer samples than its original dimension [8].

Suppose an n-dimensional signal u ∈ R
n has an m-sparse

representation under a proper basis Ψ, i.e., u = Ψw, where

‖w‖ℓ0 = m ≪ n (i.e., the count of the non-zero elements

in w is m). The CS coding process computes a compressed

k-dimensional coded vector v = Φu, where Φ is a k × n
“sensing” matrix2 whose row vectors are largely incoherent

with Ψ [8]. Then the CS decoding process reconstructs the

signal as û = Ψŵ, where ŵ is the optimal solution of the

following convex optimization problem:

min
w∈Rn

‖w‖ℓ1(=
∑

i

|wi|) subject to v = ΦΨw. (1)

Note that, as the decoding probability grows with n in power

law [7], CS works better for data sets of large size.

The practical performance of CS coding depends on the

sparsity of the signal, as well as the decoding algorithm.

The basis that enables the sparsest representation depends on

the particular structure or features of the original signal u.

2In theory, the sensing matrix Φ should satisfy the restricted isometry

principle (RIP). Both Gaussian random matrices and Bernoulli random
matrices are considered as good candidates for Φ.

Conventional compression basis (e.g., Fourier, DCT) can only

deal with data sampled in vector form (i.e., aligned in line) or

in matrix form (i.e., aligned in lattices). However, thanks to

diffusion wavelets, we are able to find the sparse representation

for data sampled on arbitrary manifolds or graphs. We will

discuss this issue in detail in Sec. III. On the reconstruction

process front, algorithms have been proposed based on ei-

ther standard interior-point methods (e.g., ℓ1 MAGIC [6]) or

greedy pursuit schema (e.g., CoSaMP [32]).

As opposed to the existing distributed source coding tech-

niques (e.g., Slepian-Wolf coding [34]), compressed sensing

is truly model-free: no prior knowledge about the underlying

correlation structure is required for the encoding process. In

fact, only lightweight computations (simple multiplications

and summations) are incurred during the encoding; the actual

computational load is shifted to the decoding end. As we will

show in Sec. II-C, CS coding allows for a fully distributed

way to compress the network data traffic. Due to these prop-

erties, CS becomes extremely suitable for data aggregation in

resource scarce WSNs.

B. Network Model

We represent a WSN by a connected graph G(V,E), where

the vertex set V corresponds to the nodes in the network, and

the edge set E corresponds to the wireless links between nodes

(so we use “edge” and “link” interchangeably hereafter). Let

n and ℓ be the cardinalities of V and E, respectively. There

is a special node s ∈ V known as the sink that collects data

from the whole network. As we aim at monitoring widespread

events, data from all sensor nodes are demanded. Assume

each of the n nodes acquires a sample ui, the ultimate goal

for a data aggregation scheme in WSN is to gather sufficient

information to recover the n-dimensional signal (i.e., sensor

readings) u = [u1, · · · , un]
T at the sink while minimizing

some other criteria (e.g., volume of traffic, energy). Note that,

each sample is represented as a 32-bit floating-point number

in TinyOS [5] and it is encapsulated in a packet.

Let c : E → R
+
0 be a cost assignment on E, with cij :

(i, j) ∈ E being the energy expense of sending one unit of data

across link (i, j). Assuming identical rate R and bandwidth W
for all links, we can show that cij is proportional to the path

loss on link (i, j),3 hence is a function of the link length.

Also let x : E → R
+
0 be a load allocation on E, with xij :

(i, j) ∈ E being the data traffic load imposed by a certain

routing/aggregation scheme on link (i, j). We assume that all

nodes are loosely time synchronized and the data collection

proceeds in rounds. At the beginning of each round, every

sensor node produces one unit of data (one sample), and the

sink acquires all information at the end of this round. We also

assume that there are no packet losses in our paper.

C. Overview of CDA Framework

Without data aggregation, each node needs to send its

sample to the sink and one process that can be optimized

3This follows from the Shannon’s Theorem that suggests an identical signal-
to-noise ratio at all receiving ends (given R and W), and from the common
assumption that path loss is the only term in channel gain.

3

is the routing. In any case, nodes around the sink will carry

heavy traffic as they are supposed to relay the data from the

downstream nodes. Directly applying CS to data collection

suggests a way to alleviate this bottleneck. Suppose k is

predefined and known by the whole network, and each node

i is aware of its own k-dimensional coding vector φi. To

illustrate the so called plain CS aggregation [30] (initially

introduced in [22], [27]), we rewrite the CS coding as

v = Φu = u1φ1 + · · ·+ unφn.

Now the idea becomes clear: each node i first codes its sample

into a k-dimensional vector using φi, then this coded vector

v rather than the raw data is transmitted (i.e., k, rather than

1, packets are sent). The aggregation is done by summing the

coded vectors whenever they meet. As floating-point notation

allows calculations over a wide range of magnitudes, we

consider 32 bits are enough to represent any coded element

and hence the packet size will not change during aggregation.

We can represent the traffic load (in terms of the number

of packets) by the dimension of a data vector, as in [27].

Therefore, the traffic load on any link is always k. Eventually,

the sink collects the aggregated k-dimensional vector rather

than n-dimensional raw data, then the decoding algorithm is

used to recover the n raw samples. In the later exposition, we

term k, the dimension of the coded vector v (i.e., the number

of aggregated packets) as the aggregation factor. It is worth

noting that the encoding process is actually done in a dis-

tributed fashion on each individual node, by simply performing

some multiplications and summations whose computational

cost can be negligibly small. The actual computational load

is shifted to the decoding end where the energy consumption

is not a concern.

However, directly applying CS coding on every sensor

node might not be the best choice. As shown in Fig. 1,

suppose n− 1 nodes are each sending one sample to the n-th

node, the outgoing link of that node will carry n samples

if no aggregation is performed. If we apply the plain CS

aggregation, it will force every link to carry k samples, leading

to unnecessary higher traffic at the early stages. Therefore, the

1

n

Non-aggregated data collection

k

k 1

n n k

k

if < ;
otherwise

Plain CS aggregation Hybrid CS aggregation

1 1
1

k k
k

1 1
1

Fig. 1. Comparison of different data collection mechanisms. The link labels
correspond to the carried traffic.

proper way of applying CS is to start CS coding only when

the outgoing samples will become no less than k, otherwise,

raw data transmission is used. We coined this scheme as

hybrid CS aggregation in our previous work [30]. Obviously,

hybrid CS aggregation marries the merits of non-aggregation

and plain CS aggregation: it reduces the total traffic load

while preserving the integrity of the original data. Therefore,

we adopt hybrid CS aggregation as the basis of our CDA

framework. Note that two types of traffic are imposed by

the CDA framework, namely the encoded traffic and the raw

traffic; they can be differentiated by a flag in a data packet.

In a practical implementation, given a fixed aggregation

factor k, a basis φ and a routing, a node i waits to receive

from all its downstream neighbors4 all the data they have to

send. Only upon receiving more than k−1 raw samples or any

encoded samples, node i will start encoding and aggregating

by creating a vector ujφj for every uncoded sample uj it

receives (including ui). These vectors, along with the already

coded samples (if any), are combined into one vector through

a summation. Finally, node i will send out exactly k encoded

samples corresponding to the coded vector.

According to the description above, we need an implicit

synchronization in generating Φ. As depicted in Fig. 1, the

CS coding for some samples may be carried out at other

nodes instead of the sources, so the i-th column of Φ has

to be the same wherever it is generated. We achieve this goal

by associating a specific pseudo-random number generator (a

publicly known algorithm and its seed) with a node i: it indeed

meets the i.i.d. criterion among matrix entries, while avoiding

any explicit synchronization among nodes.

Two main problems under the CDA framework are

P1 How to recover the data collected from WSNs with

arbitrary network topologies using proper sparse basis?

P2 What is the routing scheme that minimizes the total

energy consumption?

In the following, we first handle P1 by introducing customized

diffusion wavelets basis in Sec. III. Then, to address P2,

we define and tackle the minimum energy compressed data

aggregation (MECDA) problem in Sec. IV.

III. HIGH FIDELITY DATA RECOVERY

As existing CS-based aggregation techniques make use

of conventional signal/image compression basis (e.g., DCT

basis), regular WSN deployments (e.g., grids) are required.

However, nodes are usually randomly deployed rather than

being aligned in lattices, in order to avoid high deployment

cost. To cope with arbitrary network topologies, we employ

diffusion wavelets as the sparse basis for the collected data.

In particular, we customize the basis such that it allows

us to i) partition a WSN into subnetworks for improving

energy efficiency (Sec. III-C) and ii) jointly exploit spatial

and temporal correlations among data (Sec. III-D).

