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Abstract Establishing visual correspondences is an essen-

tial component of many computer vision problems, which

is often done with local feature-descriptors. Transmission

and storage of these descriptors are of critical importance in

the context of mobile visual search applications. We propose

a framework for computing low bit-rate feature descriptors

with a 20× reduction in bit rate compared to state-of-the-

art descriptors. The framework offers low complexity and

has significant speed-up in the matching stage. We show

how to efficiently compute distances between descriptors in

the compressed domain eliminating the need for decoding.

We perform a comprehensive performance comparison with

SIFT, SURF, BRIEF, MPEG-7 image signatures and other

low bit-rate descriptors and show that our proposed CHoG

descriptor outperforms existing schemes significantly over

a wide range of bitrates. We implement the descriptor in a

mobile image retrieval system and for a database of 1 mil-

lion CD, DVD and book covers, we achieve 96% retrieval

accuracy using only 4 KB of data per query image.

Keywords CHoG · Feature descriptor · Mobile visual

search · Content-based image retrieval ·
Histogram-of-gradients · Low bitrate

This work was first presented as an oral presentation at Computer

Vision and Pattern Recognition (CVPR), 2009. Since then, the authors

have studied feature compression in more detail in Chandrasekhar et

al. (2009a, 2010a, 2010b, 2010c). A default implementation of CHoG

is available at http://www.stanford.edu/vijayc/.

V. Chandrasekhar (�) · G. Takacs · D.M. Chen · S.S. Tsai ·
Y. Reznik · R. Grzeszczuk · B. Girod

Stanford University, Stanford, USA

e-mail: vijayc@stanford.edu

1 Introduction

Mobile phones have evolved into powerful image and video

processing devices, equipped with high-resolution cameras,

color displays, and hardware-accelerated graphics. They are

also equipped with GPS, and connected to broadband wire-

less networks. All this enables a new class of applications

that use the camera phone to initiate search queries about

objects in visual proximity to the user (Fig. 1). Such applica-

tions can be used, e.g., for identifying products, comparison

shopping, finding information about movies, CDs, real es-

tate, print media or artworks. First commercial deployments

of such systems include Google Goggles (Google 2009),

Nokia Point and Find (Nokia 2006), Kooaba (Kooaba 2007),

Ricoh iCandy (Erol et al. 2008; Graham and Hull 2008;

Hull et al. 2007) and Snaptell (Amazon 2007).

Mobile image retrieval applications pose a unique set of

challenges. What part of the processing should be performed

on the mobile client, and what part is better carried out at the

server? On the one hand, transmitting a JPEG image could

take tens of seconds over a slow wireless link. On the other

hand, extraction of salient image features is now possible on

mobile devices in seconds or less. There are several possible

client-server architectures:

– The mobile client transmits a query image to the server.

The image retrieval algorithms run entirely on the server,

including an analysis of the query image.

– The mobile client processes the query image, extracts fea-

tures and transmits feature data. The image retrieval algo-

rithms run on the server using the feature data as query.

– The mobile client downloads feature data from the server,

and all image matching is performed on the device.

When the database is small, it can be stored on the phone

and image retrieval algorithms can be run locally (Takacs et

http://www.stanford.edu/vijayc/
mailto:vijayc@stanford.edu
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Fig. 1 Example of a mobile visual search application. The user points

his camera phone at an object and obtains relevant information about it.

Feature compression is key to achieving low system latency. By trans-

mitting compressed descriptors from the mobile-phone, one can reduce

system latency significantly

al. 2008). When the database is large, it has to be placed on

a remote server and retrieval algorithms are run remotely.

In each case, feature compression is key to decreasing the

amount of the data transmitted, and thus, reducing network

latency. A small descriptor also helps if the database is

stored on the mobile device. The smaller the descriptor, the

more features can be stored in limited memory.

Since Lowe’s paper in 1999 (Lowe 1999), the highly

discriminative SIFT descriptor remains the most popu-

lar descriptor in computer vision. Other examples of fea-

ture descriptors are Gradient Location and Orientation His-

togram (GLOH) (Mikolajczyk and Schmid 2005), Speeded

Up Robust Features (SURF) (Bay et al. 2008), and the

machine-optimized gradient-based descriptors (Winder and

Brown 2007; Winder et al. 2009). As a 128-dimensional

descriptor, SIFT is conventionally stored as 1024 bits (8

bits/dimension). Alas, the size of SIFT descriptor data from

an image is typically larger than the size of the JPEG com-

pressed image itself, making it unsuitable for mobile appli-

cations.

Several compression schemes have been proposed to re-

duce the bitrate of SIFT descriptors. In our recent work

(Chandrasekhar et al. 2010b), we survey different SIFT

compression schemes. They can be broadly categorized

into schemes based on hashing (Yeo et al. 2008; Torralba

et al. 2008; Weiss et al. 2008), transform coding (Chan-

drasekhar et al. 2009a, 2010b) and vector quantization (Je-

gou et al. 2008, 2010; Nistér and Stewénius 2006). We

note that hashing schemes like Locality Sensitive Hashing

(LSH), Similarity Sensitive Coding (SSC) or Spectral Hash-

ing (SH) do not perform well at low bitrates. Conventional

transform coding schemes based on Principal Component

Analysis (PCA) do not work well due to the highly non-

Gaussian statistics of the SIFT descriptor. Vector quanti-

zation schemes based on the Product Quantizer (Jegou et

al. 2010) or a Tree Structured Vector Quantizer (Nistér and

Stewénius 2006) are complex and require storage of large

codebooks on the mobile device.

Other popular approaches used to reduce the size of

descriptors typically employ dimensionality reduction via

PCA or Linear Discriminant Analysis (LDA) (Ke and Suk-

thankar 2004; Hua et al. 2007). Ke and Sukthankar (2004)

investigate dimensionality reduction of patches directly via

PCA. Hua et al. (2007) propose a scheme that uses LDA.

Winder et al. (2009) combine the use of PCA with addi-

tional optimization of gradient and spatial binning parame-

ters as part of the training step. The disadvantages of PCA

and LDA approaches are high computational complexity,

and the risk of overtraining for descriptors from a particu-

lar data set. Further, with PCA and LDA, descriptors cannot

be compared in the compressed domain if entropy coding

is employed. The 60-bit MPEG-7 Trace Transform descrip-

tor (Brasnett and Bober 2007), Transform coded SURF fea-

tures (Chandrasekhar et al. 2009a) and Binary Robust In-

dependent Elementary Features (BRIEF) (Calonder et al.

2010) are other examples of low-bitrate descriptors pro-

posed in recent literature. Johnson proposes a generalized

set of techniques to compress local features in his recent

work (Johnson 2010).

