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Compressed intramolecular dispersion interactions
Cameron J. Mackie,1, a) Jérôme F. Gonthier,1 and Martin Head–Gordon1, b)

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley,

California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

California 94720, USA

(Dated: 9 March 2020)

The feasibility of the compression of localized virtual orbitals are explored in the context of intramolecular
long–range dispersion interactions. Singular value decomposition (SVD) of coupled cluster doubles ampli-
tudes associated with the dispersion interactions are analyzed for a number of long–chain systems, including
saturated and unsaturated hydrocarbons and a silane chain. Further decomposition of the most important
amplitudes obtained from these SVDs allows for the analysis of the dispersion—specific virtual orbitals that
are naturally localized. Consistent with previous work on intermolecular dispersion interactions in dimers it
is found that three important geminals arise and account for the majority of dispersion interactions at long
range, even in the many body intramolecular case. Furthermore, it is shown that as few as three localized
virtual orbitals per occupied orbital can be enough to capture all pairwise long–range dispersion interactions
within a molecule.

I. INTRODUCTION

Dispersion forces dominate the long–range, non–
covalent interactions between medium–to–large–sized
molecules; as well as long–range intramolecular inter-
actions within a molecule. Traditional semi–local den-
sity functional theory (DFT) methods do not describe
dispersion intrinsically1. However substantial progress
has been made by supplementing such functionals with
dispersion–specific van der Waals (vdW) corrections.
Prominent examples include non–local correlation func-
tionals, such as vdW–DF–042 and VV103, and empiri-
cal atom–atom dispersion potentials such as DFT–D34,5,
DFT–TS6 and XDM7,8. The best of these functionals are
very successful, but of course all such functionals remain
approximate and therefore may fail in some cases, e.g.,
VdW B3LYP ice sinks in water9.
In contrast, post–Hartree–Fock methods such as

coupled–cluster (CC)10, or Møller–Plesset perturbation
theory11 (MP) naturally account for dispersion interac-
tions (vide infra), and can provide a more realistic de-
scription of dispersion than the vdW DFT methods listed
above. Lowest order MP2 theory is well–known to be in-
adequate for relatively strong dispersion interactions such
as π-stacking12, while higher order CC methods remedy
such failures.
However, these methods come at a high computational

cost, and are therefore not feasible for large systems
where dispersion forces can play significant roles. Combi-
nations of DFT methods with post–Hartree–Fock meth-
ods, such as MP2 and the random phase approximation13

(RPA), have been put forth whereby the correlation
and dispersion energies can be formulated using double–
excitation amplitudes calculated from previously opti-
mized DFT orbitals14,15. These so–called “rung 5” func-
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tionals represent the best methods on Perdew et al.’s
Jacob’s Ladder to Chemical Accuracy Heaven16,17, and
come at a reasonable cost compared to full post–Hartree–
Fock methods. There are promising examples that per-
form well for non–covalent interactions18,19.
The application of CC methods to challenging

dispersion–containing problems requires the development
of more computationally efficient implementations. The
most intensively pursued directions have been so–called
local correlation methods20–22, and F12 methods23,24

that enable more rapid basis set convergence. One rel-
atively neglected question is whether or not basis set
requirements differ significantly for short–range versus
long–range correlation. Recently, it has been shown that
the coupled cluster double–excitation amplitudes respon-

sible for the dispersion energy (T disp
2 ) between dimers can

be greatly compressed to as few as three virtual orbitals
per occupied orbital25. This result fulfills the predic-
tion made by Pulay in his first paper on local correlation
ideas26. A virtual space compression of this type could
provide a dramatic speed–up in calculation of dispersion
energy calculations of dimers if incorporated into post–
HF methods.
Before such efforts are attempted there are some sig-

nificant open questions that should be addressed by fur-
ther numerical experiments. How do the results for
dimers transfer to intermolecular interactions where mul-
tiple fragments are involved? In particular, are different
dispersion–specific virtuals required to capture each in-
teraction, or are they “universal” for the interaction of
a given molecule with any other species? Furthermore,
since dispersion is an interaction that occurs not only
between molecules, but within a molecule, how do the
results for dimers transfer to interactions between func-
tional groups within a molecule? Our goal in this work is
to explore these questions by examining dispersion inter-
actions in trimers and beyond, as well as intramolecular
dispersion interactions between functional groups in some
saturated and unsaturated hydrocarbon chain molecules.
In this work we investigate the tensor decomposition of
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the T
disp
2 amplitudes through singular value decomposi-

tion (SVD) techniques in order to characterize the impor-
tance of each virtual orbital in the dispersion description.
Section II briefly outlines the underlying theory of dis-
persion and its connection to coupled cluster amplitudes;
as well as the methods used to decompose these ampli-
tudes. Section III describes in detail the model systems
used in the SVD analysis. Section IV presents the results

of the decomposition of the T
disp
2 amplitudes, as well as

examples of the virtual orbitals which are important in
dispersion interactions. Finally, in section V a summary
of the main results of this work, and their implications,
is presented.

II. THEORY

A. Two–body dispersion

Dispersion, being a non–classical phenomenon, is best
understood as arising due to the fluctuations in the
charge density due to the movement of electrons in a
molecule. As these electrons move, their motions in a
given molecule can become correlated with the motions
of the electrons in another molecule, or at distant sites
in the same molecule. This correlated motions lead to a
lowering of the energy of the system, resulting in attrac-
tion.
Dispersion energies in the context of long–range per-

turbation theory27 can be described as correlated exci-
tations between occupied orbitals on a fragment A to
virtual orbitals on the same fragment A; with occupied
orbitals on another fragment B to the virtual orbitals
on that same fragment B. Within the Hartree–Fock
wavefunction framework, the long–range dispersion en-
ergy can be expressed to lowest order as

Edisp = −4
∑

ia∈A

∑

jb∈B

(ia|jb) (ai|bj)

