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Abstract—This paper presents an approach for the extraction
of passive macromodels of large-scale interconnects from their
frequency-domain scattering responses. Here, large-scale is in-
tended both in terms of number of electrical interface portsand
required dynamic model order. For such structures, standard
approaches based on rational approximation via Vector Fitting
and passivity enforcement via model perturbation may fail due to
excessive computational requirements, both in terms of memory
occupation and runtime. Our approach addresses this complexity
by first reducing the redundancy in the raw scattering responses
through a projection and approximation process based on a
truncated Singular Value Decomposition. Then, we formulate a
compressed rational fitting and passivity enforcement framework,
that is able to obtain speedup factors up to 2-3 orders of
magnitude with respect to standard approaches, with full control
over the approximation errors. Numerical results on a largeset
of benchmark cases demonstrate the effectiveness of the proposed
technique.

I. I NTRODUCTION AND MOTIVATION

Macromodeling techniques have become a standard practice
in system design and verification flows. Such methods allow to
convert external characterizations of linear and time-invariant
structures such as passive devices and electrical interconnects
into compact closed-form mathematical expressions or circuit
equivalents. This conversion is needed to allow system-level
transient simulations and verifications starting from a native
characterization that is typically available in the frequency do-
main in form of tabulated scattering responses, the latter being
determined from direct measurements or full-wave numerical
solutions.

The above considerations led to major developments of
macromodeling algorithms over the last few decades. We
can safely state that the main result that fostered these de-
velopments is the introduction of the Vector Fitting (VF)
algorithm [1]. Despite the lack of a theoretical result proving
or disproving its convergence [2], the VF scheme formulates
the problem of fitting a rational function to a set of frequency
samples as an iterative solution of linear least squares and
eigenvalue problems. Experience shows that convergence in-
deed occurs in very few iterations, with excellent accuracy
and robustness. Since the first paper [1], many developments
have been reported to enhance applicability, scalability,and
performance. See, e.g., [3]-[11].

The basic VF scheme suffers two main problems. On one
hand, the computational requirements may become excessive
when the number of ports of the structure under modeling is
large. Despite the smart formulation of [8], which substantially

reduces memory consumption, and the subsequent parallel
implementation in [10], [11], which allows major speedup on
parallel computing platforms, there is still significant room for
efficiency improvements.

The second problem of VF is its inability to guarantee the
passivity of the resulting macromodels. Passivity is an essential
property that guarantees stable and reliable system-levelsimu-
lations [12], [13], [14]. For this reason, several techniques for
a posteriori passivity enforcement have been proposed [15]-
[27]. Such methods apply small perturbations to the model
coefficients so that the modified model becomes passive.
As for the rational fitting phase, also passivity enforcement
schemes suffer from excessive computational requirementsfor
large-scale models characterized by many ports and by a large
dynamic order. Significant improvements were documented
in [17], [26], including parallelization efforts [28]. However,
the computational cost remains the main factor limiting ap-
plicability of passive macromodeling techniques to large-scale
structures and devices.

In this paper, we present an approach for improving the
efficiency of both rational fitting and passivity enforcement
for medium and large-scale structures. We specifically address
problems characterized by possibly hundreds of ports and
requiring thousands of internal states for their models. Re-
quirements for models of such complexity arise, for instance,
in power bus modeling and optimization, chip-package co-
design, and mixed-signal system design.

Our main approach is based on the fundamental idea that
there is often a lot of redundancy in the frequency responses
of coupled multiport structures. Following the approach pre-
liminary documented in [29], we show in Sec. II that a simple
projection based on a truncated Singular Value Decomposition
(SVD) [30], [31] leads to drastic compression of scattering
responses, which can be cast as a linear combination of
few carefully selected “basis functions”. The rational fitting
of these basis functions leads to a compressed macromodel,
which can be determined with reduced computational effort.
The structure of this compressed model is exploited in Sec. III
and IV to enforce asymptotic and global passivity at a reduced
computational cost.

The effectiveness of the proposed approach is illustrated on
a comprehensive set of benchmark cases. Numerical results
and examples are reported at the end of each section in order
to document each separate macromodeling step. A synoptic
view of these results is presented and discussed in Sec. V.

Throughout this paperx, x, andX denote a generic scalar,
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vector, and matrix, respectively. Superscripts∗, T , andH will
stand for the complex conjugate, transpose, and conjugate
(Hermitian) transpose, respectively. With1L and IL, we
denote respectively the column vector of ones and the identity
matrix of sizeL (omitted when clear from the context). The
set of eigenvalues of matrixX is denoted asλ(X), whereas
σ(X) stands for the set of its singular values. The 2-norm‖·‖

2

is defined as‖x‖2
2
=
∑

ℓ |xℓ|2 for vectors (euclidean norm)
and‖X‖

2
= maxσ(X) for matrices (spectral norm).

II. COMPRESSEDRATIONAL APPROXIMATION

We consider a linear and time-invariantP -port interconnect
system. We suppose that the scattering matrixHℓ ∈ CP×P

at a suitable set of frequency pointsωℓ with ℓ = 1, . . . , L is
known. We want to derive a rational macromodel in form

H(s) = R∞ +

N∑

n=1

Rn

s− pn
, (1)

where the polespn, the residue matricesRn, and the direct
coupling matrix R∞ are determined via some fitting or
approximation process. A very effective and popular method-
ology to obtain macromodel (1) is to apply some formulation
of the Vector Fitting (VF) algorithm [1]-[11], which computes
all model parameters by an iterative solution of linear least
squares and eigenvalue problems, providing a linearization of
the global nonlinear optimization

min
{pn,Rn,R∞}

L∑

ℓ=1

P∑

i,j=1

|Hij(ωℓ)− (Hℓ)ij |2 . (2)

The computational cost of VF in terms of CPU and memory
occupation may grow excessively large for complex structures
characterized by many ports and possibly many frequency
samples over an extended frequency band, and requiring a
possibly large number of poles in the rational approximation.
Therefore, before resorting to the VF scheme, we try to
eliminate any redundancy in the raw data, in order to reduce
the size of the “independent” data points to be fed by the
rational approximation engine. As pointed in [29], there may
be a lot of redundancy in the scattering responses of typical
electrical interconnects. Many responses look similar, and it is
very likely that a high degree of compression can be achieved
by smarter data representation. In the remainder of this section,
we recall and complete the basic results of [29], in order to
set the notation for later developments. Section II-A addresses
data compression, while Sec. II-B exploits this compression
to derive a reduced-complexity Vector Fitting scheme.