Through our experiments, we came to realize that simply

compressing an “off-the-shelf” descriptor does not lead to

the best rate-constrained image retrieval performance. One

can do better by designing a descriptor with compression

in mind. Of course, such a descriptor still has to be ro-

bust and highly discriminative at low bitrates. Ideally, it

would permit descriptor comparisons in the compressed do-

main for speedy feature matching. Further, we would like

to avoid a training step so that the descriptor is not depen-

dent on any specific data set. Finally, the compression al-

gorithm should have low complexity so that it can be effi-

ciently implemented on mobile devices. To meet all these

requirements simultaneously, we designed the Compressed

Histogram of Gradients (CHoG) descriptor (Chandrasekhar

et al. 2009b, 2010c).

The outline of the paper is as follows. In Sect. 2, we

review Histogram-of-Gradients (HoG) descriptors, and dis-

cuss the design of the CHoG descriptor. We discuss differ-

ent quantization and compression schemes used to gener-

ate low bitrate CHoG descriptors. In Sect. 3, we perform a

comprehensive survey of several low bitrate descriptors pro-

posed in the literature and show that CHoG outperforms all

schemes. We present both feature-level results and image-

level retrieval results in a practical mobile product search

system.

2 Descriptor Design

The goal of a feature descriptor is to robustly capture

salient information from a canonical image patch. We use

a histogram-of-gradients descriptor and explicitly exploit

the anisotropic statistics of the underlying gradient distribu-

tions. By directly capturing the gradient distribution, we can

use more effective distance measures like Kullback-Leibler

(KL) divergence, and more importantly, we can apply quan-

tization and compression schemes that work well for dis-

tributions to produce compact descriptors. In Sect. 2.2, we
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Fig. 2 Illustration of CHoG feature descriptors. We first start with

patches obtained from interest points (e.g., corners, blobs) at different

scales. The patches at different scales are oriented along the dominant

gradient. We first divide the scaled and oriented canonical patches into

log-polar spatial bins. Then, we perform independent quantization of

histograms in each spatial bin. The resulting codebook indices are then

encoded using fixed-length or arithmetic codes. The final bitstream of

the feature descriptor is formed as a concatenation of codes represen-

tative of histograms in each spatial bin. CHoG descriptors at 60 bits

match the performance of 1024-bit SIFT descriptors

discuss the choice of parameters of our Uncompressed His-

togram of Gradients (UHoG) descriptor. In Sect. 2.3, we dis-

cuss quantization and compression schemes that enable low

bitrate Compressed Histogram of Gradient (CHoG) descrip-

tors. First, in Sect. 2.1, we describe the framework used for

evaluating descriptors.

2.1 Descriptor Evaluation

For evaluating the performance of low bitrate descriptors,

we use the two data sets provided by Winder et al. in their

most recent work (Winder et al. 2009), Notre Dame and Lib-

erty. For algorithms that require training, we use the Notre

Dame data set, while we perform our testing on the Lib-

erty set. We use the methodology proposed in Winder et al.

(2009) for evaluating descriptors. We compute a distance be-

tween each matching and non-matching pair of descriptors.

The distance measure used depends on the descriptor. For

example, CHoG descriptors use the symmetric Kullback-

Leibler (KL) (Cover and Thomas 2006) as it performs bet-

ter than L1 or L2 norm for comparing histograms (Chan-

drasekhar et al. 2009b). From these distances, we obtain a

Receiver Operating Characteristic (ROC) curve which plots

correct match fraction against incorrect match fraction. We

show the performance of the 1024-bit SIFT descriptor in

each ROC plot. Our focus is on descriptors that perform on

par with SIFT and are in the range of 50–100 bits.

2.2 Histogram-of-Gradient Based Descriptors

A number of different feature descriptors are based on

the distribution of gradients within an image patch: Lowe

(2004), Bay et al. (2008), Dalal and Triggs (2005), Freeman

and Roth (1994), Winder et al. (2009). In this section, we

describe the pipeline used to compute gradient histogram

descriptors, and then show the relationships between SIFT,

SURF and our proposed descriptor.

The CHoG descriptor pipeline is illustrated in Fig. 2. As

in Mikolajczyk et al. (2005), we model illumination changes

to the patch appearance by a simple affine transformation,

aI + b, of the pixel intensities, which is compensated by

normalizing the mean and standard deviation of the pixel

values of each patch. Next, we apply an additional Gaussian

smoothing of σ = 2.7 pixels to the patch. The smoothing

parameter is obtained as the optimal value from the learn-

ing algorithm proposed by Winder and Brown, for the data

sets in consideration. Local image gradients dx and dy are

computed using a centered derivative mask [−1,0,1]. Next,

the patch is divided into localized spatial bins. The granu-

larity of spatial binning is determined by a tension between

discriminative power and robustness to minor variations in

interest point localization error. Then, some statistics of dx

and dy are extracted separately for each spatial bin, forming

the UHoG descriptor.

SIFT and SURF descriptors can be calculated as func-

tions of the gradient histograms, provided that such his-

tograms are available for each spatial bin and the dx , dy val-

ues are sorted into sufficiently fine bins. Let PDx ,Dy (dx, dy)

be the normalized joint (x, y)-gradient histogram in a spa-

tial bin. Note that the gradients within a spatial bin may be

weighted by a Gaussian window prior to descriptor compu-

tation (Lowe 2004; Bay et al. 2006).

The 8 SIFT components of a spatial bin, DSIFT , are

DSIFT(i) =
∑

(dx ,dy )∈�i

√

d2
x + d2

yPDx ,Dy (dx, dy) (1)

where �i = {(dx, dy)|π(i−1)
4

≤ tan−1 dy

dx
< πi

4
, i = 1 . . .8}.

Similarly, the 4 SURF components of a spatial bin, DSURF ,
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Fig. 3 DAISY configurations

with K = 9,13,17 spatial bins.

We use Gaussian-shaped

overlapping (soft) binning

are

DSURF(1) =
∑

dx

∑

dy

PDx ,Dy (dx, dy)|dx | (2)

DSURF(2) =
∑

dx

∑

dy

PDx ,Dy (dx, dy) dx (3)

DSURF(3) =
∑

dx

∑

dy

PDx ,Dy (dx, dy)|dy | (4)

DSURF(4) =
∑

dx

∑

dy

PDx ,Dy (dx, dy) dy (5)

For CHoG, we propose coarse quantization of the 2D

gradient histogram, and encoding the histogram directly

as a descriptor. We approximate PDx ,Dy (dx, dy) as P̂
D̂x ,D̂y

(d̂x, d̂y) for (d̂x, d̂y) ∈ S, where S represents a small num-

ber of quantization centroids or bins as shown in Fig. 4. We

refer to this uncompressed descriptor representation P̂
D̂x ,D̂y

(for all spatial bins) as Uncompressed Histogram of Gradi-

ents (UHoG), which is obtained by counting the number of

pixels which get quantized to each centroid in S, and then

L1 normalized.