ǫa + ǫb − ǫi − ǫj
(1)

where, (ia|jb) is the molecular repulsion integral over
spatial–orbitals using chemist’s notation, and ǫx is the
Hartree–Fock orbital energy of orbital x (a, b virtual; i, j
occupied). Equation 1 is only valid when exchange in-
teractions between fragments are negligible, a reasonable
assumption to be made at medium to long range due to
the exponential decay of the exchange term. Within this
assumption, i and a become the occupied and virtual or-
bitals of fragment A respectively, and correspondingly j
and b become the occupied and virtual orbitals of frag-
ment B.
Equation 1 can be rewritten as

E
2−body disp.
MP2 = 4

∑

ia∈A

∑

jb∈B

tabij (ai|bj) (2)

where tabij are doubles amplitudes. The MP2 doubles at

long range are:

tabij = −
(ia|jb)

ǫa + ǫb − ǫi − ǫj
(3)

(subject to the same restrictions given on fragments A
and B above). Since MP2 amplitudes are known to over
estimate dispersion energies in the basis set limit28,29,
the tabij amplitudes in equation 2 can be substituted with
the more accurate CCSD amplitudes, similar to previous
studies on the energy decomposition of the full exchange–
dispersion terms30–33 and the previous SVD analysis of
dimers25 (see ref. 25 for more details).

B. Three–body dispersion

At the MP2 level, there is no three–body dispersion,
because equation 1 is pairwise additive. At the MP3 level
disconnected–triples are included, i.e.,

E
3body disp.
MP3 = 16

∑

ia∈A

∑

jb∈B

∑

kc∈C

tabij t
ac
ik (bj|ck)

+tbaji t
bc
jk (ai|ck)

+tcaki t
cb
kj (ai|bj)

(4)

Likewise, at the CCSD level disconnected triples also
make an appearance through the relaxation of the dou-
bles amplitudes in the presence of the third body, which
then indirectly affects the total CCSD energy via equa-
tion 2.

Analogous to equation 1 the connected triples and their
associated three body dispersion energy can be written
as

E
3body disp.
MP4 = −

4

3

∑

ia∈A

∑

jb∈B

∑

kc∈C

|wabc
ijk |

2

ǫa + ǫb + ǫc − ǫi − ǫj − ǫk

(5)

where the triples–substitution term wabc
ijk is defined in ref.

34. wabc
ijk can be expressed in the fragment based spatial–

orbital form used in this work as
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wabc
ijk =

virt∈A
∑

e

tebij (ae|ck) + tecik (ae|bj)

+

virt∈B
∑

f

t
af
ij (bf |ck) + t

fc
jk (bf |ai)

+

virt∈C
∑

g

t
bg
jk (cg|ai) + t

ag
ik (cg|bj)

−

(

occ∈A
∑

m

tabmj (mi|ck) + tacmk (mi|bj)

)

−

(

occ∈B
∑

n

tabin (nj|ck) + tbcnk (nj|ai))

)

−

(

occ∈C
∑

p

tbcjp (pk|ai) + tacip (pk|bj))

)

(6)

Note that it is necessary to increase to fourth order per-
turbation theory to account for connected–triples. Simi-
larly in coupled–cluster, triple excitations (i.e, CCSDT)
are needed to account for the connected–triples terms of
the three–body dispersion energy. See references 35–37
for descriptions of many–body interactions, and reference
38 and references therein for a full description and bench-
marks of three–body dispersion in small clusters.
Fortunately, three–body dispersion decays as R−9 so

its contribution at long range is small. (Although, one
should be cautious of this assumption in large systems
such as bulk liquids or solids where these three–body
dispersion interactions add up quickly39–43.) However,
in this work, the tiny error introduced in the neglect of
connected–triples would be quickly overwhelmed by any
error introduced in the compression of the virtual space
itself. For this reason, as well as computational tractabil-
ity, we will limit ourselves to the CCSD doubles ampli-
tudes in this work. Therefore, the many–body contribu-
tions to dispersion will enter via relaxation of the CCSD
amplitudes. As such, this work will concern pairwise ad-
ditive three–body dispersion, and neglect non–additive
three–body dispersion.

C. Two–fragment Singular Value Decomposition

The analysis of the compressibility of dispersion inter-
actions between two monomers follows the method de-
scribed in our previous work25. First, we choose a suit-
able tensor describing dispersion interactions, for exam-
ple the CCSD T2 amplitudes. To select the intermolec-
ular block of the tensor, and thus separate the analysis
of intermolecular correlation effects from intramolecular
correlation effects, we localize orbitals using the Boys lo-
calization procedure. At sufficiently large intermolecular
separation (found to be sufficient beyond 3 Å in refer-
ence 25 and 2.6 Å in this work), the orthogonalization

tails that result from this process are negligible. The

resulting dispersion tensor to analyze is denoted T disp
2 .

Singular Value Decomposition (SVD) yields the best
rank–reduced approximation of a matrix in a least–
square sense. Therefore, the decomposition of the four–

index tensor T disp
2 is performed by first flattening the ten-

sor to two dimensions. In our case, we are specifically in-
terested in extracting monomer–related properties, thus
we grouped together indices from the same monomer:

T disp
2 elements are arranged in a matrix T

OAVA,OBVB

where the occupied and virtual indices of one monomer
run along the rows while those of the other monomer run
along the columns. Applying SVD to this matrix yields:

T
OAVA,OBVB = G

AΓ
(

G
B
)T

(7)

where we associate the left singular vectors G
A with

monomer A and the right singular vectors G
B with

monomer B. The diagonal matrix Γ contains the singu-
lar values, which rank the importance of each pair of
singular vectors in the original matrix. Physically, we
interpret the SVD as expressing a tensor of double exci-
tations into a sum of products of single excitations, each
of which occurs on a single monomer. Note that each sin-
gle excitation involves only one electron but may contain
components from different orbitals, as we will see below.
We can thus rewrite the above equation to explicit each
single excitation as a column vector G•P , with γP the
weight of each pair of excitation:

T
OAVA,OBVB =

Ngem
∑

P

G
A
•P · γP ·

(

G
B
•P

)T
(8)

This interpretation is consistent with the dimensions
of the singular vectors. Since each of those vectors con-
tain information about both the occupied and the virtual
space of each monomer, we refer to them as geminal vec-
tors. This first SVD already yields the effective rank of
the T