A. Data Compression

We start by collecting theP 2 elements of the scattering
matrix Hℓ at single frequencyωℓ into a single row vector

xℓ = vec(Hℓ)
T , (3)

where operatorvec(·) stacks all columns of its matrix element
into a single column vector [32]. Equivalently,(xℓ)k = (Hℓ)ij
with mappingk ↔ (i, j) defined as

k = i+ (j − 1)P ,

{
i = 1 +mod(k − 1, P ) ,
j= ⌈k/P ⌉ , (4)

wheremod denotes the remainder of integer division and⌈·⌉
rounds its argument to the nearest larger integer. Then, all
the vectorsxℓ corresponding to different frequenciesωℓ are
collected in matrixX ∈ C

L×P 2

, defined as

X =



←− x1 −→

...
...

...
←− xL −→


 =



↑ · · · ↑
z1 · · · zP 2

↓ · · · ↓


 (5)

Note that each columnzk of this matrix collects all frequency
samples of a single scattering response(zk)ℓ = Sij(ωℓ).

Following [29], we compute the truncated SVD [30], [31]
[
Re{X}
Im{X}

]
≃ ŪΣ̄V̄

T
, (6)

whereΣ̄ ∈ Rρ×ρ collects in its diagonal the firstρ singular
valuesσq sorted in descending order, and whereŪ ∈ R2L×ρ,
V̄ ∈ RP 2×ρ, with Ū

T
Ū = I andV̄

T
V̄ = I. We are interested

in enforcing the condition

ρ≪ min{2L, P 2} , (7)

which ensures that (6) is a low-rank approximation with “tall
and thin” matricesŪ, V̄. If (7) holds and the approximation
error in (6) is small, then the assumption of redundancy in raw
data is true. We will show that this is indeed the case through
several numerical examples. Defining now

W̄ =
[
IL IL

]
ŪΣ̄ , (8)

we can rewrite (6) as

X ≃ X̄ = W̄V̄
T
. (9)

Equivalently, if we extract thek-th column ofX, we obtain

zk ≃
ρ∑

q=1

vkqw̄q , (10)

where w̄q ∈ CL denotes theq-th column of W̄. We will
repeatedly denotēwq as “basis functions” in the following.
This denomination is motivated by the fact that with a suitable
choice of coefficientsvkq ∈ R, any scattering responsezk

can be approximated by a linear combination of suchρ basis
functions. The coefficientsvkq are the elements of matrix̄V
collecting the firstρ right singular vectors of (6).

We now list two results that will be useful in the following.
Lemma 1: The euclidean norm of theq-th basis function

w̄q is ‖w̄q‖2 = σq.
Lemma 2: The error in the approximation (9) is bounded

by
E2 =

∥∥X̄−X
∥∥
2
≤
√
2σρ+1 , (11)

whereσρ+1 is the largest neglected singular value.
The proof of these two lemmas is omitted, being a direct
consequence of standard properties of the SVD decomposi-
tion [30], [31], see also [29]. These two lemmas are quite
important for our application. In fact, Lemma 1 guarantees
that the most significant contributions appear first in the linear
superposition (10). Lemma 2 provides an explicit bound for
the approximation error through the magnitude of the first
neglected term.
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B. Compressed Macromodeling

Instead of building a global rational macromodel by fitting
directly the raw data as in (2), we will fit the basis functions
w̄q. To this end, we define

w(s) =
(
w1(s) w2(s) . . . wρ(s)

)
, (12)

where each component is a rational function

wq(s) = rq∞ +

Nw∑

n=1

rqn
s− pn

. (13)

The unknown polespn, residuesrqn and direct coupling
constantsrq∞ are computed by applying the VF scheme to
solve

min
{pn,rqn,rq∞}

L∑

ℓ=1

ρ∑

q=1

|wq(ωℓ)− (w̄q)ℓ|2 . (14)

Only ρ basis functions are concurrently fitted with (14) instead
of theP 2 responses in (2). Therefore, the computational cost
that will be required for the rational fitting stage is expected
to be drastically reduced. Moreover, since we use a set of
common polespn for all basis functions, due to (10) each
scattering response will be modeled as a rational function with
the same poles, thus matching the general form (1).

We now construct a state-space realization for the resulting
compressed macromodel. First, we define a state-space real-
ization for the basis function models, collected in a column
vector as

w(s)T = Cw(sI−Aw)
−1bw + dw (15)

↔
(

Aw bw
Cw dw

)

with Aw ∈ R
Nw×Nw storing the polespn in its main diagonal,

bw = 1Nw
column vector of ones,Cw ∈ Rρ×Nw collecting

all residuesrqn anddw ∈ Rρ collecting the direct coupling
constantsrq∞. In case of complex conjugate pole/residue
terms, the above state-space matrices are complex-valued,but
a standard similarity transformation [38] can be applied to
obtain a purely real realization in form (15).