The ith UHoG descriptor is defined as D
i
UHoG

= [P̂ i
1 , P̂ i

2 ,

. . . , P̂ i
N ], where P̂ i

k represents the gradient histograms in

spatial bin k of descriptor i, and N is the total number of

spatial bins. Note that the dimensionality of UHoG is given

by N × B , where N is the number of spatial bins, and B is

the number of bins in the gradient histogram. Next, we dis-

cuss the parameters chosen for spatial and gradient binning.

2.2.1 Spatial Binning

Since we want a very compact descriptor, we have exper-

imented with reducing the number of spatial bins. Fewer

spatial bins means fewer histograms and a smaller descrip-

tor. However, it is important that we do not adversely affect

the performance of the descriptor. SIFT and SURF use a

square 4×4 grid with 16 cells. We divide the patch into log-

polar configurations as proposed in Tola et al. (2008), Miko-

lajczyk and Schmid (2005), Winder et al. (2009). The log-

polar configurations have been shown to perform better than

the 4 × 4 square-grid spatial binning used in SIFT (Winder

et al. 2009). There is one key difference between the DAISY

configurations proposed in Winder et al. (2009), and the con-

figurations shown in Fig. 3. In Winder et al. (2009), the au-

thors divide the patch into disjoint localized cells. We use

overlapping regions for spatial binning (Fig. 3) which im-

proves the performance of the descriptor by making it more

robust to interest point localization error. The soft assign-

ment is made such that each pixel contributes to multiple

spatial bins with normalized Gaussian weights that sum to 1.

A value of σ for the Gaussian that works well is dmin/3,

where dmin is the minimum distance between bin centroids

in the DAISY configuration. Intuitively, a pixel close to a

bin centroid should contribute little to other spatial bins.

The DAISY-9 configuration matches the performance of the

4 × 4 square-grid configuration, and hence, we use it for all

the experiments in this section. Next, we discuss how the

gradient binning is done.

2.2.2 Gradient Histogram Binning

As stated earlier, we wish to approximate the histogram of

gradients with a small set of bins, S. We propose histogram

binning schemes that exploit the underlying gradient statis-

tics observed in patches extracted around interest points.

The joint distribution of (dx, dy) for 10000 cells from the

training data set is shown in Fig. 4(a, b). We observe that

the distribution is strongly peaked around (0,0), and that

the variance is higher for the y-gradient. This anisotropic

distribution is a result of canonical image patches being ori-

ented along the most dominant gradient by the interest point

detector.

We perform a vector quantization of the gradient vectors

into a small set of bin centers, S, shown in Fig. 4. We call

these bin configurations VQ-3, VQ-5, VQ-7 and VQ-9. All

bin configurations have a bin center at (0,0) to capture the

central peak of the gradient distribution. The additional bin

centers are evenly spaced (with respect to angle) over el-

lipses, the eccentricity of which are chosen in accordance

with the observed skew in the gradient statistics. Similar to

soft spatial binning, we assign each (dx, dy) pair to multi-

ple bin centers with normalized Gaussian weights. Again,
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Fig. 4 The joint (dx , dy) gradient distribution (a) over a large number

of cells, and (b), its contour plot. The greater variance in y-axis results

from aligning the patches along the most dominant gradient after inter-

est point detection. The quantization bin constellations VQ-3, VQ-5,

VQ-7 and VQ-9 and their associated Voronoi cells are shown at the

bottom

Fig. 5 ROC curves for various gradient binning configurations.

DAISY-9 spatial bin configuration and symmetric KL divergence are

used. The VQ-5 configuration matches the performance of SIFT

we use σ = qmin/3, where qmin is the minimum distance

between centroids in the VQ bin configurations shown in

Fig. 4.

To evaluate the performance of each gradient-binning

configuration, we plot the ROC curves in Fig. 5. As we in-

crease the number of bin centers, we obtain a more accurate

approximation of the gradient distribution, and the perfor-

mance of the descriptor improves. We observe that the VQ-

5 and DAISY-9 UHoG configuration suffices to match the

performance of SIFT.

2.2.3 Distance Measures

Since UHoG is a direct representation of a histogram we can

use distance measures that are well-suited to histogram com-

parison. Several quantitative measures have been proposed

to compare distributions in the literature. We consider three

measures, the L2-norm, Kullback-Leibler divergence (Kull-

back 1987), and the Earth Mover’s Distance (EMD) (Rubner

et al. 2000). The distance between two UHoG (or CHoG)

descriptors is defined as d(D
i, D

j ) =
∑N

k=1 dhist(P̂
i
k , P̂

j

k ),

where N is the number of spatial bins, dhist is a distance

measure between two distributions, and P̂ i represents the

gradient distribution in a spatial bin.

Let B denote the number of bins in the gradient his-

togram, and P̂ i = [pi
1,p

i
2, . . . , p

i
B ]. We define dKL as the

symmetric KL divergence between two histograms such

that,

dKL(P̂ i, P̂ j ) =
B

∑

n=1

pi
n log

pi
n

p
j
n

+
B

∑

n=1

p
j
n log

p
j
n

pi
n

. (6)

The EMD is a cross-bin histogram distance measure, un-

like L2-norm and KL divergence which are bin-by-bin dis-

tance measures. The EMD is the minimum cost to trans-

form one histogram into the other, where there is a “ground

distance” defined between each pair of bins. This “ground

distance” is the distance between the bin-centers shown in

Fig. 4. Note that EMD is a metric and observes the triangle

inequality, while KL divergence is not.

In Fig. 6 we plot ROC curves for different distance mea-

sures for VQ-5 and VQ-9. The KL divergence and EMD

consistently outperform the L2-norm, with KL divergence

performing the best. Further, KL divergence, being a bin-

by-bin measure, is a lot less complex to compute than the

EMD. For this reason, we use the KL divergence as the

distance measure for all the CHoG experiments in this pa-

per. Next, this observation motivates techniques to compress

probability distributions which minimize distortion in KL

divergence.

2.3 Histogram Quantization and Compression

Our goal is to produce low bit-rate Compressed Histogram

of Gradients (CHoG) descriptors while maintaining the

highest possible recognition performance. Lossy compres-

sion of probability distributions is an interesting problem

that has not received much attention in the literature.