OAVA,OBVB matrix since we can eliminate pairs of
geminals associated with negligible weights γP .
To gain further insight into the significant excitation

processes in dispersion interactions, we extract informa-
tion from each geminal vector G•P . In particular, we
can separate the occupied from the virtual space in each
excitation by applying SVD again, in a similar spirit to
the Natural Transition Orbital44 analysis. Each vector is

reshaped as a matrix
(

G
X
•P

)OX ,VX
where occupied and

virtual indices are arranged along the rows and columns,
respectively. Singular value decomposition then yields:

(

G
X
•P

)OX ,VX
= UΓ (V )

T
(9)

where the single excitation associated with the geminal
vector is now expressed as a sum of occupied to virtual
pairs, weighted by the singular values in Γ. The matrices
U and V rotate the occupied and the virtual space re-
spectively, yielding orbitals that most efficiently describe
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the original single excitation. Since our interest usually
lies in truncations of the virtual space, we restrict our
analysis to matrix V . By transforming the significant
columns of this matrix to the Atomic Orbital basis, we
obtain and plot the most important virtual orbitals in-
volved in the excitation processes giving rise to dispersion
interactions25.

D. Multi–fragment SVD

For the multi–fragment SVD analysis the T
disp
2 tensor

is unfolded into a matrix similar to the two fragment SVD
analysis described above. However, in order to account
for the multiple simultaneous interactions, the tensors
are unfolded into interaction–blocks. Thus for a system
containing fragments A, B, C, etc, we may consider the

T
disp
2 tensor matrix to be composed as follows:

T
disp
2 =











0 TAB TAC · · ·
0 0 TBC

0 0 0
...

. . .











(10)

Here we understand that TAB represents TOAVA,OBVB ,
etc. The diagonal blocks are set to zero, because there is
no self–dispersion, and lower–triangle blocks are also set
to zero because they are duplicates of the non–redundant
upper triangular blocks.

III. MODEL SYSTEMS

Multiple systems were analyzed to test the compress-

ibility of the T
disp
2 amplitudes. All molecular geometries

were optimized using DFT45,46 at the ωB97X–D47/6–

31G*48 level of theory. The T
disp
2 amplitudes were ob-

tained at these geometries using the CCSD49 method
with the cc–pVDZ basis set50, with core electrons frozen.
Due to the number of electrons in the largest molecules
analyzed, cc–pVDZ was the largest basis set that could
be used. As a cross–check, n–hexane was also run with
the aug–cc–pVDZ and cc–pVTZ50 basis–set to assess
basis–set dependence. All calculations were performed
using a locally modified version of the Q–Chem software
package51.

A. Helium trimer

The helium trimer was chosen for a full multi–fragment
SVD analysis to first establish the number of important
geminals for three–body pair–wise additive dispersion in-
teractions. As will be shown below, the SVD of helium is
also used to justify the splitting of the full multi–fragment

unfolded T
disp
2 tensor into its sub–block components for

individual SVD analysis. Two geometries are utilized,

FIG. 1: Two helium trimer configurations. The
checkered lines represent inter–atomic distances which
are increased during the SVD analysis, while the solid
line represents a fixed inter–atomic distance of 3 Å

FIG. 2: Model hydrocarbon systems used in the
intramolecular analysis, n–hexane, gauche hexane,
n–dodecane, trans–2–dodecene, 2,5,8,11–tridecene.

Carbon bonds and CH–groups are enumerated from left
to right as shown during the SVD analysis.

as shown in figure 1: an equilateral triangular geometry,
where the inter–atomic distances are increased equally,
and a linear geometry, where one inter–atomic distance
is fixed at 3 Å and the other is variable.
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B. Hydrocarbons and silanes

After establishing the validity of the pair–wise sub–
block SVD analysis (vide infra) it became possible to in-
vestigate intramolecular dispersion. A series of hydrocar-
bon molecules were chosen to test the compressibility of

the intramolecular T
disp
2 amplitudes: n–hexane, gauche

hexane, n–dodecane, trans–2–dodecene, and 2,5,8,11–
tridecene (see figure 2). The occupied and virtual orbitals
were localized separately using the Boys algorithm52–55.
This resulted in two active electrons localized in each
bond–centered occupied orbital, as well as a series of
bond–centered virtual orbitals for each bond.
n–Hexane

n–Hexane was chosen as it is the simplest hydrocarbon
to test long–range intramolecular dispersion. A ques-
tion arises as to what to consider a “fragment” within
a molecule for the SVD analysis. To address this, n–
Hexane was analyzed with both CC–bonds constituting
a fragments as well as CH–groups constituting a frag-
ment (all other hydrocarbons are analyzed with CC–
bonds only). The SVD analysis of n–hexane was also per-
formed with the aug–cc–pVDZ and cc–pVTZ basis–set
amplitudes to explore basis–set dependence. The CC–
bond numbering given in figure 5 refers to every other
CC–bond, starting from the left as shown in figure 2
(hydrogen atoms are purely “spectators”). Likewise, the
CH–group numbering refers to each CH–group starting
on the left with CH3, then CH2, etc.
Gauche hexane

A gauche configuration of hexane was chosen to com-
pare with the results of n–hexane to test for possible
differences between ”through–bond” dispersion versus
”through–space” dispersion, and to break any possible
contributions from hyperconjugation. CC–bond number-
ing in figure 5 remains the same as n–hexane.
n–Dodecane

n–Dodecane was chosen in order to measure the distance
dependence of the singular values. As distance increases
the dispersion energy for dipole–dipole interactions are
expected to decay as R−6; for dipole–quadrupole inter-
actions decays as R−8; and for quadrupole–quadrupole
interactions decays as R−10, which correspond to singu-
lar value decays of R−3, R−4, and R−5 respectively. The
resulting energies at various degrees of compression of
dispersion–specific orbitals for the CC–bond interactions
are also analyzed. CC–bond numbering in figure 5 refers
to every other CC–bond as shown in figure 2, starting
with the second CC–bond (to facilitate easier compari-
son with trans–2–dodecene below).
trans–2–Dodecene

trans–2–Dodecene was chosen in order to determine if
the SVD compressibility results hold for π–bonded sys-
tems. Additionally, the distance dependence of the sin-
gular values between a double–bond and single–bonds is
examined. CC–bond numbering in figure 5 refers to ev-
ery other CC–bond as shown in figure 2, starting with the
second CC–bond. The second CC–bond being a double–