A global rational macromodel can be obtained by defining

H(s) = mat(V̄wT (s)) , (16)

where themat(·) operator reconstructs aP × P matrix of
rational functions starting from itsP 2 × 1 vector argument.
Following [29], we can show that a state-space realization of
H(s) is obtained as

H(s)↔
(

A B

C D

)
(17)

with

A = IP ⊗Aw , B = IP ⊗ bw ,
C = Ψ(IP ⊗Cw) , D = Ψ(IP ⊗ dw) ,

(18)

where⊗ denotes the Kronecker matrix product [32] and

Ψ =
(
V̄1 V̄2 · · · V̄P

)
(19)

TABLE I
BENCHMARK STRUCTURES: L IS THE NUMBER OF RAW FREQUENCY

SAMPLES,P THE NUMBER OF PORTS, ρ THE NUMBER OF BASIS
FUNCTIONS(TO BE COMPARED WITHP 2); Nx AND Nw DENOTE THE

NUMBER OF POLES USED FOR FULL AND COMPRESSED FITTING,
RESPECTIVELY.

Case L P P 2 ρ Nw Nx

1 471 12 144 17 20 22
2 690 48 2304 24 27 28
3 1001 56 3136 30 30 30
4 572 25 625 5 5 5
5 71 92 8464 22 22 23
6 570 34 1156 40 57 58
7 1001 24 576 13 12 12
8 1228 83 6889 31 30 31
9 100 8 64 6 29 29
10 197 245 60025 14 45 29
11 13 52 2704 3 3 3
12 40 800 640000 8 8 8
13 572 41 1681 10 11 11
14 141 542 293764 16 21 0
15 1000 34 1156 10 10 15
16 501 28 784 9 12 16
17 364 20 400 40 58 59
18 367 181 32761 6 24 39

with V̄j ∈ RP×ρ collecting theP rows{j(P−1)+1, . . . , jP}
of matrix V̄

V̄ =



V̄1

...
V̄P


 . (20)

In (18), the size of the various matrices isA ∈ RN×N , B ∈
RN×P , C ∈ RP×N , D ∈ RP×P , whereN = NwP denotes
the global dynamic order of the realization. The transfer matrix
of the compressed macromodel associated to (18) reads

H(s) = C(sI−A)−1B+D . (21)

The final approximation error accounting for both compres-
sion and fitting can be characterized as follows. We denote
with Ŵ and X̂ the matrices collecting, respectively, the
responses of compressed macromodel (15) and those of the
reconstructed global macromodel (21) at the same frequencies
ωℓ. We have

∥∥∥X− X̂

∥∥∥
2
≤
∥∥X− X̄

∥∥
2︸ ︷︷ ︸

≤
√
2σρ+1

+
∥∥∥X̄− X̂

∥∥∥
2︸ ︷︷ ︸

‖δX‖
2

, (22)

where the individual contributions of SVD truncation
√
2σρ+1

and VF approximation‖δX‖
2

are explicit. We remark that,
due to the orthonormality of the columns in̄V, we have

‖δX‖
2
=
∥∥∥X̄− X̂

∥∥∥
2
=
∥∥∥W̄ − Ŵ

∥∥∥
2
, (23)

so that the global fitting error can be controlled directly during
the compressed fitting stage.

C. Examples

We present here all benchmark cases that will be analyzed
throughout this work. Table I lists a total of 18 interconnect
structures, characterized by different number of portsP and
raw frequency samplesL. These structures include high-speed
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Fig. 1. Two sample scattering responses for case 6 before (dash-dotted lines)
and after (dashed lines) compression, compared to the compressed rational
fitted model responses (solid lines).

connectors (cases 2, 3, 7), PCB interconnects (cases 9, 17),
package interconnects (cases 5, 8, 13, 15, 16), power or
mixed signal/power distribution networks (cases 1, 4, 6, 10,
11, 14, 18), and Through Silicon Via (TSV) fields (case 12).
All raw frequency samples were obtained from 2D or 3D
field characterizations. All numerical tests in this work were
performed with a laptop (2 GHz clock and 4 GB memory).

The last column in Table I shows the number of poles
Nx that were required by a standard application of Vector
Fitting to fit the full set of responsesX with a global model-
vs-data deviation‖δX‖

2
< ǫVF. Details on how to choose

the thresholdǫVF will be postponed to Sec. V. The publicly
available VF code [9] based on the formulation [8] was used
for these tests and applied by iteratively increasing the number
of poles until the above accuracy condition was met.

In this section, we are interested in comparing the perfor-
mance of standard and compressed VF. To this end, we use the
thresholdǫSVD to control the compression errorE2, defined
in (11), andǫVF to control the approximation error achieved
by the compressed VF. This choice results in a number of basis
functionsρ and in a number of poles for the basis functions
Nw, also reported in Table I. These results show collectively
that

• the number of basis functions always resultsρ ≪ P 2,
therefore the computational complexity of the com-
pressed VF run always results much less than the standard
full VF;

• the number of poles required for the compressed and the
full macromodels is comparable,Nw ≃ Nx, showing
that the compression strategy does not create spurious
or artificial components in the basis functions that would
require an excessive number of poles for their fitting;

• the size of compressed macromodelNwP is comparable
to the size of full macromodelNxP (assuming full-rank
residue matrices, which was verified in all examples).

Figure 1 compares the compressed data and the compressed
macromodel results to the raw scattering responses for bench-
mark case 6, showing that an excellent accuracy is obtained.
Figure 2 shows some of the corresponding basis functions
together with their rational fitted models.

Table II reports the execution time in seconds that was
required by SVD algorithm [31] for compression, denoted as

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

Frequency [GHz]

Basis functions, magnitude

 

 

w
1

w
2

w
3

data
model

Fig. 2. First three basis functions for case 6. Original frequency samples
w̄q (dashed lines) and rational modelwq(s) (solid lines).

TABLE II
CPUTIME IN SECONDS REQUIRED FOR DATA COMPRESSION(TSVD) AND

COMPRESSED FITTING(TVFW) COMPARED TO FULL FITTING (TVFX).