In this section, we discuss three different schemes for

quantization and compression of distributions: Huffman

Coding, Type Coding and Entropy Constrained Vector

Quantization (ECVQ). We note that ECVQ can achieve op-

timal rate-distortion performance and thus provide a bound

on performance of other schemes. However, ECVQ requires
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Fig. 6 ROC curves for distance

measures for gradient-bin

configurations VQ-5 (a) and

VQ-9 (b), and spatial-bin

configuration DAISY-9. KL and

EMD consistently outperform

the conventional L2-norm used

for comparing descriptors

expensive training with the generalized Lloyd algorithm,

and requires the storage of unstructured codebooks on the

mobile device for compression. For mobile applications, the

compression scheme should require a small amount of mem-

ory and have low computational complexity. As we will see,

the two proposed schemes, Huffman Coding and Type Cod-

ing, come close to achieving the performance of optimal

ECVQ, while being of much lower complexity, and do not

require explicit storage of codebooks on the client.

Let m represent the number of gradient bins. Let P =
[p1,p2, . . . , pm] ∈ Rm

+ be the original normalized his-

togram, and Q = [q1, q2, . . . , qm] ∈ Rm
+ be the quantized

normalized histogram defined over the same sample space.

As mentioned earlier, we are primarily interested in the sym-

metric KL divergence as a distance measure.

For each scheme, we quantize the gradient histogram in

each cell individually and map it to an index. The indices

are then encoded with either a fixed-length code or variable-

length code. The codewords are concatenated to form the fi-

nal descriptor. We also experimented with joint coding of the

gradient histograms in different cells, but this did not yield

any practical gain. Next, for each compression scheme, we

discuss the quantization theory and implementation details,

illustrate an example and present ROC results benchmarked

against SIFT. Finally, we compare the performance of the

different schemes in a common framework.

2.3.1 Huffman Tree Coding

Given a probability distribution, one way to compress it is

to construct and store a Huffman tree built from the dis-

tribution (Gagie 2006; Chandrasekhar et al. 2009b). From

this tree, the Huffman codes, {c1, . . . , cn}, of each sym-

bol in the distribution are computed. The reconstructed dis-

tribution, Q, can be subsequently obtained as qi = 2−bi ,

where bi is the number of bits in ci . It is well known that

Huffman tree coding guarantees that D(P ||Q) < 1, where

D(P ||Q) =
∑n

i=1 pi log2
pi

qi
(Cover and Thomas 2006).

Huffman trees are strict binary trees, such that each node

has exactly zero or two children. The maximum depth of a

strict binary tree with n leaf nodes is n − 1. Therefore, a

Huffman tree can be stored in (n − 1)⌈log(n − 1)⌉ bits by

storing the depth of each symbol in the Huffman tree with

a fixed length code. The depth of the last leaf node does

not need to be stored, since a Huffman tree is a strict binary

tree and
∑

qi = 1. We call this scheme Tree Depth Coding

(TDC). It was proposed in Gagie (2006).

While TDC can be used for all m, we show how to re-

duce the bit rate further for small m in Chandrasekhar et al.

(2009b). We reduce the bits needed to store a tree by enu-

merating all possible trees, and using fixed-length codes to

represent them. The number of Huffman trees T (m) utilized

by such a scheme can be estimated by considering labeling

of all possible rooted binary trees with m leaves

T (m) < m! Cm−1 (7)

where Cn = 1
n+1

(

2n
n

)

is the Catalan number. Hence, the

index of a Huffman tree representing distribution P with

fixed-length encoding requires at most

RHuf(m) ≤ ⌈log2 T (m)⌉ ∼ m log2 m + O(m) (8)

bits to encode. For some small values of m, we can achieve

further compression by entropy coding the fixed-length tree

indices. This is because not all trees are equally likely to

occur from gradient statistics. We refer to the fixed and

variable bitrate tree enumeration schemes as the Tree Fixed

Length Coding and the Tree Entropy Coding respectively.

Implementation Quantization is implemented by a stan-

dard Huffman tree construction algorithm, requiring

O(m logm) operations, where m is the number of bins in the
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Fig. 7 Number of bits/spatial bin for Huffman histograms using dif-

ferent schemes. Note that the same Huffman quantization scheme is

applied for all three schemes before encoding. We can obtain 25–50%

compression compared to the Tree Depth Coding representation. Note

the ranges of m in which Tree Fixed Length and Tree Entropy Coding

can be used

gradient histogram. All unique Huffman trees are enumer-

ated and their indices are stored in memory. The number of

Huffman trees for m = 3,5,7,9 are 3,75,4347 and 441675

respectively. The number of trees grows very rapidly with m

and tree enumeration becomes impractical beyond m = 9.

For m ≤ 7, we found entropy coding to be useful, result-

ing in savings of 10–20% in the bitrate. This compression

is achieved by using a context-adaptive binary arithmetic

coding. In Fig. 7, we show that we can obtain 25–50% com-

pression compared to the naive Tree Depth Coding scheme.

Example Let m = 5 corresponding to the VQ-5 gradient

bin configuration. Let P = [0.1,0.3,0.2,0.25,0.15] be the

original distribution as described by the histogram. We build

a Huffman tree on P , and thus quantize the distribution to

Q = [0.125,0.25,0.25,0.25,0.125]. The quantized distri-

bution Q is thus mapped to one of 75 possible Huffman trees

with m = 5 leave nodes. It can be communicated with a fixed

length code of ⌈log2 75⌉ = 7 bits.

ROC Results Figure 8 shows the performance of the Huff-

man compression scheme for the DAISY-9 configuration.

The bitrate in Fig. 8 is varied by increasing the number of

gradient bins from 5 to 9. For the DAISY-9, VQ-7 config-

uration, the descriptor at 88 bits outperforms SIFT at 1024

bits.

2.3.2 Type Quantization

The idea of type coding is to construct a lattice of distribu-

tions (or types) Q = Q(k1, . . . , km) with probabilities

qi = ki

n
, ki, n ∈ Z+,

∑

i

ki = n (9)

Fig. 8 ROC curves for compressing distributions with Huffman

scheme for the DAISY-9 configuration for the Liberty data set. The

CHoG descriptor at 88 bits outperforms SIFT at 1024 bits

and then pick and transmit the index of the type that is

closest to the original distribution P (Chandrasekhar et al.

2010c; Reznik et al. 2010). The parameter n is used to con-

trol the number/density of reconstruction points.

We note that type coding is related to the An lattice (Con-

way and Sloane 1982). The distinctive part of our problem

is the particular shape of the set that we need to quantize.