A. Diffusion Wavelets

Generalizing the classical wavelets, diffusion wavelets [11]

enables multiscale analysis on general structures such as man-

ifolds or graphs. As opposed to dilating a “mother wavelet”

by powers of two to generate a set of classic wavelet bases,

the dyadic dilation generating diffusion wavelets relies on a

diffusion operator. Here diffusion is used as a smoothing and

scaling tool to enable coarse grained and multiscale analysis.

Let us take an arbitrary graph G as an example to illustrate

the idea. Suppose the weighted adjacency matrix of G is

Ω = [ωij], where ωij is the weight of edge (i, j). Let Λ = [λij]
be the normalized Laplacian of G, i.e., λij = 1 if i = j;

4Node i’s downstream neighbors are the nodes that have been specified by
the routing scheme to forward their data to the sink through i.

4

otherwise λij = − ωij√∑
p
ωip

∑
p
ωpj

. It is well known that

Λ characterizes the degree of correlations between function

values taken at vertices of the graph G [10]. Roughly speaking,

each eigenvalue (and the corresponding eigenvector) represents

the correlation under a certain scale. In order to decompose

the signal sampled on a graph in a multiscale manner, one may

consider partitioning the range space of Λ. The idea behind

diffusion wavelets is to construct a diffusion operator O from

Λ, such that they share the same eigenvectors whereas all

eigenvalues of O are smaller than 1. Consequently, recursively

raising O to power 2 and applying a fixed threshold to

remove the diminishing eigenvalues (hence the corresponding

eigenvectors and the subspaces spanned by them) leads to a

dilation of the null space but a shrinkage of the range space;

this naturally produces space splitting.

More specifically, O2j is computed at the j-th scale,

eigenvalue decomposition is derived for it, and the resulting

eigenvectors form a basis that (qualitatively) represents the

correlation over neighborhood of radius 2j hops on the graph.

Denote the original range space of O by U0 = R
n, it is

split recursively: at the j-th level, Uj−1 is split into two

orthogonal subspaces: the scaling subspace Uj that is the range

space of O2j , and the wavelet subspace Vj as the difference

between Uj and Uj−1. Given a specified decomposition level

γ, the diffusion wavelet basis Ψ is the concatenation of the

orthonormal bases of V1, . . . , Vγ (wavelet functions) and Uγ

(scaling function), sorted in descending order according to

their corresponding frequencies.

Interested readers are referred to [11] for detailed exposi-

tion. We want to point out that different diffusion operators

lead to different wavelets bases, therefore the art of our later

design lies in the proper choice of an operator.

B. Basis for Spatial Correlation

As u is sampled by a WSN with nodes arbitrarily de-

ployed, the basis Ψ has to accommodate this irregularity. This

makes diffusion wavelets basis an ideal choice. According

to Sec. III-A, diffusion wavelets are generated by diffusion

operator O, which stems from the weighted adjacency matrix

Ω = [ωij]. As ωij represents the correlation between the data

sampled at nodes i and j, we propose to make ωij a function

of distance for representing the spatial correlation.

Let dij be the Euclidean distance between nodes i and j.

Assuming these distances are known, we define

ωij =

{

dαij i 6= j,

β otherwise,
(2)

where α < 0 and β is a small positive number. As a result,

the normalized Laplacian becomes

λij =







1− β∑
p
dα
ip

i = j,

− dα
ij√∑

p
dα
ip

∑
p
dα
pj

otherwise.
(3)

Here the constant β is used to tune the spectrum of the graph

G, hence the structure of diffusion wavelets.

In a practical monitoring process, we initially collect data

without aggregation. Using these data as the ground truth, we

can estimate α and β in (2) through trial-and-error. Then both

estimated parameters are used for later aggregation.

Proposition 1: The eigenvalues of Λ lie in [0, 2], and the

maximum eigenvalue σmax(Λ) is a decreasing function in β.

The proof is omitted; it follows from Lemma 1.7 in [10].

Based on this proposition, two straightforward choices of

the diffusion operator O are (I is the identity matrix):

O = I − Λ or O = Λ/2;

both have their eigenvalues ranged from 0 to 1. Therefore,

keeping raising a dyadic power to O will make all the

eigenvalues diminish eventually. So we partition the range

space of O and group the eigenvectors to form the basis, by

thresholding on the diminishing eigenvalues of O2j . Based on

the above construction procedure, we generate the diffusion

wavelets for a WSN with 100 nodes and illustrate some of

them in Fig. 2.

0

5

10

15

20

0
2

4
6

8
10

12
14

16
18

20

0

0.02

0.04

0.06

0.08

0.1

0.12

0

5

10

15

20

0
2

4
6

8
10

12
14

16
18

20

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(a) Scaling function (b) Wavelet function I

0

5

10

15

20

0
2

4
6

8
10

12
14

16
18

20

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0

5

10

15

20

0
2

4
6

8
10

12
14

16
18

20

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) Wavelet function II (d) Wavelet function III

Fig. 2. Diffusion wavelets for a 100-node WSN, with O = I −Λ, α = −1
and β = 1. (b)-(d) are three examples of the low frequency wavelets. The
node distribution is plotted in (a). Although these wavelets are discrete, we
present them as interpolated surfaces to facilitate visual illustration.

C. Joint Recovery with Network Partition

For large-scale networks, the aggregation factor k needs to

be sufficiently large in order to allow for a high fidelity data

recovery at the sink. This may substantially limit the energy

efficiency brought by our CDA framework. Fortunately, we

could expect the sparsity property to still hold for localized

subsets of the network. To improve energy efficiency while

still maintaining recovery fidelity, we seek to partition the

WSN (excluding the sink) into a set V of disjoint localized

subnetworks {Vi}i, and the sink gathers information from

these subnetworks individually. We have
⋃

Vi∈V Vi = V \{s}
and Vi

⋂

Vj = ∅, i 6= j. For example, we can geometrically

partition the region occupied by a WSN into multiple areas

that are centered at the sink s. Then, Vi is the set of sensors

5

that belong to area i. Denote by ni and ki the number of

nodes and the aggregation factor for the subnetwork Gi. As

the aggregation factor is an increasing function of the network

size, we would have ki < k as the CS coding is performed

on smaller datasets (ni < n). Although the sink still collects

k =
∑

Gi∈G ki coded samples, the aggregated traffic in each

subnetwork is reduced to only ki, which significantly lowers

the total energy consumption.

The network partition causes the sensing matrix Φ to have

a block-diagonal shape:

Φ =













Φ1 0 · · · 0

0 Φ2
. . . 0

...
. . .

. . .
...

0 0 · · · Φ|G|













,

where Φi is a ki × ni matrix with entries as specified in

Sec. II-A. Now the question is whether a CS coding with

Φ may still deliver high fidelity recovery at the decoding end.

Fortunately, we have the following result:

Proposition 2: Let U be the set of m-sparse vectors that

share the same sparse index set I of basis vectors, i.e.,

ui =
∑

j∈I wj(ui)ψj , ∀ui ∈ U . If the coherence [8] between

Φ and a subset of Ψ’s columns indexed by I is low, the

recovery of any u ∈ U by solving Eqn. (1) is exact with

high probability.

The proof is straightforward given [7]. We will show in

Sec. V-A1 that data mostly share the same sparse index set

of diffusion wavelets: the set containing the “low frequency”

components of the basis. Empirically, these components often

have their “energy” spread across all coordinates (see Fig. 2).

As a result, if Ψ is incoherent with a full sensing matrix and

|G| is not too large, so is it with a block-diagonal Φ. Finally,

the conditions stated in Proposition 2 does not constrain how

a WSN should be partitioned, so we have the freedom to

choose a partition that favors energy efficiency, for example,

a balanced partition that minimizes maxi ki. Also thanks to

this freedom, we can focus on one subnet in the remaining

discussions of this paper.

D. Joint Spatial and Temporal Recovery

As the diffusion wavelets basis stems from a graph that

represents the data correlation, we can extend the basis defined

for spatial correlations to include temporal correlations as

well. The idea is that, for a given time period indexed by

R, we replicate the graph G |R| times and index them by

r ∈ R. Within each graph Gr, the weighted adjacency matrix

is still Ω in (2). Between two graphs Gr1 and Gr2 , the

weight between node i in Gr1 and node j in Gr2 is given by

ωr1r2
ij = ωij/g(|r1−r2|), where g(·) is an increasing function.