Case TSVD [s] TVFW [s] TVFX [s] Speedup

1 0.03 0.66 4.2 6.03
2 0.8 1.7 183.5 70.5
3 1.3 3.7 419.7 82.4
4 0.28 0.02 1.42 4.6
5 0.7 0.23 59.4 63
6 0.33 10.6 355.2 32.1
7 0.37 0.28 11.6 17.8
8 3.2 4.6 1273 160
9 0.004 0.2 0.94 4.44
10 2.4 1.2 1609 437.1
11 0.01 0.006 0.2 12
12 12.8 0.04 592 45.8
13 1.7 0.3 17.8 8.8
14 9.2 0.8 - -
15 4.8 1.5 39 6.1
16 0.3 0.154 12 24.2
17 0.15 8.05 77.3 9.4
18 2.2 0.4 2074 760.4

TSVD, for fitting the ρ basis functions and constructing the
compressed macromodel, denoted asTVFW, and for applying
standard VF to the full set of raw responses, denoted asTVFX.
The overall speedup reported in the last column demonstrates
how effective can the compressed macromodeling approach be
for those cases that are characterized by a large port count or
a large number of frequency samples. For case 14, standard
VF could not even be applied due to an excessive memory
occupation.

D. Passivity

There is no guarantee that the global macromodel (21) with
state-space matrices (18) is passive. We can however explicitly
enforce model (asymptotic) stability by constraining the poles
pn to have a strictly negative real part, a standard practice in
VF applications [1]. Under this assumption, the macromodel
is passive if and only if [12], [13], [14]

minλ{Φ(ω)} > 0 , ∀ω , (24)

whereΦ(ω) = IP −HH(ω)H(ω).
The passivity condition (24), which can be checked either

via adaptive frequency sampling [26] or through identifica-
tion of imaginary eigenvalues of the associated Hamiltonian
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matrix [15], can be violated over finite or infinite frequency
bands. In particular, this second case occurs if the model is
not asymptotically passive, i.e.,minλ{Φ(∞)} < 0. In this
situation, asymptotic passivity can be recovered by perturbing
just the direct coupling matrixD. This will be the subject of
Sec. III. Then, we will describe in Sec. IV a global passivity
compensation scheme for enforcing (24) at all frequencies.

III. A SYMPTOTIC PASSIVITY ENFORCEMENT

The macromodel (21) is asymptotically (strictly) passive if

‖D‖
2
≤ ν < 1 , (25)

whereν is some desired passivity threshold. In case (25) is not
verified, we modify matrixD so that this condition is met. We
want to operate directly on the compressed macromodel (15),
so we add some perturbation vectorηw to the corresponding
direct coupling vectordw, preserving the projection coeffi-
cients in matrixΨ. The perturbed matrix results

Dp = Ψ[IP ⊗ (dw + ηw)] , (26)

with
Dp −D = Ψ(IP ⊗ ηw) . (27)

We want to achieve asymptotic passivity by a minimal per-
turbation of (27), which we measure in the standard 2-norm.
This leads to the following formulation

min
ηw

‖Ψ(IP ⊗ ηw)‖2 s.t. ‖Dp‖2 ≤ ν . (28)

The solution of (28) is addressed using various different
approaches in Sections III-A–III-C, with results presented and
compared in Sec. III-D.

Once a solutionηw of (28) is available, an asymptotically
passive macromodel is constructed by

1) constructing the vectordp = dw + ηw;
2) subtracting theq-th componentdp,q of this vector from

the frequency samples of theq-th basis functionw̄q by
redefining

w̄q ← w̄q − dp,q1L (29)

3) fitting the resulting frequency samples with a strictly
proper rational function

wq(s) =

Nw∑

n=1

rq,n
s− pn

, (30)

where the polespn are kept fixed to the poles of the
original unperturbed macromodel (13);

4) defining the state-space realization of the compressed
macromodel as in (15), but withdw replaced bydp.

A. Direct scaling

The easiest way to enforce the asymptotic passivity is
through the following rescaling

dp = dw

ν

‖D‖
2

, Dp = Ψ(IP ⊗ dp) . (31)

This definition imposes asymptotic passivity by construction,
but does not guarantee that the asymtpotic model perturbation

‖Ψ(IP ⊗ ηw)‖2 is minimized, as required by (28). However,
since the compressed macromodel will be re-generated via
a new constrained vector fitting run (30), the asymptotic
perturbation will have a significant effect only well beyondthe
last available frequency point, resulting in a quite acceptable
accuracy within the modeling band. These statements will be
validated through numerical examples in III-D. Therefore,this
scaling method is actually quite competitive with the more
precise approaches that follow due to its simplicity.

B. Linearization

The method described in this section is based on two
simplifications of (28). First, the norm ofηw is minimized
instead of the norm ofDp − D. Second, the constraint
‖Dp‖2 ≤ ν is replaced by an approximate constraint onηw

based on a linearization process. These two conditions leadto
a problem of smaller size with respect to (28), which should
require less computational effort for its solution.

We start with a SVD decomposition ofD = LΣDRT .
Denoting the singular values asςi, i = 1, . . . , P with the
associated left and right singular vectorsli andri, we have

ςi = l
T
i Dri . (32)

Let us now apply the same projection to the perturbed direct
coupling matrixDp. We obtain

lTi Dpri = ςi + lTi Ψ(IP ⊗ ηw)ri . (33)

Note that this quantity is not equal to thei-th singular value
ςp,i of Dp, but it provides only a first-order approximation.
Thus, condition

lTi Dpri ≤ ν (34)

corresponds to a linearized projection of constraint‖Dp‖2 ≤
ν. Using (33), after some straightforward algebraic manipula-
tions, we obtain

(rT
i ⊗ lTi )V̄ηw ≤ ν − ςi . (35)

Collecting the various constraints (35) for alli leads to the
linear underdetermined system

Mηw = φ , (36)

where the number of rows inM defines the number of
singular values ofD being perturbed. Among all vectorsηw

satisfying (36), we seek the minimum-norm solution, which is
available in closed form as

ηw = M†φ , (37)

with M† denoting the Moore-Penrose pseudoinverse ofM.
Due to the approximate nature of (35), the solution (37)

of (36) does not guarantee that‖Dp‖2 ≤ ν. Therefore, we
can iterate the process until this condition is achieved. Ateach
iteration, two slightly different constraints can be used,leading
to different numerical schemes

1) system (36) si formed by collecting allP singular
values, setting at the right hand side

φi =

{
ν − ςi ςi > ν ,
0 ςi ≤ ν .