The type lattice is naturally defined within a bounded subset

of the Rm space, which is the unit (m − 1)-simplex, com-

pared to the conventional m-dimensional unit cube. This is

precisely the space containing all possible input probability

vectors. We show examples of type lattices constructed for

m = 3 and n = 1, . . . ,3 in Fig. 9.

The volume of the (m−1)-simplex that we need to quan-

tize is given by (Sommerville 1958)

Vm−1 = am−1

(m − 1)!

√

m

2m−1

∣

∣

∣

∣

a=
√

2

=
√

m

(m − 1)! . (10)

In Fig. 10, we note that the volume is rapidly decaying as

the number of bins m increases. As a result, we expect type

coding to become increasingly efficient compared to lattice

quantization over the entire unit cube as m increases. For a

detailed discussion of rate-distortion characteristics, readers

are referred to Reznik et al. (2010).

The total number of types in lattice (9) is essentially the

number of partitions of parameter n into m terms k1 + · · · +
km = n, given by a multiset coefficient:

((

m

n

))

=
(

n + m − 1

m − 1

)

. (11)

Consequently, the rate needed for encoding of types satis-

fies:

RType(m,n) ≤
⌈

log2

((

m

n

))⌉

∼ (m − 1) log2 n. (12)
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Fig. 9 Type lattices and their

Voronoi partitions in 3

dimensions (m = 3, n = 1,2,3)

Fig. 10 Volume of m − 1-simplex compared to the m dimensional

unit cube of volume 1. We note that the volume rapidly decreases as

the number of bins increases

Next, we develop a combinatorial enumeration scheme for

fast indexing and compressed domain matching of descrip-

tors.

Quantization In order to quantize a given input distribu-

tion P to the nearest type, we use the algorithm described

below. This algorithm is similar to Conway and Sloane’s

quantizer for An lattice (Conway and Sloane 1982), but it

works within a bounded subset of Rm.

1. Compute numbers (best unconstrained approximation)

k′
i =

⌊

npi + 1

2

⌋

, n′ =
∑

i

k′
i .

2. If n′ = n we are done. Otherwise, compute errors

δi = k′
i − npi,

and sort them such that

−1

2
≤ δj1

≤ δj2
≤ · · · ≤ δjm <

1

2
.

3. Let d = n′ − n. If d > 0 then we decrement d values k′
i

with largest errors

kji
=

[

k′
ji

j = 1, . . . ,m − d − 1,

k′
ji

− 1 i = m − d, . . . ,m,

otherwise, if d < 0 we increment |d| values k′
i with

smallest errors

kji
=

[

k′
ji

+ 1 i = 1, . . . , |d|,
k′
ji

i = |d| + 1, . . . ,m.

Enumeration of Types We compute a unique index

ξ(k1, . . . , km) for a type with coordinates k1, . . . , km using:

ξ(k1, . . . , kn) =
n−2
∑

j=1

kj −1
∑

i=0

((

m − j

n − i −
∑j−1

l=1 kl

))

+ kn−1. (13)

This formula follows by induction (starting with m = 2,3,

etc.), and it implements lexicographic enumeration of types.

For example:

ξ(0,0, . . . ,0, n) = 0,

ξ(0,0, . . . ,1, n − 1) = 1,

. . .

ξ(n,0, . . . ,0,0) =
((

m

n

))

− 1.

This direct enumeration allows encoding/decoding opera-

tions to be performed without storing any “codebook” or

“index” of reconstruction points.

Implementation We implement enumeration of types ac-

cording to (13) by using an array of precomputed multiset

coefficients. This reduces complexity of enumeration to just

about O(n) additions. In implementing type quantization,

we observed that the mismatch d = n′ − n is typically very

small, and so instead of performing full sorting step 2, we
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simply search for d largest or smallest numbers. With such

optimization, the complexity of the algorithm becomes close

to O(m), instead of O(m logm) implied by the use of full

search.

We also found it useful to bias type distributions as fol-

lows

qi = ki + β

n + βm
(14)

where parameter β ≥ 0 is called the prior. The most com-

monly used values of β in statistics are Jeffrey’s prior β =
1/2, and Laplace prior β = 1. A value of parameter β that

works well is the scaled prior β = β0
n
n0

, where n0 is the

total number of samples in the original (non-quantized) his-

togram, and β0 = 0.5 is the prior used in computation of

probabilities P . Finally, for encoding of type indices, we

use both fixed-length and entropy coding schemes. We find

that entropy coding with an arithmetic coder saves approxi-

mately 10–20% in the bitrate. When fixed-length codes are

used, we can perform fast compressed domain matching.

Example Let m = 5, corresponding to the VQ-5 gra-

dient bin configuration. Let the original type described

by the histogram be T = [12,28,17,27,16] and P =
[0.12,0.28,0.17,0.27,0.16] be the corresponding distri-

bution. Let n = 10 be the quantization parameter cho-

sen for type coding. The approximation of the type T is

K = [1,3,2,3,2] based on Step (1) of the quantization al-

gorithm. Since
∑

i ki 
= 10, we use the proposed quantiza-

tion algorithm to obtain quantized type K = [1,3,2,3,1].
The number of samples n0 in the original histogram is

100, and hence, the scaled prior is computed as β = 0.5 ×
10/100 = 0.05, and the quantized distribution with prior is

Q = [0.1024,0.298,0.2,0.2976,0.1024]. The total number

of quantized types is
(

14
4

)

= 1001, and Q can be communi-

cated with a fixed length code of ⌈log2 1001⌉ = 10 bits.

ROC Results Figure 11(a) illustrates the advantage of us-

ing biased types (14). Figure 11(b) shows performance of

the type compression scheme for the DAISY-9, VQ-7 con-

figuration. The bitrate in Fig. 11(b) is varied by changing

type quantization parameter n. For this configuration, the

descriptor at 60 bits outperforms SIFT at 1024 bits.

2.3.3 Entropy Constrained Vector Quantization

We use ECVQ designed with the generalized Lloyd algo-

rithm (Chou et al. 1989) to compute a bound on the per-

formance that can be achieved with the CHoG descriptor

framework. The ECVQ scheme is computationally complex,

and it is not practical for mobile applications.

The ECVQ algorithm resembles k-means clustering in

the statistics community, and, in fact, contains it as a special

case. Like k-means clustering, the generalized Lloyd algo-

rithm assigns data to the nearest cluster centers, next com-

putes new cluster centers based on this assignment, and then

iterates the two steps until convergence is reached. What dis-

tinguishes the generalized Lloyd algorithm from k-means is

a Lagrangian term which biases the distance measure to re-

flect the different number of bits required to indicate dif-

ferent clusters. With entropy coding, likely cluster centers

will need fewer bits, while unlikely cluster centers require

more bits. To properly account for bitrate, cluster probabil-

ities are updated in each iteration of the generalized Lloyd

algorithm, much like the cluster centers. We show how the

ECVQ scheme can be adapted to the current CHoG frame-

work.