This extended adjacency matrix is given by

Ω̃ =















Ω ΩI−1
g(|r1−r2|)

· · · ΩI−1
g(|r1−r|R|)

ΩI−1
g(|r2−r1|)

Ω
. . . ΩI−1

g(|r2−r|R|)

...
. . .

. . .
...

ΩI−1
g(|r|R|−r1|)

ΩI−1
g(|r|R|−r2|)

· · · Ω















,

where I−1
g(|r1−r2|)

is a diagonal matrix with g−1(|r1 − r2|) on

its diagonal. The temporal correlation represented by Ω̃ can

be fine-tuned by choosing g(·) appropriately: the larger the

first-order derivative of g(·), the faster the temporal correlation

attenuates. Based on this extension, we can derive the diffusion

operator and hence diffusion wavelets, following exactly the

same procedure as presented in Sec. III-B. Note that, g(·) is

again estimated through trial-and-error as in Sec. III-B.

The benefits of involving spatial and temporal correlations

together are twofold. Firstly, for large-scale WSNs with hun-

dreds or thousands of nodes, the number of samples k to be

acquired (by the sink) for each round could be reduced while

still achieving the same level of recovery fidelity. Secondly,

for small-scale WSNs with only tens of nodes, CS often fails

to deliver satisfactory recovery fidelity for individual rounds,

which stems from the asymptotic nature of the CS theory.

Nevertheless, with a small set of samples in space but a large

one in time, we could still expect promising results for CDA

if we compensate the small size in space by the large size in

time. This intuition will be confirmed in Sec. V-A.

IV. MINIMUM ENERGY COMPRESSED DATA

AGGREGATION (MECDA)

In this section, we begin with the definition of the MECDA

problem. Based on our findings on the structure of the optimal

solutions, we propose a mixed integer programming formula-

tion along with a greedy heuristic. Another two algorithms are

also introduced so as to benchmark our greedy heuristic.

A. Problem Statement and Hardness Analysis

Recall that cij is the cost of transmitting a unit of data over

link (i, j), and xij is the traffic load over (i, j) (Sec. II-B).

Our problem, termed minimum energy compressed data ag-

gregation (MECDA), is to minimize the total cost (or energy

consumption)
∑

(i,j)∈Ecijxij , when applying CDA to collect

data at the sink. If a WSN is partitioned into subnetworks to

improve energy efficiency (see Sec. III-C), the optimization is

performed over individual subnets.

To solve this problem, we need to jointly allocate the

raw/coded traffic and find the optimal routing that minimizes

the energy consumption defined above. We will first show

that we can restrict the search for an optimal routing to trees.

This is due in part to the objective function (i.e., we are only

interested in the energy consumption).

Proposition 3: There exists an optimal solution of MECDA

involving a routing tree rooted at the sink.

Proof: It is obvious that, if CS is not applied, a shortest

path tree rooted at the sink connecting all sources is always

an optimal strategy for energy efficiency. Suppose the nodes

performing CS coding are given by an oracle when applying

CS aggregation. Then in order to minimize the energy cost,

raw traffics originated from the rest nodes should be destined

to the nearest coding nodes. Therefore, shortest path trees

rooted at coding nodes compose (part of) an optimal solution.

Moreover, if a coding node a splits its coded vector and

sends the resulting vectors to different next-hop neighbors on

the way towards the sink, the CS coding cannot be properly

6

performed and hence additional flows are introduced into

the routing path from a towards the sink, contradicting our

objective of minimizing the energy consumption. Therefore,

an optimal routing for MECDA can be achieved by restricting

data traffic (raw and coded) on a tree rooted at the sink.

Consequently, without loss of generality, we restrict the data

aggregation on a directed tree rooted at the sink. The nodes

that route their data to the sink through node i are called the

descendants of i. We now formally specify the abstract model

for our CDA scheme.

Definition 1 (CDA): Given a certain routing tree T , the

outgoing traffic from node i is

xij:(i,j)∈E(T) = min







∑

j:(j,i)∈E(T)

xji + 1, k







.

This restricts that the out-going flow of a node is always upper

bounded by k. We call a node that performs CS coding as an

aggregator and otherwise a forwarder hereafter.

In fact, Definition 1 exhibits a special aggregation function,

which is nonlinear and heavily dependent on the routing

strategy. Therefore, our MECDA problem aims at finding a

tree and allocating the traffic load x properly in a given round,

through joint routing and aggregator assignment, such that the

total energy consumption is minimized. By investigating the

interactions between CS aggregation and routing tree structure,

we draw some interesting observations in the following.

1) Characterization of the Optimal Solution: Each optimal

solution of MECDA provides an optimal configuration, in

terms of routing paths and aggregator assignment. Here are

several conditions that characterize an optimal configuration.

Proposition 4: In an optimal configuration, we have the

following properties.

1) The network is partitioned into two complementary sets:

aggregator set A (s ∈ A) and forwarder set F , i.e.,

A ∩ F = ∅ and A ∪ F = V .

2) The routing topology for nodes in A is a minimum

spanning tree (MST) of the subgraph induced by A.

3) For every node i ∈ F , the routing path to A is via some

node ĵ ∈ A that minimizes the cost of the shortest path,

i.e., ĵ = argminj∈A(SPij).
4) Each member of F has less than k − 1 descendants,

whereas each leaf of the MST induced by A and rooted

at the sink has no less than k − 1 descendants in F .

The proof is postponed to Appendix A to maintain fluency; we

just illustrate an optimal configuration by Fig. 3. In fact, the

above conditions assert that the optimal routing tree consists

of a “core” – an MST for A, as well as a “shell” – a set of

shortest path trees (SPTs) that connect F to A. As the cost

minimization within each set is trivial, the difficulty in solving

the problem should lie in the partition of V into A and F .

Note that, the plain CS aggregation is a special case of CDA,

where we have A = V and F = ∅ and the optimal solution is

trivial: an MST of G. As a result, we focus on investigating

the general CDA hereafter.

2) Hardness of the Problem: Based on our characteri-

zation in Sec. IV-A1, MECDA does not appear to admit

a straightforward solution of polynomial time complexity,

0

5

10

15

20

25

30

Fig. 3. An optimal CDA tree in a 1024-node WSN, with k = 150. The sink
is represented by the pentagram and the aggregators are marked as squares;
the rest are forwarders. The original graph G is a complete graph, with the
edge cost being a function of the distance between its two ends. We only plot
the tree edges to avoid confusion.

given its graph partitioning nature. We hereby analyze the

problem complexity. Our results establish the NP-hardness of

MECDA, through a nontrivial reduction from the maximum

leaf spanning tree (MLST) problem [16]. As a byproduct, we

also obtain the inapproximability of MECDA.

We first introduce the decision version of MECDA, termed

CS Aggregation Tree Cost Problem (CSATCP).

INSTANCE: A graph G = (V,E), a cost assignment

c : E → R
+
0 , an aggregation factor (integer) k, and

a positive number B.

QUESTION: Is there a CS aggregation tree such that

the total cost is less than B?

We denote by CSATCPk the problem instance with a specific

value for the aggregation factor k. Since we need MLST in

the later proof, we also cite it from [16].

INSTANCE: A graph G = (V,E), a positive integer

K ≤ |V |.
QUESTION: Is there a spanning tree for G in which

K or more vertices have degree 1?

We first show that, for two specific values of k, CSATCPk

can be solved in polynomial time.

Proposition 5: CSATCP1 and CSATCPn−1 are both P-

problems.

Proof: For k = 1, every node belongs to A and sends out

only one sample. Therefore, a (polynomial time) minimum

spanning tree oracle would answer the question properly. For

k = n− 1 (or any larger values), every node apart from s can

be put into to F and no CS coding is performed. Therefore, a

(polynomial time) shortest path tree oracle would answer the

question properly.

The proof also suggests that the traditional min-energy func-

tional aggregation and non-aggregation are both special cases

of MECDA. Unfortunately, other parameterized versions of

CSATCP (hence MECDA) are intractable.

Proposition 6: CSATCPk, with 2 ≤ k < n − 1, are all

NP-complete problems.

We again postpone the proof to the Appendices (Appendix B),

where we construct a reduction from MLST to CSATCPk.

7

As a byproduct of this proof, we are also able to state the

inapproximability of MECDA as an optimization problem.

Corollary 1: MECDA does not admit any polynomial time

approximation scheme (PTAS).

The proof is sketched in Appendix B; it follows directly

from the MAX SNP-completeness of the MLST (optimization)

problem [15] and our proof to Proposition 6.

B. Solution Techniques

In this section, we first formulate MECDA as a mixed

integer programming (MIP) problem, which gives the exact

solution to MECDA. Concerning the NP-hardness of MECDA,

we also present a greedy heuristic that efficiently finds a near-

optimal solution. This is followed by two other algorithms

with proven approximation ratios for benchmarking.