FIG. 3: Model silane system used in the intramolecular
analysis, Si10–silane.

bond, with all other bonds being single–bonds.
2,5,8,11–Tridecene

2,5,8,11–Tridecene was chosen in order to determine the
effect which π–π interactions have on the SVD compress-
ibility, as well as determine the relative importance of π
versus σ dispersion. Each double–bond is separated by
two single–bonds in order to avoid conjugation effects,
with the first double–bond occurring between carbon two
and three. A low–symmetry, random orientation of the
dihedral was employed to increase the variance of singular
values. An unintended consequence of this random orien-
tation is that virtual orbital orientation can be examined
with regards to dispersion interactions. The CC–bond
numbering used in figure 5 refers to each double–bond in
order from left to right.
Long–chain silane

Si10–silane was chosen as an analog to the hydrocarbons
in this work in order to test the transferability of these
SVD findings to non–hydrocarbon systems. As in n–
hexane, both the SiSi–bonds and SiH–groups were ana-
lyzed. The SiSi–bond numbering given in figure 6 refers
to every other SiSi–bond, starting from the left as shown
in figure 3. Likewise, the SiHx–group numbering refers
to each SiHx–group starting on the left with SiH3, then
SiH2, etc.

IV. RESULTS

A. Singular value decomposition

Helium trimer

The full multi–fragment SVD results for the helium
trimer at three atomic distances is presented in figure 4.
The magnitudes of the largest singular values are shown.
The top panel shows the singular values for the equi-
lateral triangular configuration, and the bottom for the
linear configuration (see figure 1). As can be seen for
the triangular case, there are nine important geminals
of roughly equal magnitude before a sharp drop–off of
over two orders of magnitude for the 3 Å distance, and
well over four orders of magnitude for 6 and 9 Å. As
shown in reference 25, this sharp drop–off leads to a high

compressibility of the T
disp
2 terms used to calculate the

dispersion energy with little loss to accuracy. Equally
important in the context of this work, is that exactly
nine important geminals are found, i.e., three geminals
per significant pairwise interaction. This nicely gener-
alizes the dimer SVD analysis of reference 25, where 3
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FIG. 4: The T
disp
2 singular values for the He trimer

interactions. The upper panel corresponds to SVD at
the equilateral triangle geometry, and the lower panel to

SVD at the linear geometry: see figure 1 for the
structures and bond definitions. The ordering of the
singular values are altered in the 9Å case of second
panel so as to reflect the decay progression of the

relevant singular values.
.

significant geminals were found for a single interaction
in a helium dimer. Confirmation of this can be seen in
the linear He trimer case shown in the lower panel of
figure 4. As one He atom is pulled further away from
the other two, only three geminals are shown to decrease
appreciably, corresponding to a weakening interaction.

The result that the T
disp
2 tensor for N interacting

monomers is represented to leading order by only 3N(N−
1) geminals simplifies the examination of more complex
systems. No specific three–body virtual orbitals need to
be considered. The lack of any significant contribution
from geminals representing three–body terms in the de-
composition also leads to the conclusion that the SVD
analysis can be carried out simply as pairwise, i.e., the

sub–blocks of the unfolded T
disp
2 can be decomposed and

analyzed independently from one another. This opens up

the possibility to examine the dispersion contributions of
the amplitudes in large systems in an efficient manner,
including intramolecular dispersion interactions.
Furthermore, the second SVD of the 3N(N − 1) im-

portant geminals into occupied–virtual pairs reveals re-
dundancy in the virtual space. That is to say, the same
occupied–virtual pairs per monomer are responsible for
the dominant dispersion interactions for all other frag-
ments. This further reduces the number of important
dispersion–specific virtual orbitals per occupied from as
many as 3N(N − 1) to as few as 3N . A more thorough
analysis of this reduction in virtual space is left to the
more complex hydrocarbon systems in section IVE.
Hydrocarbons and silane

As stated in section IIIA the SVD of the hydrocarbon in-
tramolecular dispersion is performed on the sub–blocks of

the unfolded T
disp
2 tensor. Descriptions of the CC–bond

and CH–group number of figure 5 are given in section
III B. Only the SVD between the first bond/group and
all other bonds/groups are shown in each plot, similar
results were obtained for all other intramolecular inter-
actions.
Hexane

Hexane represents the smallest hydrocarbon in which

the compressibility of the intramolecular dispersion T
disp
2

amplitudes becomes apparent. The top–left panel of fig-
ure 5 shows the singular value magnitudes for the CC–
bond:CC–bond dispersion of n–hexane. For CC–bond 1
on CC–bond 3, the drop–off in singular value between
the third and fourth singular value is marginal. This is
expected since the distance between these bonds is ap-
proximately 2.6 Å, well below the distance where long–
range dispersion would dominate, and likely in a region
where exchange interactions are significant (violating the
conditions for equation IIA). Moving further out to the
SVD of CC–bond 1 with CC–bond 5 (a distance of ap-
proximately 5.1 Å) the drop–off between the third and
fourth singular value becomes more pronounced, repre-
senting an order of magnitude decrease. Interestingly, a
drop–off between the first and second singular value also
appears, again about an order of magnitude, which will
be discussed in more detail in the context of distance
dependence below.
For n–hexane an SVD analysis which makes use of the

CH–groups for the fragments is also presented in the top
panel of figure 5. Again, a drop–off between singular
values three and four is observed, which increases with
fragment distance. The drop–off reaches an order of mag-
nitude between CH–group 1 and CH–group 4, represent-
ing an inter–fragment distance of approximately 5.1 Å,
consistent with the CC–bond n–hexane SVD.
As stated in section III B a gauche hexane config-

uration was also explored to test for differences be-
tween through–bond and through–space dispersion, and
to break any possible contributions from hyperconjuga-
tion. As can be seen in the middle left panel of figure 5
compared to n–hexane in the top left, little changes. The
drop–offs are slightly diminished, and the gap between
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FIG. 5: The first twenty T
disp
2 singular values for the bond–bond dispersion interactions of four long–chain

hydrocarbons: n–hexane (CC–bonds), n-hexane (CH–groups), g–hexane, n–dodecane, trans–2–dodecene, and
2,5,8,11–tridecene. See figure 2 for the relevant structures and bond definitions.