Let Xm = [p1,p2,p3, . . . , pm] ∈ Rm
+ denote a normal-

ized histogram. Let PXm be the distribution of Xm. Let ρ

be the distance measure used to compare histograms. Let

λ be the Lagrange multiplier. Let ψ be an index set, and

let α : Xm �→ ψ quantize input vectors to indices. Let

β : ψ �→ C map indices to a set of centroids C ∈ Rm
+ . Let

the initial size of the codebook be K = |ψ |. Let γ (i) be the

rate of transmitting centroid i, i ∈ ψ .

Fig. 11 (a) shows the ROC

curves of a type coded CHoG

descriptor with and without

priors. The performance of the

descriptor is better with the

scaled prior. (b) shows ROC

curves for compressing

distributions with type coding

scheme for DAISY-9 and VQ-7

configuration for Liberty data

set. CHoG descriptor at 60 bits

outperforms SIFT at 1024 bits
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The iterative algorithm used is discussed below. The in-

put of the algorithm is a set of points Xm, and the output

is the codebook C = {β(i)}i∈ψ . We initialize the algorithm

with C as K random points and γ (i) = log2(K).

1. α(xn) = arg mini∈ψ ρ(xn, β(i)) + λ|γ (i)|
2. |γ (i)| = − log2 PXn(α(Xn) = i)

3. β(i) = E[Xm|α(Xm) = i]
We repeat Steps (1)–(3) until convergence. Step (1) is

the “assignment step”, and Steps (2) and (3) are the “re-

estimation steps” where the centroids β(i) and rates γ (i)

are updated. In Chandrasekhar et al. (2009b), we show that

comparing gradient histograms with symmetric KL diver-

gence provides better ROC performance than using L1 or

L2-norm. It is shown in Banerjee et al. (2004), Rebollo-

Monedero (2007) that the Lloyd algorithm can be used for

the general class of distance measures called Bregman di-

vergences. Since the symmetric KL-divergence is a Breg-

man divergence, it can be used as the distance measure in

step (1) and the centroid assignment step (3) is nevertheless

optimal.

Implementation We start with an initial codebook size of

K = 1024 and sweep across λ to vary the bitrate for each

gradient configuration. The rate decreases and the distor-

tion increases as we increase the parameter λ. The algorithm

itself reduces the size of the codebook as λ increases be-

cause certain cells become unpopulated. We add a prior of

β0 = 0.5 to all bins to avoid singularity problems. Once the

histogram is quantized and mapped to an index, we entropy

code the indices with an arithmetic coder. Entropy coding

typically provides a 10–20% reduction in bitrate compared

to fixed length coding. The compression complexity of the

scheme is O(mk), where k is the number of cluster centroids

and m is the number of gradient bins. Note that this search

required to find the representative vector in the unstructured

codebook is expensive, and hence, is not suitable for mobile

applications.

ROC Results We show the performance of this scheme in

Fig. 12 for the DAISY-9, VQ-7 configuration. In Fig. 12, the

bitrate is varied by increasing λ with an initial codebook size

of K = 1024. For λ = 0, we represent the descriptor with

fixed-length codes in 90 bits. For this configuration, the de-

scriptor at 56 bits outperforms SIFT at 1024 bits. Next, we

compare the performance of the different histogram com-

pression schemes.

2.3.4 Comparisons

For each scheme, we compute ROC curves for different

gradient binning (VQ-3,5,7,9), spatial binning (DAISY-

9,13,17) and quantization parameters. For a fair compari-

son at the same bitrate, we consider the Equal Error Rate

Fig. 12 ROC curves for compressing distributions with Lloyd scheme

for DAISY-9 and VQ-7 configuration for the Liberty data set. CHoG

descriptor at 56 bits outperforms SIFT at 1024 bits

(EER) point on the different ROC curves. The EER point

is defined as the point on the ROC curve where the miss

rate (1− correct match rate) and the incorrect match rate are

equal. For each scheme, we compute the convex hull over

the parametric space, and plot the bitrate-EER trade-off: the

lower the curve, the better the performance of the descriptor.

We observe in Fig. 14(a) that Lloyd ECVQ performs best,

as expected. Next, we observe that both Huffman coding

and type coding schemes come close to the bound provided

by Lloyd ECVQ. The type coding scheme outperforms the

Huffman coding scheme at high bitrates. With type coding,

we are able to match the performance of 1024-bit SIFT with

about 60 bits.

In summary, we proposed two low-complexity quantiza-

tion and compression schemes that come close to achieving

the bound of optimal ECVQ. For each m-bin distribution,

Huffman coding is O(m logm) in complexity, while Type

Coding is O(m). Both schemes do not require storage of

codebooks on the mobile device, unlike ECVQ.

Finally, for reducing both speed and memory consump-

tion, we would like to operate on descriptors in their com-

pressed representation. We refer to this as compressed do-

main matching. Doing so means that the descriptor need not

be decompressed during comparisons.

2.4 Compressed Domain Matching

As shown in Sect. 2.3, we can represent the index of the

quantized distribution with fixed length codes when n is suf-

ficiently small. To enable compressed domain matching, we

pre-compute and store the distances between the different

compressed distributions. This allows us to efficiently com-

pute distances between descriptors by using indices as look-

ups into a distance table. Since the distance computation

only involves performing table look-ups, more effective his-

togram comparison measures like KL divergence and Earth
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Mover’s Distance (EMD) can be used with no additional

computational complexity. Figure 13 illustrates compressed

domain matching for the VQ-5 bin configuration and quan-

tization with Huffman trees.

3 Experimental Results

In this section, we present a comprehensive survey of several

low bitrate schemes proposed in the literature, and compare

them in a common framework. First, we present feature-

level ROC performance in Sect. 3.1, followed by image re-

trieval experiments in Sect. 3.2.

3.1 Feature Level Experiments

Here, we demonstrate that CHoG outperforms several other

recent compression schemes over a wide range of bitrates.

To make a fair comparison, we compare the Equal Er-

ror Rate (EER) for various schemes at the same bit rate.

Figure 14(b) compares CHoG against SIFT compression

schemes proposed in the literature. Figure 14(c) compares

CHoG against other low bitrate descriptors. Here, we de-

scribe each scheme briefly, with a short discussion of its

merits and drawbacks. For a more detailed description, read-

ers are referred to Chandrasekhar et al. (2009b, 2010b).