1) An Optimization Formulation: Essentially, we formulate

the MECDA problem as a special minimum-cost flow problem.

The main difference between CDA and non-aggregation is the

flow conservation: CDA does not conserve flow at the aggre-

gators. Therefore, we need to extend the flow conservation

constraint for every node i ∈ V \{s}:
∑

j:(i,j)∈E xij −
∑

j:(j,i)∈E xji + (n− k)yi ≥ 1
∑

j:(i,j)∈E xij − (k − 1)yi ≥ 1

where yi = 1 if node i is an aggregator; otherwise yi = 0.

If i is a forwarder, the first constraint is just the conventional

flow conservation, and the second constraint trivially holds.

While if i is an aggregator, the second constraint states the

outgoing traffic is always k. Then the first constraint becomes

trivial since we have n−∑j:(j,i)∈E xji as a lower bound on

the LHS if we plug in the second constraint.

It is not sufficient to have only the extended flow conserva-

tion constraints, as the extension may allow loops. According

to Proposition 4, we need to constrain that the set of links

carrying positive flows form a spanning tree. Let zij ∈ {0, 1}
be an indicator of whether a link is a tree edge and x̄ ≥ 0 be

a virtual link flow assignment, we first propose an alternative

formulation of a spanning tree.5

∑

j:(i,j)∈E

x̄ij −
∑

j:(j,i)∈E

x̄ji −
1

n− 1
≥ 0 ∀i ∈ V \{s}

zij − x̄ij ≥ 0 ∀(i, j) ∈ E
∑

(i,j)∈E zij − (n− 1) = 0

The proof for the correctness of this formulation is omitted; it

follows directly from the fact that a connected subgraph whose

vertex set is V and whose edge set has a cardinality n − 1
is a spanning tree of G. Indeed, the first constraint asserts

that the subgraph is connected: there is a positive (virtual)

flow between every node i and s. The other two constraints

confine the cardinality of the edge set involved in the subgraph.

Note that the virtual flow vector x̄ is used only to specify the

connectivity, it has nothing to do with the real flow vector x.

5Conventional spanning tree formulation (e.g., [12]) involves an exponential
number (2|V |) of constraints

∑
(i,j):i∈S,j∈S zij ≤ |S| − 1, ∀S ⊆ V . By

introducing the virtual link flow assignment, our formulation exhibits a more
compact form than the existing one, with |V |+ |E| constraints.

The final step is to make the connection between xij and

zij , such that only edges carrying positive flows are indicated

as tree edges. This is achieved by two inequalities applied to

every edge (i, j) ∈ E: xij − zij ≥ 0 andzij − k−1xij ≥ 0,

which imply that xij = 0⇔ zij = 0 and xij > 0⇔ zij = 1.

In summary, we have the following extended min-cost flow

problem as the MIP formulation of MECDA.

minimize
∑

(i,j)∈E

cijxij (4)

∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji + (n− k)yi ≥ 1 ∀i ∈ V \{s} (5)

∑

j:(i,j)∈E

xij − (k − 1)yi ≥ 1 ∀i ∈ V \{s} (6)

xij − zij ≥ 0 ∀(i, j) ∈ E (7)

zij − k−1xij ≥ 0 ∀(i, j) ∈ E (8)
∑

j:(i,j)∈E

x̄ij −
∑

j:(j,i)∈E

x̄ji −
1

n− 1
≥ 0 ∀i ∈ V \{s} (9)

zij − x̄ij ≥ 0 ∀(i, j) ∈ E (10)
∑

(i,j)∈E

zij − (n− 1) = 0 (11)

xij , x̄ij ≥ 0, zij ∈ {0, 1} ∀(i, j) ∈ E (12)

yi ∈ {0, 1} ∀i ∈ V \{s}(13)

We will use the optimal solutions obtained by solving this MIP

to benchmark the performance of our heuristics in small-scale

WSNs in Sec. V-B1.

2) A Greedy Algorithm: As explained in Sec. IV-A1, the

difficulty of MECDA lies in partitioning V into A (the “core”)

and F (the “shell”). One can expect that in general |A| ≪
|F | for a practical network topology and aggregation factor.

Observing that, we now present a greedy heuristic that is based

on the principle of “growing the core”. The details are given

in Algorithm 1.

Algorithm 1: MECDA GREEDY

Input: G(V,E), s, k
Output: T , A, cost

1 A = {s}; F = V \{s}; cost =∞
2 repeat

3 forall the i ∈ B(A) do

4 Atest = A ∪ {i}; Ftest = F\{i}
5 {costMST, L} ← MST(Atest)
6 {costSPF, t} ← SPF(Ftest, Atest)
7 if k · costMST + costSPF ≤ cost AND

minl∈L tl ≥ k − 1 then

8 cost = k · costMST + costSPF

9 Acand = Atest; Fcand = Ftest

10 end

11 end

12 A = Acand; F = Fcand

13 until A unchanged;

14 T = MST(A) ∪ SPF(F,A)
15 return T , A, cost

8

The algorithm maintains two lists, A and F , recording

respectively the aggregator set and forwarder set. We term

by MST(A) the MST induced by A, and by SPF(F,A)
the shortest path forest (SPF) that connects each i ∈ F
through the shortest path to its nearest aggregator ĵ =
argminj∈A(SPij). While the former is readily computed by

Prim’s algorithm [13], the latter can be obtained by simply

performing linear searches on an all-pairs shortest paths table

(obtained in advance by Floyd-Warshall algorithm [13]). The

outcome of MST(A) and SPF(F,A) includes the edge costs

in MST(A) (costMST =
∑

(i,j)∈MST(A) cij), path costs in

SPF(F,A) (costSPF =
∑

i∈F minj∈A SPij), the leaf node

set L in MST(A), and a vector t = {tl}l∈A counting the

number of descendants for every node in A. The cost incurred

by a certain partition A and F is k·costMST + costSPF.

Starting with a trivial assignment that A = {s} and

F = V \{s}, the algorithm proceeds in iterations. We denote

by B(A) = {i ∈ F |∃j ∈ A : (i, j) ∈ E} the neighboring

nodes of A. For each round, the algorithm greedily moves

one node from B(A) to A following two criterions: 1) the

optimality characterization for A is satisfied, i.e., every leaf

node in MST(A) has no less than k − 1 descendants, and 2)

the action leads to the greatest cost reduction. Consequently,

the core keeps growing, leading to more links carrying lighter

aggregated traffic instead of heavier raw traffic. So the total

energy cost keeps decreasing. The algorithm terminates if no

further core expansion is allowed, where the cost reaches a

local minimal. Upon termination, the algorithm returns the

aggregation tree T = MST(A) ∪ SPF(F,A), along with the

aggregator set A. It is easy to verify that {T,A} satisfies all

the conditions, in particular 4), stated in Proposition 4, because

otherwise A can be further expanded and the algorithm would

not have terminated.

Proposition 7: Algorithm 1 has a polynomial time com-

plexity, which is O
(

(n− k)2n2 + n3
)

.

We refer to Appendix C for the detailed proof.

Note that in a practical system, data aggregation starts from

the leave nodes in T and proceeds towards the sink level

by level, which demands a loose synchronization between a

node and its children in T . Assuming a practical MAC and

a reasonable degree in T , the delay for all descendants to

successfully transmit data to their aggregator in T is bounded.

Therefore, each aggregator waits for a bounded time period

before performing CS coding; this guarantees the level by level

processing of CDA.

Note that Algorithm 1 is also amenable to a distributed

implementation. Initially, an all-to-all flooding is deployed to

obtain the network-wide information, where O(n2) messages

are needed. This phase accomplishes the topology discovery;

all-pair shortest paths are also computed and maintained lo-

cally at each node. Then A expands in rounds: each i ∈ B(A)
computes the new cost of adding itself into A and competes

with other candidates in terms of the reduced cost; the winner

leading to the most cost reduction will broadcast globally

that it becomes a new aggregator. Each competition is upper

bounded by n2 messages, and at most n − k nodes can

be nominated as aggregators. This results in O
(

n2(n− k)
)

messages. Once A is determined, the tree is formed naturally

since the network topology and the core A are known to all.

Therefore, the overall message complexity is O(n2(n− k)).
3) A Randomized Algorithm: In large-scale WSNs, com-

puting the optimal configuration becomes extremely hard.