CC–bond 1 on CC–bond 3 and CC–bond 1 on CC–bond
5 is closed, however this is due likely to the shortening of
the CC–bond CC–bond distances when moving from the
normal to gauche configuration, although orbital orien-
tation does play a role (albeit minor in this case) as will
be shown with 2,5,8,11–tridecene below.

n–Dodecane

Qualitatively, the singular values of n–dodecane shown in
the middle–right panel of figure 5 follow the pattern seen
in n–hexane. At short distances i.e., between CC–bond 1
and CC–bond 3 (2.6 Å), the drop–off between the third
and fourth singular value is not apparent. Between CC–
bond 1 and CC–bond 5 (5.1 Å) the drop–off appears, then
continues to grow between CC–bond 1 and CC–bond 7
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(7.7 Å), and CC–bond 1 and CC–bond 9 (10.2 Å).

trans–2–Dodecene

As for n–dodecane, trans–2–dodecene was chosen to ex-
amine the distance dependence of the singular values; in
this case to examine specifically the decay rate of the
dispersion interaction between a CC–double–bond and
CC–single–bonds. Again, qualitatively for the first three
singular values trans–2–dodecene is consistent with n–
hexane and n–dodecane in that they show a clear drop–
off after the third singular value which expands with dis-
tance, and the first singular value dominates. However,
the drop–off between the third and fourth singular value
is not as large in magnitude (clearly visible between CC–
double–bond 1 and CC–double–bond 4 (10.2 Å)), before
again dropping off at the fifth singular value.

2,5,8,11–Tridecene

2,5,8,11–Tridecene was originally selected in order to ex-
amine π/σ–bond on π/σ–bond dispersion interactions
and the relative importance of π versus σ contribu-
tions. However, the bottom–right panel of figure 5 shows
clear erratic behavior when moving out to further bonds.
Upon inspection of the virtual orbital components of the
most important geminals it becomes clear that orienta-
tion of the orbitals play a strong role (see section IVE).

Si10–silane

Si10–silane was selected as a non–hydrocarbon analog
to the long–chain hydrocarbons in this work. The be-
havior of the singular values remain largely the same.
The top panel of figure 6 shows the singular values of

the T disp
2 of the Si10–silane bond–bond dispersion. The

first three singular values remain the most important at
long–distances, with an enhancement of the first singular
value, however the drop–off does not become clear until
Si–bond 1 on Si–bond 7 (11.9 Å). This delayed drop–off is
likely due to the larger exchange correlation effects of the
extended orbitals of the Si atoms. It is also possible that
much like in the case of trans–2–dodecene, the fourth sin-
gular value sees an enhancement. As such, if the fourth
singular value is ignored, the drop–off becomes significant
at Si–bond 1 on Si–bond 5 (7.9 Å). Although appealing
(especially if one examines the fourth singular value of
Si–bond 1 on Si–bond 7) the evidence is to the contrary.
Table I shows no R−4 dependence for the fourth singu-
lar value, and inspection of the virtual orbitals shows no
dipole–quadrupole interactions.

As with n–hexane the SVD of Si10–silane was also car-
ried out using the SiH–groups, as shown in the bottom
panel of figure 6. The results are consistent with n–
hexane, a steep drop–off after the third singular value.
No odd behaviors as seen in the Si–bond SVD are ob-
served. The drop–off become significant much sooner
than the Si–bond SVD as well; occurring at SiH group 1
on SiH group 3 (4.0 Å).
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FIG. 6: The T disp
2 singular values for the bond–bond

dispersion interactions of the long–chain silane. Si–Si
bond interactions are shown in the top panel, while
SiH–SiH group interactions are shown in the bottom
panel. See figure 2 for the relevant structure and bond

definitions.

B. Basis–set dependence

n–Hexane is small enough to allow comparison with
larger basis sets. An SVD analysis was performed using
the cc–pVDZ, aug–cc-pVDZ, and cc–pVTZ basis sets.
Figure 7 shows the singular values of both the CC–bond
1 on CC–bond 3 (top panel) and CC–bond 1 on CC–
bond 5 (bottom panel) dispersion interactions for each
basis. Small differences between the three basis–sets are
observed, ruling out any strong basis–set dependence.
The sharp drop off between the third and fourth geminals
are observed for all basis–sets. The differences in decay
rates of the singular values occurring for the C–bond 1
on CC–bond 5 dispersion interaction are likely due to a
better description of long–range diffuse virtual–orbitals.
However, their contribution is negligible when compared
to the contribution of the first three geminals taken to-
gether. This result points to a fast basis–set convergence
at least for the construction of the first three important
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FIG. 7: The T disp
2 singular values for the CC–bond 1 on

CC–bond 3 (top panel), and CC–bond 1 on CC–bond 5
(bottom panel) dispersion interactions of hexane with

three basis–sets: cc–pVDZ, aug–cc–pVDZ, and
cc–pVTZ.

dispersion–specific virtual orbitals.

C. Distance dependence

n–Dodecane

The SVD of the T
disp
2 amplitudes of n–dodecane are

performed primarily in order to test for distance depen-
dence of the singular values, and hence the distance de-
pendence of the orbital contributions to the dispersion
energy. The correlation energy can be computed as the
product of the CCSD amplitudes (decomposed as singu-
lar values and vectors) with the two-electron integrals.
To the first order, the decay behavior of the singular val-
ues and the corresponding integrals will be the same25.
Thus, the decay of the correlation energy will be the
square of the singular values’ decay, i.e., if singular values
decay as R−3, then the energy should decay as R−6.
Figure 8 shows the decay of the first ten singular values

FIG. 8: Singular value decay as a function of distance
in n–dodecane. Power–law fits are provided for each
singular value (see table I for the corresponding

exponents).
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FIG. 9: The distance dependence of CC–bond –
CC–bond dispersion interactions of n-dodecane. A

power–law fit is given in red.