(38)
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This choice tries to explicitly preserve those singular
values that are already below the thresholdν.

2) only constraints withςi > ν are formed, so that only
the singular value terms exceeding the thresholdν are
explicitly perturbed.

C. Linear Matrix Inequalities

The problem stated in (28) can be cast as a Linear Matrix
Inequality (LMI) [33], [34]. In fact, introducing the slack
variableγ, minimization of the objective function in (28) can
be restated as

min γ s.t.

[
γIP Ψ(IP ⊗ ηw)

(IP ⊗ ηT
w)Ψ

T γIP

]
≻ 0 , (39)

whereas the asymptotic passivity constraint is equivalentto
[

νIP D+Ψ(IP ⊗ ηw)

DT + (IP ⊗ ηT
w)Ψ

T νIP

]
≻ 0 . (40)

Expressions (39) and (40) form a system of LMI’s. This
formulation is based on convex constraints with a convex
objective function. Therefore, its solution can be achieved nu-
merically within arbitrary precision and with a finite number of
steps using some specialized software. All results documented
in the following were obtained with the SeDuMi package [35].

D. Numerical Results

Table III compares the asymptotic passivity enforce-
ment results obtained by the various schemes presented
in Sections III-A–III-C for those cases that resulted non-
asymptotically passive after the compressed fitting stage.The
maximum singular value‖D‖

2
of the direct coupling matrix

is reported for convenience in the second column. The four
schemes are compared in terms of direct coupling perturbation
amount∆ = Dp−D measured in the spectral norm, number
of iterations (when applicable), and total runtime. The latter
includes not only the direct coupling perturbation, but also the
computation of the perturbed residues and the constructionof
the global state-space realization, as described in Sec. III.

The direct scaling method requires no iterations. Only the
computation of the norm‖D‖

2
is required. Scaling requires

negligible time, so that the total runtime is practically used for
recomputing the updated residue matrices. The linarization and
the LMI methods instead require several iterations and require
significantly larger runtime. These three methods fail for the
largest cases 12 and 14 due to excessive memory occupation
(LMI) or lack of convergence (linearization) within a maxi-
mum number of 600 iterations. If converging, the linearization
methods are faster than the LMI approach. However, the
liearization methods are not guaranteed to attain the optimal
solution, as does the LMI approach. This is confirmed by the
amount of perturbation, which is smallest for the LMI case
among all other methods. We see however that the simplistic
direct scaling approach provides final perturbation errorsthat
are comparable with the LMI scheme. Due to its efficiency, we
indicate the direct scaling approach as most competitive. Of
course, in case the resulting perturbation is excessive, one can
resort to the LMI scheme, which is guaranteed to be optimal
though slow.

IV. GLOBAL PASSIVITY ENFORCEMENT

We now address the enforcement of global passivity for
the macromodel (21) characterized by the state-space realiza-
tion (18), assumed to be asymptotically stable and asymptoti-
cally passive. We will therefore assume that (24) is violated at
some frequenciesω ∈ Ω, whereΩ is the union of finite-width
frequency bands.

In order to enforce passivity, we can follow one of the
standard perturbation approaches. The main difference in the
present framework with respect to published results is that
the system perturbation should not be arbitrary but structured,
according to the form of (18). We choose to perturb only the
state-to-output map

Cp = C+∆C , (41)

where the perturbation term∆C is defined as

∆C = Ψ(IP ⊗∆Cw
) . (42)

As for the asymptotic passivity enforcement of Sec. III, we
preserve the expansion/projection coefficients in matrixΨ and
we perturb only the lower-dimensional compressed macro-
model (15) using a local eigenvalue perturbation strategy [16].

A. Passivity enforcement

Let us consider a single frequencyω0 at which condition
(24) is violated by some negative eigenvalueλi < 0, and let
the corresponding eigenvector ofΦ(ω0) be ζi, normalized
such that‖ζi‖2 = 1. Applying (41) leads to a first-order
approximation of the perturbed eigenvalue [36]

λp,i ≃ λi + ζ
H
i ∆Φζi , (43)

where
∆Φ ≃ −KH

0 ∆CH0 −HH
0 ∆T

CK0 (44)

and

H0 = D+CK0 , K0 = (ω0I−A)−1B . (45)

Standard manipulations lead to

λp,i ≃ λi + ti vec(∆C) , (46)

where the row-vectorti is defined as

ti = −2Re{(K0ζi)
T ⊗ (H0ζi)

H} . (47)

Enforcing nowλp,i > 0 leads to the following linear inequality
constraint

ti vec(∆C) > −λi . (48)

We also include the additional constraint

ti vec(∆C) 6 1− λi (49)

to guarantee that the perturbed eigenvalue remains bounded
by one, as required by the assumed scattering representation.
The above constraints are built for allI eigenvaluesλi

to be perturbed, possibly at multiple frequencies [16], and
formulated as

min θ s.t.

{
‖vec(∆C)‖22 < θ
T vec(∆C) > b

(50)
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TABLE III
COMPARISON OF ASYMPTOTIC PASSIVITY ENFORCEMENT METHODS IN TERMS OF PERTURBATION AMOUNT‖∆‖

2
, NUMBER OF ITERATIONS♯ it, AND

RUNTIME IN SECONDS. SEE TEXT FOR ADDITIONAL DETAILS.