Therefore, we seek to benchmark our greedy heuristic by a

randomized algorithm [18] that admits a provable approxima-

tion ratio. Given a graph G(V,E), a set D ⊆ V of demands,

and a parameter M > 1, the so called connected facility

location (CFL) aims at finding a set A ⊆ V of facilities to

open, such that the connection cost within A and that between

D and A is minimized. By setting D = V and M = k,

MECDA is reduced to CFL, hence an upper bound for CFL

also holds for MECDA. The main body of this algorithm is

given in Algorithm 2. Here ρ is the approximation ratio for

Algorithm 2: CFL RANDOM

1 Each node i ∈ V \{s} becomes an aggregator with a

probability 1/k, denote the aggregator set by A and the

forwarder set by F ;

2 Construct a ρ-approximate Steiner tree on A that forms

the CS aggregation tree on the core, denote the cost as

costSteiner;

3 Connect each forwarder j ∈ F to its closest aggregator in

A using the shortest path, denote the cost as costSPF.

4 cost = k · costSteiner + costSPF.

the Steiner tree problem given by a specific approximation

algorithm. Later we will use Kou’s algorithm [24], which is

a well-known 2-approximate algorithm for minimum Steiner

tree problem.

Note that even though Algorithm 2 is a (2 + ρ)-
approximation for CFL [18] and hence for MECDA, it hardly

suggests a meaningful solution for MECDA as it barely

improves the network energy efficiency compared with non-

aggregation, which we will show in Sec. V-B3. Therefore, we

use the randomized algorithm only to benchmark our greedy

heuristic rather than solving MECDA.

4) An MST-based Heuristic: Besides the randomized algo-

rithm, our greedy heuristic can be benchmarked by a deter-

ministic one as well. The algorithm starts with an MST on

the whole network and rooted at the sink, namely MST(V).
Then a counting procedure is taken place to get the number of

descendants (q) for each node. If a node has no less than k−1
descendants, it is promoted to be an aggregator; otherwise,

it is labelled as a forwarder. The pseudo-code is given in

Algorithm 3, corresponding to line 2-14 in Algorithm 1.

Algorithm 3: MST PRUNED

1 {T,q} ← MST(V)
2 if qi ≥ k − 1 then

3 A = A ∪ {i}; xij:(i,j)∈E(T) = k
4 else

5 F = F ∪ {i}; xij:(i,j)∈E(T) = qi + 1
6 end

7 cost =
∑

(i,j)∈E(T) cijxij

9

Proposition 8: Algorithm 3 gives a solution to MECDA

problem with an approximation ratio of k.

Proof: Suppose the optimal configuration of MECDA

induces a routing tree T ∗. It is obvious that cost(T ∗) ≥
cost(MST(V)). While running Algorithm 3, we find a so-

lution with cost(T) ≤ k · cost(MST(V)). This gives the

approximation ratio = cost(T)/cost(T ∗) ≤ k.

Due to the same reason explained in Sec. IV-B3, Algo-

rithm 3 only serves as another benchmark for Algorithm 1

instead of solving MECDA.

V. PERFORMANCE EVALUATION

In the following, we evaluate the performance of CDA from

two aspects. We first validate the performance of using CS

coding for data recovery, then we demonstrate the energy

efficiency brought by CDA using MECDA.

A. Recovery Fidelity of CDA

We intend to demonstrate the recovery performance of CDA

with the use of diffusion wavelets. Note that the decoding

procedure takes place at the sink that is capable of solving

the convex optimization problem, i.e., Eqn. (1). We use both

synthetic dataset as well as real dataset for evaluation.

During our experiments, we have tested different values of

α and β in the Laplacian (3) and tried both O = I − Λ or

O = Λ/2. According to our observations, O = I−Λ performs

much better than O = Λ/2 as the sparse basis, while α ∈
[−1,−1/3] and β ∈ [0, 2] provide good sparse representation

for the sampled data (e.g., Fig. 5). In the following, we fix

α = −1 and β = 1, and use O = I − Λ.

1) Compressibility of Data: In order to show that CS

aggregation works well for network-partitioned WSNs, we

need to demonstrate that the data u collected by a WSN

only has low frequency components when projected onto the

diffusion wavelets basis (see Sec. III-C). Here we use the data

generated by the peaks function in Matlab, depicted in Fig. 4.

Fig. 4. Visualization of the peaks.

In Fig. 5, we plot the dif-

fusion wavelets coefficients

for data obtained for WSNs

of different sizes. Sorting

the coefficients in descend-

ing order by their frequen-

cies, it is evident that the

data contain mostly low fre-

quency components of the

diffusion wavelets basis.

2) Spatial Recovery:

Fig. 6(a) visualizes a

set of relative humidity

data obtained from [4]; it

serves as the underlying signal under surveillance. Then we

arbitrarily deploy WSNs on the field. The direct recovery in

Fig. 6(c) represents the ideal case for data compression and

recovery where both the data set and the sparse basis are

known à priori (though it is not practical for WSNs). One

can see the CS recovery leads to comparable performance

with the direct recovery: the data pattern has been maintained

−5000

0

5000

n = 950

−5000

0

5000

n = 1400

−5000

0

5000

n = 1800

0 500 1000 1500 2000 2500

−5000

0

5000

n = 2200

Fig. 5. Diffusion wavelets coefficients for WSNs with different sizes.

(a) Original data (b) Measured data

(c) Direct recovery (d) CS recovery

Fig. 6. Visualization of the physical phenomenon, the sampled data, as well
as the reconstructed data. A 2048-node arbitrary network is deployed upon
this area with its measured data depicted in (b). In (c), we take the 75 largest
diffusion wavelet coefficients to directly recover the data. While in (d), the
CS recovery is obtained by solving Eqn. (1) with k = 300.

in both cases. Therefore, CS recovery is superior to direct

recovery in that it does not rely on the global information

or the prior knowledge of the sparse basis to compress the

volume of traffic.

To show the recovery fidelity of CDA under network

partitions, we plot in Fig. 7 the recovery errors of CS decoding

at the sink. We use the abbreviations ST (single tree) and MT

(multiple trees) to indicate the cases with and without network

partition, respectively. In this comparison, we partitioned the

network into four disjoint parts with each one forming an ag-

gregation tree rooted at the sink. The recovery error is defined

as ǫ = ‖u−û‖ℓ2 ·‖u‖−1
ℓ2

. The aggregation factor for the single

tree case is ranged from 100 to 300. Accordingly, we take the

aggregation factor for each subtree in the tree partition cases

to be ki = k/4 or ki = k/3. Obviously, as the aggregation

factor keeps increasing, the recovery error gets smaller and

smaller, and it is supposed to become negligible eventually.

As we will discuss in Sec. V-B, however, the aggregation

10

100 120 140 160 180 200 220 240 260 280 300
0.04

0.05

0.06

0.07

0.08

0.09

0.1

k

R
e

c
o

v
e

ry
 E

rr
o

r

ST

MT (k
i
 = k/4)

MT (k
i
 = k/3)

Fig. 7. CS recovery errors for the data sensed by 2048-node WSNs.

factor also affects the routing cost. Fortunately, Fig. 7 also

shows that with tree partition and a proper aggregation factor,

one can expect a promising recovery performance and much

lower energy consumption (see Sec. V-B for details).

3) Joint Spatial and Temporal Recovery: Although CS

becomes less effective for spatial recovery in small-scale

WSNs, leveraging on diffusion wavelets, we can naturally add

the temporal domain into consideration. In this section, our

joint spatial and temporal recovery scheme is tested upon the

data provided by the Met Office [3], which records the monthly

climate information gathered from 33 weather stations in

the UK (n = 33). We use a 6-month record (March 2009

to September 2009) for experiment, and we take k = 5
for each month. We may recover the weather data either

independently for each month or jointly for all the 6 months.

Concerning the joint spatial and temporal recovery, we set

g(·) = exp(|r1−r2|). For the ease of illustration, we align the

spatially distributed data in a sequence of the station indices

and concatenate the monthly data into a row vector, as depicted

in Fig. 8. As expected, for such a small-scale network, solely

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

Measured data

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

40

Spatial recovery

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

Spatial−temporal recovery

Fig. 8. Comparing independent spatial recovery and joint spatial and temporal
recovery for UK temperature.

spatial recovery sometimes compromises the recovery fidelity,

whereas the joint spatial and temporal recovery achieves a high

fidelity recovery (ǫ = 8%) for all 6 months.

B. Energy Efficiency of CDA

To obtain the optimal solution for MECDA, we use CPLEX

[2] to solve the MIP formulation given in Sec. IV-B1.