of n–dodecane with distance, with their corresponding
power–law fits., and table I lists the exponents used for
the fits. The first three singular values decay as approxi-
mately R−3 (R−6 in energy), consistent with the dipole–
dipole contributions to dispersion. However, the first sin-
gular value is enhanced in both magnitude and slowed in
decay (closer to R−2) compared to the next two. As will
be discussed in section IVE this enhanced interaction is
due to excitations to p–like virtual orbitals whose node
cuts the bond perpendicularly. The next seven singu-
lar values decay as approximately R−5 (R−10 in energy)
consistent with the quadrupole–quadrupole contributions
to dispersion. Interestingly, the dipole–quadrupole con-
tribution to dispersion (R−4, R−8 in energy) is not a
strong contributor as is seen for inter–molecular dimers
in reference25.
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TABLE I: Exponents for the fitting curves of the first 10 geminals of n–dodecane, trans–2–dodecene, and
Si10–silane; given by f(x) = b× xA where x is a given intramolecular C–C C–C (Si) bond distance.

SVD index 1 2 3 4 5 6 7 8 9 10
n–dodecane A (-) 2.34 3.59 3.45 5.41 5.84 5.25 5.39 5.60 5.70 5.77
trans–2–dodecene A (-) 2.58 3.49 3.21 4.21 5.88 6.25 6.31 5.80 5.33 5.63
Si10–silane A (-) 2.48 3.37 3.18 5.39 5.57 5.22 5.28 5.54 6.03 5.87

The distance dependence for the complete dispersion
interaction (i.e., all orbital contributions) between one
CC–bond and the remaining CC–bonds is given in figure
9 as a function of distance. Interestingly, the total dis-
persion interaction is found decay as R−5.69, rather than
the expected R−6, likely due to the slower decay of the
enhanced perpendicular p–like virtual–orbital mentioned
above.

trans–2–Dodecene

Table I also list the exponents used for the power–law
fits of the decay of the first ten singular values of trans–
2–dodecene with distance. Again, the decay of the first
three singular values decay as approximately R−3 (R−6

in energy), with the first singular value decaying closer
(but not as close as n–dodecane) to R−2. The fourth
singular value decays as R−4 (R−8 in energy) consis-
tent with a dipole–quadrupole contribution to dispersion.
This explains the delay in drop–off between the third
and fourth singular values seen in trans–2–dodecene. As
will be shown in section IVE this is due directly to the
presence of the π–orbital and its corresponding virtual
orbitals. Singular values five through ten (excluding
nine) also show deviating behavior. Their decays are
closer to R−6, with singular values six and seven even
exceeding R−6. Inspection of their virtual orbital com-
ponents still classifies them as quadrupole–quadrupole
dispersion terms. Instead orientation of the interact-
ing bonds plays a role (trans–2–dodecene is not longer
a straight hydrocarbon–chain). This effect is more pro-
nounced in 2,5,8,11–tridecene and so will be left for fur-
ther discussion in section IVE.

2,5,8,11–Tridecene

Although no fit to decay rates of the singular values can
be made for 2,5,8,11–tridecene due to the sporadic be-
haviour of the singular values (see figure 5), qualitative
descriptions and predictions of the singular values can
still be made. The drop–off between the third and fourth
singular values remains, suggesting strong dipole–dipole
contributions to dispersion. However, the first singular
value is enhanced only for CC–double–bond 1 on CC–
double bond 3, suggesting orientation considerations. For
CC–double–bond 1 on CC–double bond 3 (but not CC–
double bond 2 or 4) the fourth singular value is enhanced,
suggesting a contribution from a dipole–quadrupole in-
teractions.

Si10–silane

Lastly, table I shows the exponents used in the power–
law fits of the decay of the first ten singular values the
Si–bond interactions of Si10–silane with distance. As in
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FIG. 10: Total dispersion energy between all CC–bonds
contained within n–dodecane at various degrees of
compression. The full uncompressed theoretical

dispersion energy is given by the dashed red line.

the hydrocarbons, the first three singular values decay
as approximately R−3, with the first singular value de-
caying slower. The next five singular values decay as ap-
proximately R−5 consistent with quadrupole–quadrupole
contributions to dispersion. However, the last two singu-
lar values decay as approximately R−6. Unlike trans–2–
dodecene this change in decay rate does not reflect orbital
orientation. Examination of the virtual orbitals involved
in these geminals display complex forms, possibly hinting
at quadrupole–hexapole interactions.

D. Compressed intramolecular dispersion energies

Equation 2 (using CCSD amplitudes) along with the
singular values obtained from equation 7, allows for the
calculation of the dispersion energies at various levels of
compression, i.e., various numbers of singular vectors re-
tained (number of dispersion–specific virtual orbitals per
occupied). Figure 10 shows the total intramolecular dis-
persion energy from all CC–bonds contained within n–
dodecane at various degrees of compression. The uncom-
pressed dispersion energy is given by the dashed red line
(-8.72 kJ/mol). As can be seen, a compression down to
three singular vectors, i.e., three virtual orbitals per oc-
cupied, gives a total dispersion energy of -8.44 kJ/mol,
a difference of 0.28 kJ/mol, capturing 96.8% of the total
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4.95014 4.91730 4.91419 0.08487 0.07638
0.05106 0.00402 0.00152 0.00027 0.00020
0.00005 0.00000 0.00000 0.00000 0.00000

TABLE II: Eigenvalues of the overlap matrix of
n–dodecane showing the linear dependence between the
virtual orbitals used to calculate dispersion interactions.

dispersion energy originating from the CC–bonds. Figure
13 provides a further breakdown of the percentage of the
dispersion captured at the three levels of compression as
a function of distance. Beyond 5.1 Å nearly 100% of dis-
persion is captured by the minimal three virtual orbitals
per occupied (geminals).

E. Virtual orbitals

1. Shape of dispersion virtual orbitals

As stated in section IIC the geminals obtained during
the SVD analysis can be further decomposed into their
occupied–virtual pairs. Examination of the virtual or-
bital components of each species shows a striking pattern.
The largest contributing geminals correspond to virtual
orbitals consisting of one higher angular momentum than
the occupied orbitals they are excited from. For exam-
ple, figure 12 shows the occupied and virtual components
of the first five significant geminals for the π–orbital and
first three significant geminals for the σ–orbital of the
double–bonded carbon atoms of trans–2–dodecene. It
can be seen that the π–orbital (p–like) is excited to a se-
ries of d–like orbitals, and likewise the σ–orbital (s–like)

is excited to a series of p–like orbitals.