Scaling Linearization 1 Linearization 2 LMI
Case ‖D‖

2
‖∆‖

2
Time [s] ‖∆‖

2
♯ it Time [s] ‖∆‖

2
♯ it Time [s] ‖∆‖

2
♯ it Time [s]

5 1.02 0.03 1 0.11 154 12 1.9 424 14 0.03 24 26.2
9 1.041 0.05 0.04 0.051 3 0.007 0.05 3 0.005 0.05 11 0.17
11 1.26 0.28 0.15 0.29 5 0.3 0.29 5 0.01 0.28 17 2.7
12 2.74 0.3 54.3 − − − − − − − − −
14 1.04 0.07 114 − − − − − − − − −
18 1 0.01 5 1.2 600 146 1.45 136 13.6 0.01 32 434

whereθ is a slack variable. The last row collects in a compact
form all constraints (48)-(49).

We now impose the perturbation structure (42). Using (19),
it is easy to show that

∆C =
(
V̄1∆Cw

, . . . , V̄P∆Cw

)
. (51)

Applying thevec(·) operator to thei-th column block in (51)
leads to

vec(V̄i∆Cw
) = (INw

⊗ V̄i) vec(∆Cw
) , (52)

so that (51) can be written in “vectorized” form as

vec(∆C) = Θ vec(∆Cw
) , (53)

whereΘ ∈ RPN×ρNw is defined as

Θ =



INw
⊗ V̄1

...
INw
⊗ V̄P


 (54)

Finally, definingTw ∈ R2I×ρNw as

Tw = TΘ , (55)

we can formulate the structured and compressed passivity
enforcement problem as

min θ s.t.

{
‖vec(∆Cw

)‖22 < θ
Tw vec(∆Cw

) > b
(56)

Note that matrixΘ is never constructed in practice, since all
constraints in (56) and in particular matrixTw can be built
directly using optimized code.

If we compare the standard formulation (50) with the
compressed and structured formulation (56), we see that the
latter is much more convenient, since the number of decision
variables is reduced by a factor

#{∆Cw
}

#{∆C}
=

ρNw

PN
=

ρ

P 2
≪ 1 . (57)

This makes the cost for the solution of (56) practically negli-
gible with respect to all other macromodeling steps. Note that
the converse is typically the case, since passivity enforcement
is usually the most demanding part of state of the art schemes.
This big advantage is due to the particular state-space structure
in (18).

B. Accuracy control

The formulations in (50) and (56) aim at finding the
minimum norm of the perturbation terms∆C or ∆Cw

that
are compatible with the passivity constraints. This condition
however does not ensure that the energy (squaredL 2-norm)
of the transfer matrix perturbation is minimized. To this end,
we need to seek the minimum of

‖∆H‖2L 2 =
1

2π

∫ ∞

−∞
tr{∆H(ω)∆H

H
(ω)}dω . (58)

However, it is well known that this norm can be characterized
as [37]

‖∆H‖2L 2 = tr{∆CPC∆
T
C} (59)

wherePC is the controllability Gramian associated to (18),
found as the unique, symmetric and positive definite solution
of the Lyapunov equation

APC +PCA
T = −BBT . (60)

If we compute the Cholesky factorizationPC = QT
CQC and

define

Ξ = ∆CQ
T
C , ξ = vec(Ξ) = (QC ⊗ IP ) vec(∆C) , (61)

we have
‖∆H‖2L 2 = tr{ΞΞT } = ‖ξ‖2

2
. (62)

Therefore, problem (50) can be cast as a minimumL 2-
norm formulation by performing the change of variable (61),
obtaining

min θ s.t.

{
‖ξ‖2

2
< θ

Γξ > b
(63)

whereΓ = T(Q−1
C ⊗ IP ) .

Let us now apply the same procedure to (56). We compute
the controllability Gramian associated to the compressed state-
space realization (15) as

AwPCw
+PCw

AT
w = −bwbTw , (64)

together with its Cholesky factorizationPCw
= QT

Cw
QCw

.
Note that the numerical solution of (15) requires onlyO(Nw)
operations due to the sparse (diagonal or tridiagonal) realiza-
tion of w(s)T . This cost is negligible with respect to all other
macromodeling steps in the proposed framework. Defining

Ξw = ∆Cw
QT

Cw
,

ξw = vec(Ξw) = (QCw
⊗ Iρ) vec(∆Cw

) ,
(65)
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and denoting as∆wT (s) the induced perturbation on the
compressed macromodel, we have

‖∆wT ‖2
L 2 = ‖ξw‖22 , (66)

so that substitution into (56) leads to

min θ s.t.

{
‖ξw‖22 < θ
Γwξw > b

(67)

whereΓw = Tw(Q
−1
Cw
⊗ Iρ). The solution of (67) thus pro-

vides the minimumL 2-norm perturbation of the compressed
macromodelwT (s).

We have the following result
Lemma 3: Defining PC andPCw

as in (60) and (64), we
have

PC = IP ⊗PCw
. (68)

Proof: Suppose thatPCw
is the solution of (64). We

see thatPC defined in (68) is a solution of (60) by direct
substitution. Using (18),

APC +PCA
T

= (IP ⊗Aw)(IP ⊗PCw
) + (IP ⊗PCw

)(IP ⊗AT
w)

= IP ⊗ (AwPCw
+PCw

AT
w)

= IP ⊗ (−bwbTw)
= −(IP ⊗ bw)(IP ⊗ bTw)

= −BBT .

Since bothA andAw are strictly negative definite,PC and
PCw

are the unique solutions of Lyapunov equations (60)
and (64), which implies (68).
We are now ready to state the main result of this section.