The solvers for MECDA GREEDY, CFL RANDOM, and

MST PRUNED are developed in C++, based on Boost graph

library [1]. We consider two types of network topologies: in

grid networks, nodes are aligned in lattices with the sink being

at a corner; and in arbitrary networks, nodes are randomly

deployed with the sink being at the center. We also consider

networks of different size but identical node density. The

underlying communication graph is a complete graph; each

link bears an energy cost proportional to the cube of the

distance between its two ends, i.e., cij = d3ij . Note that

such a communication graph is actually the worst case for

a given vertex set V , as it results in the largest edge set. Less

sophisticated communication graphs could be produced by a

thresholding technique, i.e., removing edges whose weights

go beyond a certain threshold, but that would just simplify

the solution. The CFL RANDOM solver runs ten times on

each network deployment, so the mean value is taken for com-

parison. The MECDA GREEDY and MST PRUNED solvers

suggest a deterministic solution for each specific instance. For

arbitrary networks, we generate ten different deployments for

each network size and we use the boxplot to summarize the

results. On each box, the central mark is the median, the lower

(upper) edge of the box are the 25th (75th) percentile, the

whiskers extend to the extreme observations not considered

outliers, and outliers are indicated individually as “+”.
1) Efficacy of MECDA GREEDY: We first compare the

results obtained from the MIP and the greedy heuristic, aiming

at demonstrating the near-optimality of MECDA GREEDY.

As MECDA is an NP-complete problem, the optimal solution

to its MIP formulation can be obtained only for WSNs

of small size. Therefore, we report the results for WSNs

of 20 and 30 nodes, with k ∈ {4, 6, 8, 10}, which are

summarized by boxplot in Fig. 9. It is evident that the

4 6 8 10 4 6 8 10

1

1.01

1.02

1.03

1.04

1.05

1.06

k

A
p

p
ro

x
im

a
ti
o

n
 R

a
ti
o

n = 20

n = 30

Fig. 9. Benchmarking MECDA GREEDY in small-scale networks.

(empirical) approximation ratio is very close to 1, confirming

the near-optimality of our heuristic. We will further validate

the efficacy of MECDA GREEDY using CFL RANDOM and

MST PRUNED for large-scale WSNs, and we will also study

the energy efficiency gained by CDA.

11

2) Bad Performance of Plain CS Aggregation: In Fig. 10,

we compare CDA (results of MECDA GREEDY) with plain

100 120 140 160 180 200 220 240 260 280 300

10
4

10
5

10
6

k

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Plain CS (n = 1225)

Hybrid CS (n = 1225)

Plain CS (n = 625)

Hybrid CS (n = 625)

Fig. 10. Comparing CDA against plain CS aggregation.

CS aggregation, showing the bad performance of the latter

one. As depicted, the results are obtained from grid networks

consisting of 625 nodes and 1225 nodes, with aggregation

factor k ranging from 100 to 300. Evidently, plain CS aggre-

gation always consumes several times more energy than CDA.

The reason can be explained as follows: plain CS aggregation

overacts by forcing every node to be an aggregator, even

though the aggregators are often in the minority for optimal

configurations (see Fig. 3). In fact, plain CS aggregation is

less energy efficient than non-aggregation unless k becomes

unreasonably small (≪ 100).

3) Efficiency of CDA: To demonstrate the efficiency of

CDA, we first consider a special case, i.e., a grid network

with 1225 nodes in Fig. 11(a), then we proceed to more

general cases, i.e., arbitrary networks with 2048 nodes in

Fig. 11(b). We again set k ∈ [100, 300]. Four sets of

results are compared, namely non-aggregation, and CDA

solved by MECDA GREEDY, CFL RANDOM, as well as

MST PRUNED solvers. One immediate observation is that,

compared with non-aggregation, CDA brings a remarkable

cost reduction. In grid networks, 75% of the energy is saved in

the best case. Even for the arbitrary networks, this saving can

be up to 50%. The energy saving is gradually reduced as k
increases, because the increase of k leads to the “shrinking” of

the core, making the aggregation tree more and more like the

SPT. Nevertheless, we have shown in Fig. 6 and Fig. 7 that

k = 10% of n is sufficient to allow a satisfactory recovery

(ǫ < 7%). Therefore, we can expect CDA to significantly

outperform non-aggregation in general. Moreover, as the re-

sults obtained from MECDA GREEDY are always bounded

from above by those obtained from both CFL RANDOM and

MST PRUNED (which have proven approximation ratios), the

efficacy of MECDA GREEDY in large-scale networks is also

confirmed. This also explains why neither the randomized

nor the pruned algorithm is suitable for solving MECDA:

they may lead to solutions that are less energy efficient than

non-aggregation (the energy consumptions of CFL RANDOM

and MST PRUNED go beyond that of non-aggregation when

(a) 1225-node grid network

100 120 140 160 180 200 220 240 260 280 300

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

k

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Non−aggregation

MST_Pruned

CFL_Random

MECDA_Greedy

(b) 2048-node arbitrary networks

100 120 140 160 180 200 220 240 260 280 300
2

2.5

3

3.5

4

4.5

5

5.5

x 10
4

k

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Non−aggregation

MST_Pruned

CFL_Random

MECDA_Greedy

Fig. 11. Comparing CDA against non-aggregation and benchmarking
MECDA GREEDY in large-scale networks.

k ≥ 200), whereas MECDA GREEDY always finds a solution

better than non-aggregation.

In Fig. 12, results for non-aggregation and CDA

100 120 140 160 180 200 220 240 260 280 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

k

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Non−aggregation

CDA−ST

CDA−MT (k
i
 = k/3)

CDA−MT (k
i
 = k/4)

Fig. 12. Comparing the cost for CDA with and without network partition
on arbitrary networks of 2048 nodes.

with/without network partition are compared to validate the

better energy efficiency of CDA with network partition.

MECDA GREEDY is applied to individual partitions to con-

12

struct aggregation trees. Along with the results in Sec. V-A, we

can see that, if the network is partitioned into four subnetworks

and the aggregation factor is accordingly set (ki = k/4), up to

70%∼50% energy can be saved with a little sacrifice on the

recovery accuracy (compared with single tree CDA). However,

if we boost the aggregation factor slightly, i.e., ki = k/3,

better recovery performance is achieved (see Fig. 7) while still

maintaining significant energy saving. In practice, one could

adjust the tree partition and aggregation factor according to

application requirements.

VI. RELATED WORK AND DISCUSSIONS

Data aggregation is one of the major research topics for

WSNs, due to its promising effect in reducing data traffic.

Given the page limitation, we only discuss, among the vast

literature, a few contributions that are closely related to

our proposal. Applying combinatorial optimizations to data

aggregation was introduced in [17], assuming an aggregation

function concave in the input. Whereas [17] aims at deriving

an algorithm with a provable bound (albeit arbitrarily large)

for all aggregation functions, we are considering a specific

aggregation function that is inspired by our CDA, and we

propose fast near-optimal solution techniques for practical

use. Involving the correlation structure of data, other types

of optimal data aggregation trees are derived in [36], [14].

However, as we explained in Sec. I, such approaches are too

correlation structure dependent, hence not as flexible as our

CS-based aggregation.

Compressed sensing is a recent development in signal pro-

cessing field, following several important contributions from

Candés, Donoho, and Tao (see [8] and the references therein).

It has been applied to WSN for single hop data gathering [22],

but only a few proposals apply CS to multihop networking.

In [27], a throughput scaling law is derived for the plain CS

aggregation. However, as we pointed out in Sec. V-B, plain

CS aggregation is not an energy efficient solution. In addition,

our results in [30] also demonstrate the disadvantage of plain

CS aggregation in terms of improving throughput.

[33] investigates the routing cost for CS aggregation in

multi-hop WSNs where the sensing matrix is defined ac-

cording to the routing paths. [25] draws the observation

that the sensing matrix has to take the characteristics of the

sparse domain into account. The routing-dependent or domain-

dependent design, unfortunately, contradicts the spirit of CS

that sensing matrices can be random and easily generated.

None of these proposals [27], [33], [25] can recover CS

aggregated data from arbitrarily deployed WSNs, which is one

of the key issues that we address in this paper and [37].

Though we require reliable transmissions to be handled at a

lower layer, an alternative solution is over-sampled CS source

coding [9]. Due to the inherent randomization of CS, packet

loss is somewhat equivalent to reducing k at the coding end.

Therefore, data recovery at the sink can still be performed

(though bearing a larger error) in the face of packet loss.