2. Orientation dependence

As alluded to previously, the orientation of the occu-
pied and virtual orbitals affects the magnitude of dis-
persion interaction between two fragments. Due to the
Boys bond centered localization of the orbitals employed
in this work, the occupied and virtual orbitals have their
angles and nodes fixed to be parallel or perpendicular to
the bonds. In a non–linear or non–planar molecule bonds
can be oriented relative to one another at odd angles or
odd dihedral angles, and as such the virtual orbitals con-
trolling dispersion interactions can also be at odd angles
to one another resulting in stronger or weaker dispersion
interactions. 2,5,8,11–Tridecene can be used to illustrate
this effect. Figures ??, 14, and 15 show examples of pairs
of virtual orbitals contributing to dispersion.
The dominant geminals, GA and G

B associated with
the dispersion interaction of bonds A and B are charge
distributions with zero total charge. Their leading long–
range electrostatic interaction is therefore dipole–dipole:

〈

GA
∣

∣GB
〉

=

∫

dr1G
A (r1)r

−1
12 G

B (r1)

∼=
µA
Tµ

B
T

R3
AB

(sin θA sin θB − 2 cos θA cos θB)

(11)

where µA
T is the transition dipole. Here the angle θA

is between the vectors RAB and µA
T so that it satisfies

µA
TRAB cos θA = µA

T · RAB . This interaction is largest
in magnitude when the transition dipoles are parallel or
anti–parallel along RAB , and there are many configura-
tions where the interaction is also significant.
Determining the relative contribution to a particular

singular value of the σ versus π–bonds is also possible

with the second unfolding of the T
disp
2 amplitudes. Four

general cases are present when considering the relative
contributions of the σ and π–bonds: both the π and σ
related virtual orbitals contribute approximately equally
to dispersion; only the σ related virtual orbitals con-
tribute significantly; only the π related virtual orbitals
contribute significantly; and both the σ and π related
virtual orbitals do not contribute significantly.
These cases can be understood with visualization of

the virtual orbitals. For the first case, in which both
the π and σ–bonds contribute significantly to disper-
sion, the virtual orbitals associated with the σ–bonds
(p–like) and π–bonds (d–like) align well parallelly be-
tween the two distant bonds, as shown in figure ??. This
leads to an enhanced dispersion contribution. For the
second case, in which the σ–bond dominates the disper-
sion contribution, the virtual orbitals associated with the
σ–bonds align well, while the virtual orbitals associated
with the π–bonds align perpendicularly, as shown in fig-
ure 14. In the third case, in which the π–bond dom-
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FIG. 12: Occupied π and σ–orbitals and corresponding virtual components of the first five/three important geminals
for dispersion of trans–2–dodecene. Note that the most important virtual orbital components are simply one angular

momentum higher than the corresponding occupied orbitals, i.e., one node is introduced.

inates the dispersion contribution, the virtual orbitals
associated with the π–bonds align parallelly, while the
virtual orbitals associated with the σ–bonds align per-
pendicularly, as shown in figure 15. In this case, one
would expect the π related (d–like) virtual dispersion in-
teractions to be insignificant, since they would contribute
only a quadrupole–quadrupole term. However, it appears
they can still “carry–the–weight” of dispersion even when
the virtual orbitals associated with the σ–bonds (p–like)
align poorly.

3. Redundancy of virtual orbitals

Examination of the second decomposition of the gem-
inals into occupied–virtual sets also allows for the ex-
ploration of redundancy in the dispersion–specific vir-
tual space. To test for redundancies, the set of the three

most important virtual orbitals on CC–bond 1 were used
to construct an overlap matrix. This set of fifteen vir-
tual orbitals centered on CC–bond 1 represent the most
important virtual orbitals for interactions between CC–
bond 1 and CC–bonds 3, 5, 7, and 9. The eigenvalues
of the overlap matrix are then used to determine the lin-
ear dependence of the set. In the worst case scenario
all virtual orbitals would be linearly independent, result-
ing in fifteen eigenvalues equaling exactly one. In the
best case scenario only three virtual orbitals would be
linearly independent; this would result in three eigen-
values equaling precisely 5, with the remaining equalling
0. Preforming such analysis on n–dodecane results in the
eigenvalues presented in table II. As can be seen, the best
case scenario of linear dependence is approached, but not
reached. However, exact reproduction of linear depen-
dence is not expected since these dispersion–specific vir-
tuals were not constructed with this feature in mind. On
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FIG. 13: The virtual components of the first geminal of
the first and third CC–double–bond of

2,5,8,11–tridecene. The top panel shows the virtual
orbitals associated with the σ–bond dispersion, and the
bottom panel shows the virtual orbitals associated with
the π–bond dispersion. Good alignment is observed for

both σ and π–bond associated virtual orbitals.

FIG. 14: The virtual components of the second geminal
of the first and fourth CC–double–bond of

2,5,8,11–tridecene. The top panel shows the virtual
orbitals associated with the σ–bond dispersion, and the
bottom panel shows the virtual orbitals associated with
the π–bond dispersion. Good alignment is observed for

the σ–bond associated virtual orbitals, while poor
alignment is observed for the π associated virtual

orbitals.

this basis however, the level of linear dependence they
do reach is promising for the possibility of constructing a
set of 3N dispersion–specific virtual orbitals, rather than
3N(N − 1).

FIG. 15: The virtual components of the third geminal
of the first and third CC–double–bond of

2,5,8,11–tridecene. The top panel shows the virtual
orbitals associated with the σ–bond dispersion, and the
bottom panel shows the virtual orbitals associated with
the π–bond dispersion. Good alignment is observed for

the π–bond associated virtual orbitals, while poor
alignment is observed for the σ–bond associated virtual

orbitals.