Table 1 also summarizes the key results for the different

schemes.

SIFT Compression SIFT compression schemes can be

broadly classified into three categories: hashing, transform

coding and vector quantization.

– Hashing. We consider three hashing schemes: Local-

ity Sensitive Hashing (LSH) (Yeo et al. 2008), Similar-

ity Sensitive Coding (SSC) (Shakhnarovich and Darrell

2005) and Spectral Hashing (SH) (Weiss et al. 2008). For

LSH, the number of bits required to match the perfor-

mance of SIFT is close to the size of the 1024-bit SIFT

descriptor itself. While SSC and SH perform better than

LSH at low bitrates, the performance degrades at higher

bitrates due to overtraining. We note in Fig. 14(b), that

there is a significant gap in performance between SIFT

hashing schemes and CHoG. Hashing schemes provide

the advantage of being able to compare descriptors us-

ing Hamming distances. However, note that one of the

fastest techniques for computing Hamming distances is

using look-up tables, a benefit that the CHoG descriptor

also provides.

– Transform Coding. We propose transform coding of

SIFT descriptors in Chandrasekhar et al. (2009a, 2010b).

In Chandrasekhar et al. (2009a), we observe that PCA

does not work well for SIFT descriptors due to its highly

non-Gaussian statistics. We explore a transform based

Table 1 Results for different compression schemes. “Number of bits”

column refers to the number of bits required to match the performance

of 1024-bit SIFT. “Training” refers to whether or not the compression

scheme requires training. “Complexity” refers to the number of opera-

tions required to compress each descriptor. “CDM” is Compressed Do-

main Matching. N is the number of hash-bits for the hashing schemes

including BRIEF. d = 128 for SIFT schemes, d = 64 for SURF, d = 63

for CHoG. C = size of codebook for PQ scheme. B = breadth of

TSVQ. D = depth of TSVQ

Scheme # of bits Training Complexity CDM

SIFT-LSH 1000 – O(Nd)
√

SIFT-SSC –
√

O(Nd)
√

SIFT SH –
√

O(Nd)
√

SIFT-PCA 200
√

O(d2) –

SIFT-ICA 160
√

O(d2) –

SIFT-PQ 160
√

O(Cd)
√

SIFT-TSVQ –
√

O(BDd)
√

SURF-PCA –
√

O(Ed) –

BRIEF – – O(N)
√

CHoG 60 – O(d)
√

on Independent Component Analysis (ICA) in Chan-

drasekhar et al. (2010b), which performs better than con-

ventional PCA. With ICA, we can match the performance

of SIFT at 160 bits.

– Vector Quantization. Since the SIFT descriptor is high di-

mensional, Jegou et al. (2010) propose decomposing the

SIFT descriptor directly into smaller blocks and performs

VQ on each block. The codebook index of each block

is stored with fixed-length codes. The Product Quan-

tizer (PQ) works best among all the SIFT compression

schemes. We note in Fig. 14(b) that the PQ matches

the performance of SIFT at 160 bits (the same bitrate

is also reported in Jegou et al. (2010)). At 160 bits, the

SIFT descriptor is divided into 16 blocks, with 10 bits for

each block. The size of the codebook for each block is

103, making it three orders of magnitude more complex

than the CHoG descriptor as reported in Table 1. Fur-

ther, there is still a significant gap in performance from

CHoG at that bitrate. Another scheme uses a Tree Struc-

tured Vector Quantizer (TSVQ) with a million nodes. At

20 bits/descriptor, the error rate of this scheme is very

high compared to other schemes. VQ based schemes re-

quire storage of codebooks, which might not be feasible

on memory-limited mobile devices.

SURF Compression We explore compression of SURF de-

scriptors in Chandrasekhar et al. (2009a). Transform Coding

of SURF performs the best at low bitrates. The compression

pipeline first applies a Karhunen-Lòeve Transform (KLT)

transform (or PCA) to decorrelate the different dimensions

of the feature descriptor. This is followed equal step size

quantization of each dimension, and entropy coding.
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Fig. 13 Block diagram of

compressed domain matching.

The gradient histogram is first

quantized, and mapped to an

index. The indices are used to

look-up the distance in a

precomputed table. This figure

illustrates compressed domain

matching with Huffman tree

quantization

Fig. 14 Comparison of EER versus bit-rate for all compression

schemes. Better performance is indicated by a lower EER. CHoG-

Huffman and CHoG-Type perform close to optimal CHoG-ECVQ.

CHoG outperforms all SIFT compression schemes, SURF compres-

sion schemes, MPEG-7 image signatures and patch compression over

a wide range of bitrates

Patch Compression One simple approach to reduce bit rate

is to use image compression techniques to compress canon-

ical patches extracted from interest points. We compress

32 × 32 pixel patches with DA-PBT (Direction Adaptive

Partition Block Transform), which is shown to perform bet-

ter than JPEG (Makar et al. 2009). We compute a 128-

dimensional 1024-bit SIFT descriptor on the reconstructed

patch. CHoG outperforms patch compression across all bi-

trates.

MPEG-7 Image Signature As part of the MPEG-7 stan-

dard, Brasnett and Bober (2007) propose a 60-bit signature

for patches extracted around Difference-of-Gaussian (DoG)

interest points and Harris corners. The proposed method

uses the Trace transform to compute a 1D representation

of the image, from which a binary string is extracted us-

ing a Fourier transform. We observe in Chandrasekhar et al.

(2010a) that the descriptor is robust to simple image modifi-

cations like scaling, rotation, cropping and compression, but

is not robust to changes in perspective and other photometric

distortions present in the Liberty data sets. At 60 bits, there

is a significant gap in performance between MPEG-7 image

signatures and CHoG.

BRIEF The BRIEF descriptor was proposed by Calonder

et al. (2010) in their recent work. Each bit of the descrip-

tor is computed by considering signs of simple intensity

difference tests between pairs of points sampled from the

patch. As recommended by the authors, the sampling points

are generated from an isotropic Gaussian distribution with

σ 2 = S2/25, where S = 64 is the size of the patch. Sim-

ple intensity difference based descriptors do not provide

the robustness of Histogram-of-Gradient descriptors, and we

note that there is a significant gap in performance between

BRIEF and other schemes.
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Fig. 15 Example image pairs from the dataset. A clean database pic-

ture (top) is matched against a real-world picture (bottom) with various

distortions

Table 1 summarizes the key results from Fig. 14. We note

that CHoG provides the key benefits required for mobile ap-

plications: it is highly discriminative at low bitrates (matches

SIFT at 60 bits), it has low complexity (linear in dimension-

ality of the descriptor), it requires no training and supports

compressed domain matching. Next, we discuss the perfor-

mance of CHoG in a practical mobile visual search applica-

tion.