VII. CONCLUSION

Leveraging on the recent development of compressed sens-

ing, we have proposed a compressed data aggregation (CDA)

scheme for WSN data collection in this paper. Our major

contributions are twofold: 1) We have designed a proper

sparse basis based on diffusion wavelets to achieve high

fidelity recovery for data aggregated from arbitrarily deployed

WSNs. We have developed this idea to allow for arbitrary

network partitions and to integrate temporal correlations along

with the spatial ones, which can significantly reduce energy

consumption while maintaining the fidelity of data recovery.

2) We have investigated the minimum energy CDA prob-

lem by characterizing its optimal configurations, analyzing

its complexity, as well as providing both an exact solution

(for small networks) and approximate solutions (for large

networks). For performance evaluation, we have carried out

extensive experiments on both synthetic datasets and real

datasets. The results, on one hand, demonstrate that high

fidelity data recovery can be achieved by properly designing

the sparse basis; and on the other hand, validate the significant

energy efficiency in data collection.

APPENDIX A

CHARACTERIZING THE OPTIMAL SOLUTION OF MECDA

Condition 1) holds trivially. For every aggregator i ∈ A,

the following statement holds: all nodes on the routing path

from i to s are aggregators. This is so because if i is an

aggregator, it has at least k − 1 descendants in the spanning

tree. Consequently, the parent of i has at least k descendants,

justifying itself as an aggregator. Repeating this reasoning on

the path from i to s confirms that the above statement is

true. Now, as every aggregator sends out exactly k units of

data, the minimum energy routing topology that spans A is

indeed an MST for the subgraph induced by A, which gives

us condition 2). Note that it is condition 1) that allows us

to decompose the minimization problem into two independent

problems: one for A and one for F .

For nodes in F , as they do not perform CS coding, the

minimum energy routing topology should be determined by

the shortest path principle. However, the destination of these

shortest paths is not s, but the whole set A, as the energy

expense inside A is independent of that of F . Therefore, for

each node i ∈ F , it needs to route its data to a node ĵ ∈ A that

minimizes the path length; this is indeed condition 3). Condi-

tion 4) follows directly from the property of an aggregator: it

has at least k− 1 descendants in the spanning tree. To ensure

optimal energy efficiency, each forwarder is restricted to have

less than k − 1 descendants. Q.E.D.

APPENDIX B

NP-COMPLETENESS OF CSATCPk

We first show that CSATCPk is in NP. If a non-deterministic

algorithm guesses a spanning tree, the partition of V into

A and F can be accomplished in polynomial time (O(nℓ)
for a rough estimation), simply by counting the number of

descendants for each node. Then to test if the total cost is

below B or not only costs another n − 1 summations and

multiplications to compute the total cost of the spanning tree.

This confirms the polynomial time verifiability of CSATCPk,

hence its membership in NP.

13

Next, we prove the NP-completeness of CSATCPk for 2 ≤
k < n − 1 through a reduction from MLST. In fact, given

an instance G(V,E) of MLST, the goal is to partition V into

two sets: leaf and non-leaf, which is similar to what needs

to be done for CSATCPk. We first extend G(V,E) in three

steps. First, we add an auxiliary node s and connect it to every

vertex in V . Second, we attach to every vertex in V a path

containing k−2 auxiliary vertices. Now, we have an extended

graph G′(V ′, E′), as shown in Fig. 13. Finally, we assign a

s

G

G’

Paths of length -k 2

Fig. 13. Reduction from MLST to CSATCPk . Given an instance G(V,E)
of MLST, we extend the graph by (1) adding an auxiliary node s and connect
it to every vertex in V and (2) attach to every vertex in V a path containing
k − 2 auxiliary vertices.

cost 1 to every edge in E′, except those between V and s
whose costs are set to be k + ε with ε being a small positive

number. Given a certain parameter B, the answer to CSATCPk

can be obtained by finding the minimum cost spanning tree on

G′. Note that the special cost assigned to the edges between

s and V forces this spanning tree to use exactly one edge

between s and V (incurring a constant cost of k(k+ ε)), and

to choose other edges in the rest of the graph G′.

Due to condition 4) of Proposition 4, a minimum cost

configuration of CSATCPk will put all the auxiliary nodes

on the paths attached to V into F , and the total cost of these

paths is a constant 1
2 (k − 1)(k − 2)|V |. The remaining step

partitions V into A and F k−1, with nodes in the second set

each sending k − 1 units of data, such that the total cost is

minimized. This is equivalent to the following problem:

minimize (k − 1)|F k−1| + k|A| (14)

F k−1 ∪A = V (15)

F ∩A = ∅ (16)

with an additional constraint that A induces a connected

subgraph of G. Since k
(

|F k−1|+ |A|
)

= k|V | is a constant,

the objective is actually to maximize the cardinality of |F k−1|.
Therefore, if we consider F k−1 as the leaf set of the spanning

tree for V , this problem is exactly MLST.

In summary, what we have shown is the following: sup-

pose we have an oracle that answers CSATCPk correctly,

then for every instance G of MLST, we simply extend it

to G′ following the aforementioned procedure. Given the

above shown equivalence, the oracle will also answer MLST

correctly. In particular, if the answer to CSATCPk with B =
k(k + ε) +

[

1
2 (k − 1)(k − 2) + k

]

|V | − K is true, then the

answer to MLST is true. Now, given the NP membership of

CSATCPk and the NP-completeness of MLST [16], we have

the NP-completeness of CSATCPk. Q.E.D.

According to the proof, we also show that MECDA does

not admit any PTAS. Denote by APXP and OPTP the

approximated objective (by a PTAS) and the optimal value

of a problem P , then assuming the existence of a PTAS

to MECDA implies that APXMECDA

OPTMECDA
≤ 1 + ǫ. Given the

aforementioned instance and let f(k, |V |) = k(k + ε) +
[

1
2 (k − 1)(k − 2) + k

]

|V |, we have

APXMECDA

f(k, |V |)−OPTMLST
≤ 1 + ǫ

⇒ f(k, |V |)− |F k−1|
f(k, |V |)−OPTMLST

≤ 1 + ǫ

⇒ 1− ǫ

(

f(k, |V |)
OPTMLST

− 1

)

≤ |F k−1|
OPTMLST

As f(k, |V |) > |V | > OPTMLST, ∀k > 0, we have
(

f(k,|V |)
OPTMLST

− 1
)

≥ 0. Therefore, replacing ǫ
(

f(k,|V |)
OPTMLST

− 1
)

by ǫ̂ suggests the existence of a PTAS for MLST. However, this

contradicts the fact that MLST is MAX SNP-complete [15].

Consequently, the inapproximability of MECDA follows.

APPENDIX C

COMPUTATIONAL COMPLEXITY OF MECDA GREEDY

Recall in Algorithm 1, for each round of adding one aggre-

gator, all i ∈ B(A) are tested. While within each testing phase,

the routing tree is computed as the combination of an MST

and SPTs. The iteration proceeds until no further expansion

for the core. We analyze the computational complexity for

Algorithm 1 in the following. First, the all-pairs shortest paths

are computed in advance, which leads to a complexity of

O(n3) and contributes additively to the overall complexity.

Considering the r-th outer iteration, we have r + 1 elements

in A and n − r − 1 elements in F for each testing partition.

While the complexity of SPF(F,A) is O ((r + 1)(n− r − 1))
as only pairwise distances are compared from j ∈ F to A,

MST(A) incurs a complexity ofO((r+1)2) for the best imple-

mentation [13]. The cardinality of B(A) is bounded by n− r,

so the whole testing phase for admitting the r+1-th aggregator

costs O
([

(r + 1)2 + (r + 1)(n− r − 1)
]

(n− r)
)

. And the

program proceeds at most n − k iterations before ending.

Therefore, the total complexity of all iterations is

O
(

n−k
∑

r=1

[

(r + 1)2 + (r + 1)(n− r − 1)
]

(n− r)

)

= O
(

n

n−k
∑

r=1

(r + 1)(n− r)

)

= O
(

n2
∑n−k

r=1 r
)

= O
(

(n− k)2n2
)

Now, adding the initial complexity O(n3) of computing the

all-pairs shortest paths, the complexity of Algorithm 1 is

O
(

(n− k)2n2 + n3
)

Q.E.D.

14

REFERENCES

[1] “Boost.” [Online]. Available: http://www.boost.org/

[2] “IBM-ILOG CPLEX 11.0.” [Online]. Available: http://www.cplex.com/

[3] “Met Office: UK’s National Weather Service.” [Online]. Available:
http://www.metoffice.gov.uk/weather/uk/

[4] “National Digital Forecast Database.” [Online]. Available:
http://www.weather.gov/ndfd/

[5] “TinyOS.” [Online]. Available: http://www.tinyos.net/

[6] E. Candès and J. Romberg, “ℓ1-MAGIC.” [Online]. Available:
http://www.acm.caltech.edu/l1magic/

[7] E. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles:
Exact Signal Reconstruction from Highly Incomplete Frequency Infor-
mation,” IEEE Trans. Info. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[8] E. Candès and M. Wakin, “An Introduction to Compressive Sampling,”
IEEE Signal Processing Mag., vol. 25, no. 3, 2008.