Theorem 1: Defining the compressed macromodel pertur-
bation

∆wT ↔
(

Aw bw
∆Cw

0

)
(69)

and the corresponding global macromodel perturbation

∆H ↔
(

A B

∆C 0

)
, (70)

with state-space matrices constructed as in (18), we have

‖∆H‖2L 2 = ‖∆wT ‖2
L 2 (71)

Proof: As a preliminary result, consider matrix̄V in (6).
Using (20), the orthogonality condition̄V

T
V̄ = I can be

rewritten in terms of its constituent blocks̄Vi as

P∑

i=1

P∑

m=1

(V̄i)mℓ(V̄i)mn = δnℓ , n, ℓ = 1, . . . , ρ , (72)

whereδnℓ = 1 if n = ℓ and 0 otherwise. Considering now (51)
and using (68), a straightforward algebraic manipulation leads
to

∆CPC∆
T
C =

P∑

i=1

V̄iΥwV̄
T

i , (73)

TABLE IV
COMPARISON OF FULL AND COMPRESSED PASSIVITY ENFORCEMENT

SCHEMES IN TERMS OF NUMBER OF ITERATIONS♯ it, RUNTIME, AND
ACCURACY ‖δX‖

2
. LAST TWO COLUMNS REPORT THE OVERALL SPEEDUP

(SU) AND THE SPEEDUP PER ITERATION(SUit).

Full / Compressed
Case ♯ it Time [s] ‖δX‖

2
SU SUit

1 6 / 7 2.42 / 1.52 0.22 / 0.26 1.6 1.8
2 2 / 1 9.63 / 1.85 0.22 / 0.11 5.2 2.6
3 12 / 7 255 / 3.87 2.61 / 2.61 66.1 38.5
4 2 / 1 3.7 / 0.36 0.04 / 0.04 10.2 5.1
5 12 / 9 687.5 / 22.6 0.16 / 0.21 30.4 22.8
6 50 / 30 324.3 / 12.1 0.53 / 0.41 26.8 16.1
7 2 / 2 1.45 / 0.36 0.05 / 0.06 4.1 4.1
8 28 / 10 510 / 15.9 1.43 / 1.26 32.1 11.4
9 2 / 26 5.83 / 1.64 4.15 / 4.21 3.5 3.1
10 9 / 8 3865 / 145 3.31 / 3.32 26.6 23.6
11 2 / 4 9.34 / 1.81 0.04 / 0.05 5.2 10.4
12 - / 32 -.- / 17344 -.- / 1.21 -.- -.-
13 8 / 7 24.7 / 4.86 0.16 / 0.21 5.1 4.2
14 - / 13 -.- / 5049 -.- / 1.21 -.- -.-
15 1 / 2 5.85 / 3.17 0.08 / 0.08 1.8 3.6
16 10 / 8 13.1 / 1.95 0.21 / 0.25 6.8 5.4
17 10 / 6 13.7 / 1.26 0.51 / 0.51 11.4 6.8
18 - / 5 -.- / 1621 -.- / 6.79 -.- -.-

whereΥw = ∆Cw
PCw

∆T
Cw

. The L 2 norm of the global
macromodel perturbation is characterized as

‖∆H‖2L 2 = tr{∆CPC∆
T
C}

=
P∑

m=1

(
P∑

i=1

V̄iΥwV̄
T

i

)

mm

=
P∑

m=1

P∑

i=1

ρ∑

n=1

ρ∑

ℓ=1

(V̄i)mℓ(Υw)ℓn(V̄i)mn

=

ρ∑

n=1

ρ∑

ℓ=1

(Υw)ℓn

P∑

m=1

P∑

i=1

(V̄i)mℓ(V̄i)mn

=

ρ∑

ℓ=1

(Υw)ℓℓ

= ‖∆wT ‖2
L 2 ,

which completes the proof.
The practical relevance of this theorem is that the solution

of the small-size optimization problem (67), in addition to
providing the minimum-energy perturbation of the compressed
macromodel, will also provide as a byproduct the minimum-
energy solution of the full-size passivity enforcement problem,
which is our main objective in this Section. Global passivity
enforcement is thus achieved with optimal accuracy and neg-
ligible cost through (67).

C. Examples

In this section, we compare the performance of the passivity
enforcement schemes (63) and (67) for each of the benchmark
cases of Table I. The results are summarized in Table IV,
where the total execution time and number of iterations for
both schemes are grouped in columns 2 and 3 for convenience.
We see that the number of iterations for the compressed
scheme is practically always less than for the full scheme.
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Fig. 3. Singular value plot before and after passivity enforcement for case 17.

This implies that, independent on the runtime required for a
single iteration, the compressed scheme performs generally
better. This consideration should be taken into account when
interpreting the total runtime, reported in the second column.
We observe that a dramatic reduction is achieved by the
compressed scheme, which is able to complete the passivity
enforcement also for those large cases (12, 14, and 18) for
which the full scheme requires excessive memory.

We report in the fourth column of Table IV two different
speedup factors. The first is the overall speedup factor, ob-
tained as the ratio of the total runtime required by the full and
compressed schemes. The second is the average runtime per
iteration, which provides a more precise metric for assessing
the enhancement in efficiency that can be achieved with
proposed approach. In any case, both speedup per iteration
and overall speedup are between 1 and 2 orders of magnitude
for the most challenging cases, except for the largest casesfor
which only the compressed scheme could achieve its goal.

Finally, the fourth column of Table IV reports the deviation
of the obtained passive models with respect to the original raw
data, showing that the accuracies of both full and compressed
schemes are comparable. Figure 3 reports as an example
the singular value plot for case 17, showing all singular
values before and after compressed passivity enforcement.
As expected, the singular values of the passive model are
uniformly unitary bounded.