3.2 Retrieval Experiments

In this section, we show how the low bit-rate CHoG de-

scriptors enable novel, efficient mobile visual search appli-

cations. For such applications, one approach is to transmit

the JPEG compressed query image over the network. An al-

ternate approach is to extract feature descriptors on the mo-

bile device and transmit them over the network as illustrated

in Fig. 1. Feature extraction can be carried out quickly (< 1

second) on current generation phones making this approach

feasible (Girod et al. 2010; Tsai et al. 2010). In this section,

we study the bitrate trade-offs for the two approaches.

For evaluation, we use 3 data-sets from the literature.

– University of Kentucky (UKY) The UKY dataset has

10200 images of CDs, flowers, household objects, key-

boards, etc. (Nistér and Stewénius 2006). There are 4 im-

ages of each object. We randomly select a set of 1000

images as query images of resolution 640 × 480 pixels.

– Zurich Building Database (ZuBuD) The ZuBuD database

has 1005 images of 201 buildings in Zurich (Shao et al.

2003). There are 5 views of each building. The data set

contains 115 query images of resolution 640×480 pixels.

– Stanford Product Search (SPS) The Stanford Product

Search System is a low latency mobile product search sys-

tem (Tsai et al. 2010; Girod et al. 2010). The database

consists of one million CD/DVD/book cover images. The

query data set contains 1000 images, of 500 × 500 pixels

resolution, some illustrated in Fig. 15.

We briefly describe the retrieval pipeline for CHoG

descriptors which resembles the state-of-the-art proposed

in Nistér and Stewénius (2006), Philbin et al. (2008). We

train a vocabulary tree (Nistér and Stewénius 2006) with

depth 6 and branch factor 10, resulting in a tree with 106

leaf nodes. For CHoG, we use symmetric KL divergence as

the distance in the clustering algorithm as KL distance per-

forms better than L2 norm for comparing CHoG descriptors.

Since symmetric KL is a Bregman divergence (Banerjee et

al. 2004), it can be incorporated directly into the k-means

clustering framework. For retrieval, we use the standard

Term Frequency-Inverse Document Frequency (TF-IDF)

scheme (Nistér and Stewénius 2006) that represents query

and database images as sparse vectors of visual word occur-

rences, and compute a similarity between each query and

database vector. We use geometric constraints to rerank the

list of top 500 images (Jegou et al. 2008). The top 50 query

images are subject to pairwise matching with a RAndom

SAmple Consensus (RANSAC) affine consistency check.

The parameters chosen enable <1 second server-latency,

critical for mobile visual search applications.

It is relatively easy to achieve high precision (low false

positives) for visual search applications. By requiring a min-

imum number of feature matches after RANSAC geometric

verification step, we obtain neglibly low false positive rates.

We define Recall as the percentage of query images correctly

retrieved from our pipeline. We wish to study the Recall (at

close to 100% precision) vs. query size trade-offs—a high

recall for small query sizes is desirable.

We compare three different schemes: (a) Transmitting

JPEG compressed images, (b) Transmitting uncompressed

SIFT descriptors and (c) Transmitting CHoG descriptors.

Figure 16 shows the performance of the three schemes for

the different data sets. For Scheme (a), we transmit a grey-

scale JPEG compressed image accross the network. The bi-

trate is varied by changing the quality of JPEG compres-

sion. Feature extraction and matching are carried out on the

JPEG compressed image on the server. We observe that the

performance of the scheme deteriorates rapidly at low bi-

trates. At low bitrates, interest point detection fails due to

blocking artifacts introduced by JPEG image compression.

For Schemes (b) and (c), we extract descriptors on the mo-

bile device and transmit them over the network. The bi-

trate is varied by varying the number of descriptors from

50 to 700. We pick the features with the highest Hessian

response (Lowe 2004) for a given feature budget. We ob-

serve that transmitting 1024-bit SIFT descriptors is almost

always more expensive than transmitting the entire JPEG

compressed image. For Scheme (c), we use a low bit-rate

Type coded CHoG descriptor. We use spatial bin configu-

ration DAISY-9, gradient bin configuration VQ-7 and type

coding parameter n = 7, which generates a ∼70-bit descrip-

tor. We achieve a peak recall of 96%, 94% and 75% for

the SPS, ZuBuD and UKY data sets respectively. In each

case, we get over an order of magnitude data reduction with
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Fig. 16 Recall vs. Query Size for the Stanford Product Search (SPS),

Zurich Building (ZuBuD) and University of Kentucky (UKY) data sets.

High recall at low bitrates is desirable. Note that the retrieval perfor-

mance of CHoG is similar to SIFT and JPEG compression schemes,

while providing an order of magnitude reduction in data

Table 2 Transmission times for different schemes at varying network

uplink speeds

Scheme Upload Time (s) Upload Time (s)

(20 kbps link) (60 kbps link)

JPEG+SIFT 20.0 6.7

SIFT 32.0 10.7

CHoG 1.6 0.5

CHoG descriptors, compared to JPEG compressed images

or SIFT descriptors. E.g., for the SPS data set, with CHoG,

we reduce data by 16× compared to SIFT, and 10× com-

pared to JPEG compressed images.

Finally, we compare transmission times for typical cel-

lular uplink speeds in Table 2 for the different schemes.

Here, we consider the 96% highest recall point where 4 KB

of CHoG data are transmitted for the SPS data set. For a

slow 20 kbps link, we note that the difference in latency be-

tween CHoG and the other schemes is about 20 seconds.

We conclude that transmitting CHoG descriptors reduces

query latency significantly for mobile visual search appli-

cations.

4 Conclusion

We have proposed a novel low bitrate CHoG descriptor in

this work. The CHoG descriptor is highly discriminative at

low bitrates, is low in complexity, and can be matched in

the compressed domain, making it ideal for mobile appli-

cations. Compression of probability distributions is one of

the key ingredients of the problem. To this end, we study

quantization and compression of probability distributions,

and propose two low complexity schemes: Huffman cod-

ing, and type coding, which perform close to optimal Lloyd

Max Entropy Constrained Vector Quantization. We perform

a comprehensive survey of several low bit-rate schemes and

show that CHoG outperforms existing schemes at lower or

equivalent bit rates. We implement the CHoG descriptor in

a mobile image retrieval system, and show that CHoG fea-

ture data are an order of magnitude smaller than compressed

JPEG images or SIFT feature data.
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