[9] Z. Charbiwala, S. Chakraborty, S. Zahedi, Y. Kim, M. Srivastava,
T. He, and C. Bisdikian, “Compressive Oversampling for Robust Data
Transmission in Sensor Networks,” in Proc. of IEEE INFOCOM, 2010.

[10] F. Chung, Spectral Graph Theory. Providence, R.I: AMS Press, 1997.

[11] R. R. Coifman and M. Maggioni, “Diffusion Wavelets,” Appl. Comp.

Harm. Anal., vol. 21, no. 1, 2006.

[12] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver, Combina-

torial Optimization. New York: John Wiley and Sons, 1998.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to

Algorithms, 2nd ed. Cambridge: The MIT Press, 2001.

[14] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer,
“Network Correlated Data Gathering with Explicit Communication:
NP-completeness and Algorithms,” IEEE/ACM Trans. on Networking,
vol. 14, no. 1, 2006.

[15] G. Galbiati, F. Maffol, and A. Morzenti, “A Short Note on the Approx-
imability of the Maximum Leaves Spanning Tree Problem,” Elsevier

Information Processing Letters, vol. 52, no. 1, 1994.

[16] M. Garey and D. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. New York: Freeman, 1979.

[17] A. Goel and D. Estrin, “Simultaneous Optimization for Concave Costs:
Single Sink Aggregation or Single Source Buy-at-Bulk,” in Proc. of the

14th ACM-SIAM SODA, 2003.

[18] A. Gupta, A. Kumar, and T. Roughgarden, “Simpler and Better Ap-
proximation Algorithms for Network Design,” in Proc. of the 35th ACM

STOC, 2003.

[19] H. Gupta, V. Navda, S. Das, and V. Chowdhary, “Efficient Gathering of
Correlated Data in Sensor Networks,” ACM Trans. on Sensor Networks,
vol. 4, no. 1, 2008.

[20] K. Han, Y. Liu, and J. Luo, “Duty-cycle-aware minimum-energy multi-
casting in wireless sensor networks,” IEEE/ACM Trans. on Networking,
2012 (accepted to appear).

[21] K. Han, L. Xiang, J. Luo, and Y. Liu, “Minimum-Energy Connected
Coverage in Wireless Sensor Networks with Omni-Directional and
Directional Features,” in Proc. ACM MobiHoc, 2012, pp. 85–94.

[22] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, “Compressed Sensing
for Networked Data,” IEEE Signal Processing Mag., vol. 25, no. 3, 2008.

[23] S. He, J. Chen, D. Yau, and Y. Sun, “Cross-layer Optimization of
Correlated Data Gathering in Wireless Sensor Networks,” in Prof. of

the 7th IEEE SECON, 2010.

[24] L. T. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for Steiner
Trees,” Acta Info., vol. 15, pp. 141–145, 1981.

[25] S. Lee, S. Pattem, M. Sathiamoorthy, B. Krishnamachari, and A. Ortega,
“Spatially-Localized Compressed Sensing and Routing in Multi-hop
Sensor Networks,” in Proc. of the 3rd GSN (LNCS 5659), 2009.

[26] X.-Y. Li, W.-Z. Song, and W. Wang, “A Unified Energy-Efficient
Topology for Unicast and Broadcast,” in Prof. of ACM MobiCom, 2005.

[27] C. Luo, F. Wu, J. Sun, and C.-W. Chen, “Compressive Data Gathering
for Large-Scale Wireless Sensor Networks,” in Proc. of the 15th ACM

MobiCom, 2009.

[28] J. Luo and J.-P. Hubaux, “Joint Mobility and Routing for Lifetime
Elongation in Wireless Sensor Networks,” in Proc. of the 24th IEEE

INFOCOM, 2005, pp. 1735–1746.

[29] ——, “Joint Sink Mobility and Routing to Increase the Lifetime of Wire-
less Sensor Networks: The Case of Constrained Mobility,” IEEE/ACM

Trans. on Networking, vol. 18, no. 3, pp. 871–884, 2010.

[30] J. Luo, L. Xiang, and C. Rosenberg, “Does Compressed Sensing Improve
the Throughput of Wireless Sensor Networks?” in Proc. of the IEEE

ICC, 2010.

[31] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny
AGgregation Service for Ad-hoc Sensor Networks,” ACM SIGOPS

Operating Systems Review, vol. 36, no. SI, 2002.

[32] D. Needell and J. A. Tropp, “CoSaMP: Iterative Signal Recovery from
Incomplete and Inaccurate Samples,” Commun. ACM, vol. 53, no. 12,
pp. 93–100, 2010.

[33] G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer, and M. Zorz,
“On the Interplay between Routing and Signal Representation for
Compressive Sensing in Wireless Sensor Networks,” in ITA, 2009.

[34] D. Slepian and J. Wolf, “Noiseless Encoding of Correlated Information
Sources,” IEEE Trans. on Information Theory, vol. 19, no. 4, 1973.

[35] R. Subramanian and F. Fekri, “Sleep Scheduling and Lifetime Maxi-
mization in Sensor Networks: Fundamental Limits and Optimal Solu-
tions,” in Proc. of 5th ACM IPSN, 2006.

[36] P. von Richenbach and R. Wattenhofer, “Gathering Correlated Data in
Sensor Networks,” in Proc. of the 2nd ACM DIALM-POMC, 2004.

[37] L. Xiang, J. Luo, C. Deng, A. Vasilakos, and W. Lin, “DECA: Recov-
ering Fields of Physical Quantities from Incomplete Sensory Data,” in
Proc. of the 9th IEEE SECON, 2012, pp. 107–115.

[38] L. Xiang, J. Luo, and A. V. Vasilakos, “Compressed Data Aggregation
for Energy Efficient Wireless Sensor Networks,” in Proc. of the 8th IEEE

SECON, 2011.
[39] G. Xing, T. Wang, W. Jia, and M. Li, “Rendezvous Design Algorithms

for Wireless Sensor Networks with a Mobile Base Station,” in Prof. of

the 9th ACM MobiHoc, 2008.

Liu Xiang received her BS degree in Electronic
Engineering from Tsinghua University, China. She
is currently a PhD candidate in Computer Science
working at the School of Computer Engineering,
Nanyang Technological University in Singapore. Her
research focuses on efficient data collections for
wireless sensor networks. She is a student member
of the IEEE. More information can be found at
http://www.ntu.edu.sg/home2009/xi0001iu/.

Jun Luo received his BS and MS degrees in Elec-
trical Engineering from Tsinghua University, China,
and the PhD degree in Computer Science from
EPFL (Swiss Federal Institute of Technology in
Lausanne), Lausanne, Switzerland in 2006. From
2006 to 2008, he has worked as a post-doctoral
research fellow in the Department of Electrical
and Computer Engineering, University of Waterloo,
Waterloo, Canada. In 2008, he joined the faculty
of the School of Computer Engineering, Nanyang
Technological University in Singapore, where he

is currently an assistant professor. His research interests include wireless
networking, distributed systems, multimedia protocols, network modeling and
performance analysis, applied operations research, as well as network security.
He is a Member of both IEEE and ACM. More information can be found at
http://www3.ntu.edu.sg/home/junluo/.

Catherine Rosenberg was educated in
France (Ecole Nationale Supérieure des
Télécommunications de Bretagne, Diplôme
d’Ingénieur in EE in 1983 and University of
Paris, Orsay, Doctorat en Sciences in CS in 1986)
and in the USA (UCLA, MS in CS in 1984),
Dr. Rosenberg has worked in several countries
including USA, UK, Canada, France and India. In
particular, she worked for Nortel Networks in the
UK, AT&T Bell Laboratories in the USA, Alcatel
in France and taught at Purdue University (USA)

and Ecole Polytechnique of Montreal (Canada). Since 2004, Dr. Rosenberg
is a faculty member at the University of Waterloo where she now holds a
Tier 1 Canada Research Chair in the Future Internet. Her research interests
are broadly in networking with currently an emphasis in wireless networking
and in traffic engineering (Quality of Service, Network Design, and Routing).
She has authored over 100 papers and has been awarded eight patents in
the USA. She is a fellow of the IEEE. More information can be found at
http://ece.uwaterloo.ca/∼cath/.