V. A SUMMARY OF NUMERICAL RESULTS

We now summarize the main results for all benchmark
cases. Table V provides a detailed report on the accuracy
of all intermediate steps of the proposed compressed passive
macromodeling approach. The second column reports the
thresholdsǫSVD andǫVF that were used, respectively, to bound
the approximation error for SVD truncation and compressed
VF. Note that these thresholds are used to bound the spectral
norm of error matrices‖δX‖

2
collecting all responses at all

frequencies. Since the relationship of these thresholds tothe
actual deviation that is achieved at a given frequency for a
given response is not obvious, we also report the results in
terms of the worst-case norm, defined as

‖δX‖
max

= max
ℓk
|(δX)ℓk| . (74)

The last three columns of Table V report the spectral and
worst-case accuracies (with respect to raw data) of compressed

TABLE V
ACCURACY WITH RESPECT TO RAW DATA OF COMPRESSED DATA

(δXSVD) AND COMPRESSED MACROMODEL BEFORE(δXVF) AND AFTER
(δXPAS) PASSIVITY ENFORCEMENT.

ǫ δXSVD δXVF δXPAS

Case SVD / VF ‖·‖
2

/ ‖·‖
max

‖·‖
2

/ ‖·‖
max

‖·‖
2

/ ‖·‖
max

1 0.1 / 0.1 0.07 / 0.0039 0.09 / 0.006 0.26 / 0.014
2 0.1 / 0.1 0.06 / 0.0045 0.09 / 0.007 0.11 / 0.007
3 0.1 / 0.1 0.06 / 0.0029 0.08 / 0.003 2.61 / 0.064
4 0.1 / 0.1 0.04 / 0.0015 0.04 / 0.002 0.04 / 0.002
5 0.1 / 0.1 0.06 / 0.0105 0.09 / 0.051 0.23 / 0.057
6 0.1 / 0.1 0.07 / 0.0041 0.09 / 0.006 0.42 / 0.015
7 0.1 / 0.1 0.01 / 0.0005 0.04 / 0.001 0.06 / 0.002
8 0.1 / 0.5 0.08 / 0.0027 0.48 / 0.016 1.05 / 0.014
9 0.1 / 0.1 0.05 / 0.0084 0.05 / 0.008 4.12 / 0.632
10 0.1 / 3.0 0.07 / 0.0061 2.21 / 0.048 2.53 / 0.048
11 0.1 / 0.1 0.01 / 0.0012 0.01 / 0.001 0.18 / 0.016
12 0.1 / 0.1 0.02 / 0.0002 0.05 / 0.001 1.22 / 0.011
13 0.1 / 0.1 0.04 / 0.0046 0.05 / 0.011 0.21 / 0.011
14 0.1 / 0.1 0.07 / 0.0213 0.08 / 0.021 1.26 / 0.031
15 0.1 / 0.1 0.06 / 0.0018 0.08 / 0.002 0.08 / 0.002
16 0.1 / 0.1 0.04 / 0.0147 0.08 / 0.015 0.25 / 0.015
17 0.1 / 0.4 0.07 / 0.0241 0.39 / 0.315 0.43 / 0.315
18 0.1 / 6.8 0.07 / 0.0055 6.79 / 0.212 6.91 / 0.218
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Fig. 4. A scattering response of a PCB interconnect (case 17)before
(red dashed line) and after (blue dashed line) compression.The black line
represents the response of the passive compressed macromodel.

dataδXSVD, compressed fitted modelδXVF, and final model
after compressed passivity enforcementδXPAS, respectively.
The table clearly shows that accuracy is well preserved through
all modeling steps. For illustration, we also report in Figures 4
and 5, respectively, the responses characterized by the worst-
case absolute error for case 17, and the responses characterized
by the worst-case relative error for case 2. Similar resultswere
obtained for all other cases and are not reported here.
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Fig. 5. As in Fig. 4, but for a high-speed connector (case 2).

VI. CONCLUSIONS

In this work, we have presented a comprehensive frame-
work for compressed passive macromodeling of large-scale
interconnect structures. The main enabling factor for thisnew
approach is the observation that the whole set ofP 2 scattering
responses ofP -port large-scale systems can be expressed
through a much lower-dimensional set ofρ ≪ P 2 basis
functions. A singular value truncation is able to determine
both the number of such basis functions and the corresponding
expansion coefficients, with full control over the approxima-
tion error. Although this strategy was applied in this work to
scattering representations, we expect that the same singular
value truncation and approximation process can be applied to
systems in impedance or admittance form without additional
difficulties.

The above compressed data representation was used in the
paper to derive reduced-complexity Vector Fitting and pas-
sivity enforcement schemes. The former generates a rational
macromodel for the set of basis functions. The latter enforces
global passivity constraints using a restricted set of perturba-
tion variables. The overall result is a passive macromodeling
scheme that has the potential to outperform state-of-the-art
methods in terms of scalability, memory occupation, and CPU
requirements, as illustrated through several challengingbench-
mark cases. Therefore, the results of this paper indicate that the
proposed technique may become an enabling technology for
massive macromodeling application to design and verification
of signal and power distribution networks, 3D interconnects,
and chip-package-board co-design.

One main difficulty remains, namely the size of the obtained
macromodel. Even if the proposed scheme is able to compute
this macromodel much faster, the number of states of the
compressed macromodel is practically identical to the number

of states of the macromodel that would be obtained by
applying the standard Vector Fitting to the full set of raw
responses. In case of very large number of portsP , this size
may be problematic for further system-level simulations. We
believe that, unless some further hypotheses or constraints
are enforced, e.g., on the terminations to be employed in
these simulations, it will be very difficult to further reduce
the macromodel size without neglecting important dynamic
contributions and affecting accuracy. The subject of optimal
model order reduction for large-scale interconnects [40],[39],
which is not addressed in this paper, is and will remain
a very important research direction to try to overcome this
difficulty [41].
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