V. CONCLUSIONS

In this work the feasibility of compressing the CCSD

amplitudes associated with dispersion (T disp
2 ) was ex-

plored. SVD analysis of the T disp
2 amplitudes in a many–

body (He trimer) pairwise dispersion case shows the num-
ber of important geminals stays fixed at three per pair-
wise interacting body. That is to say no additional gem-
inals of equal magnitude to the dimer interactions are
introduced. This allows for a simplified pairwise SVD
analysis of interacting fragments, with the influence of
the remaining fragments entering as three–body disper-
sion through simply the relaxation of the original T2 am-
plitudes. This premise allows for an uncomplicated SVD

analysis of the T disp
2 amplitudes in an intramolecular set-

ting, where the number of dispersion interactions escalate
quickly with molecular size.
Five long–chain hydrocarbons and one silane molecule

were chosen for the intramolecular SVD analysis. Consis-
tent with the previous work on dimers25, three geminals
dominate the contribution to dispersion in the hydrocar-
bons at long distances. For single bonded systems, at
a bond–bond distance of approximately 5 Å the drop–
off between the third and fourth singular values approx-
imately one order of magnitude in difference, with the
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drop–off between the first and fourth singular value be-
ing nearly two orders of magnitude in difference. At dis-
tances greater than 5.1 Å the compressing of the virtual
space to three orbitals per occupied captures approxi-
mately 99% of the dispersion energy, with the error drop-
ping rapidly beyond such distances. Conversely, at dis-
tances between 2.6 and 5.1 Å three virtual orbitals cap-
ture approximately 96% of the dispersion energy. How-
ever, these errors are expected at these small distances
due to the neglect of short–range exchange effects. For
double–bonded systems a similar drop–off is observed be-
tween the third and fifth singular value, however the de-
cay with distance of the fourth singular value is slower
than is observed in the single bonded cases. This slower
decay was found to be due to a dipole–quadrupole inter-
actions, and suggests the necessity of including at least a
fourth dispersion specific virtual orbital for each occupied
π–orbital.

Decay rates for the first three singular values of the
hydrocarbons were found to go as approximately R−3

(R−6 in energy), consistent with the dipole–dipole terms
of a dispersion interaction. However, the first singu-
lar value tends to decay closer to R−2, possibly due to
through–bond enhancement of dispersion. It was found
that this enhancement lowers the decay rate for the to-
tal intramolecular dispersion energies from the expected
R−6 to R−5.7. The remaining singular values considered
(four through seven) appear to decay approximately as
R−5 (R−10 in energy), consistent with the quadrupole–
quadrupole terms of dispersion interactions. Decay rates
closer to R−6 were occasionally observed, suggesting
higher multi–pole interactions. However, this could not
be confirmed and may be simply due to statistical errors,
or even relative orientation of the interacting virtual or-
bitals. Interestingly, dipole–quadrupole R−4 (R−8 in en-
ergy) decay rates were only observed to be significant
contributors to dispersion in the double bonded systems.
These being represented by the fourth singular values in
the analysis. These dipole–quadrupole interactions are
found to occur between the virtual orbitals associated
with the π–electrons and the virtual orbitals associated
with the σ–electrons.

A Boys localization of the occupied and virtual space
provided a sensible choice of bond–specific orbitals for
use in the SVD analysis. However, what constituted a
fragment within a given molecule was open for interpre-
tation. Two schemes were chosen to test the significance
of this choice: bond–bond dispersion interactions (CC
bonds) and chemical group dispersion interactions (CHx

groups). n–Hexane and Si10-silane both were analyzed
with each of these schemes. Both the bond–bond and
group dispersion interactions are consistent with the con-
clusion that a significant drop off in the singular values
is observed between the third and fourth singular value.
This suggests that it may be possible to further com-
press the necessary dispersion specific virtual orbitals to
be functional group specific rather than bond specific.
The impact this would have on the resulting dispersion

energies is currently being explored.

Analysis of the virtual orbitals associated with the
highest singular values show an interesting trend; they
resemble orbitals of one angular momentum higher than
the corresponding occupied orbital, i.e., the first three
largest geminals coincide with an occupied σ–orbital cor-
responding to a set of three p–like virtual orbitals, and
likewise the first five largest geminals coincide with an
occupied π–orbital corresponding to a set of five d–like
virtual orbitals. The simplicity of this correspondence
may aid in the construction of dispersion–specific vir-
tual orbitals. Decay rates suggest an inclusion of at least
three dispersion–specific virtual orbitals per occupied σ–
orbital, consistent with the analysis of the virtual or-
bitals. Decay rates also suggest the need for at least
four dispersion–specific virtual orbitals per occupied π–
orbital, however analysis of the virtual orbitals suggests
five virtual d–like orbitals may be necessary depending
on relative orientation of the bonds within a molecule.

Much discussion in the literature has been given to the
relative importance of σ versus π–electrons in dispersion
interactions. In this work orientation was found to play
a strong role when determining which of the two is the
larger contributor. In cases where the orientation of the
two interacting bonds were favorable to aligning both
the p–like and d–like virtual orbitals, both the σ and π–
electrons contributed similar amounts. However, when
the orientation of the two interacting bonds were such
that the two p–like virtual orbitals align well, but the d–
like virtual orbitals did not, the σ–electrons were found to
dominate dispersion between the two bonds. Conversely,
when d–like virtual orbitals aligned well and the p–like
virtual orbitals did not, the π–electrons were found to
dominate dispersion.

Lastly, the dispersion–specific virtual space were
shown to, at least to a significant part, contain some
amount of linear dependence. This may allow for the
construction of a small set of versatile dispersion–specific
orbitals that can account for all dispersion interactions
rather than the need for a larger set to account for each
individual dispersion interaction (i.e., 3N rather than
3N(N − 1) virtuals).

The compressibility of the dispersion specific T
disp
2

amplitudes will mark a dramatic speed–up in methods
such as rung–5 DFT calculations based on RPA, espe-
cially when coupled with other methods such as tensor
hyper–contraction (THC) or interpolative separable den-
sity fitting decomposition (IDSF). Compared with a full
CCSD calculation (as far as dispersion interactions are
concerned) the speed–up could be as high as

(

NAo −Nocc

3Nocc

)4

where NAo is the size of the atomic orbital basis, and
Nocc is the number of active occupied orbitals.
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