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Abstract—This paper presents an approach for the extraction reduces memory consumption, and the subsequent parallel
of passive macromodels of large-scale interconnects fronheir  implementation in [10], [11], which allows major speedup on

frequency-domain scattering responses. Here, large-sealis in- ; e atill ciqpnifi
: T arallel computing platforms, there is still significanbro for
tended both in terms of number of electrical interface portsand P . . P gp 9
efficiency improvements.

required dynamic model order. For such structures, standad o -
approaches based on rational approximation via Vector Fiting The second problem of VF is its inability to guarantee the
and passivity enforcement via model perturbation may fail die to  passivity of the resulting macromodels. Passivity is aeetssl
excessive computational requirements, both in terms of meaty  property that guarantees stable and reliable system-4$awvel-

occupation and runtime. Our approach addresses this compléty |ationg [12], [13], [14]. For this reason, several techrsjgor
by first reducing the redundancy in the raw scattering resporses : ’ ’

through a projection and approximation process based on a & POsteriori passivity enforcement have been proposed [15]
truncated Singular Value Decomposition. Then, we formulag¢ a [27]. Such methods apply small perturbations to the model
compressed rational fitting and passivity enforcement franework, — coefficients so that the modified model becomes passive.
that is able to obtain speedup factors up to 2-3 orders of As for the rational fitting phase, also passivity enforcetmen

magnitude with respect to standard approaches, with full catrol - g-pemes suffer from excessive computational requirenfients
over the approximation errors. Numerical results on a largeset

of benchmark cases demonstrate the effectiveness of the pased |279€-Scale models characterized by many ports and by a larg
technique. dynamic order. Significant improvements were documented

in [17], [26], including parallelization efforts [28]. Hosver,
the computational cost remains the main factor limiting ap-
|. INTRODUCTION AND MOTIVATION plicability of passive macromodeling techniques to lasgate
Macromodeling techniques have become a standard pracstrictures and devices.
in system design and verification flows. Such methods allow toln this paper, we present an approach for improving the
convert external characterizations of linear and timexiiant efficiency of both rational fitting and passivity enforcernen
structures such as passive devices and electrical inteects for medium and large-scale structures. We specifically esdr
into compact closed-form mathematical expressions ouitircproblems characterized by possibly hundreds of ports and
equivalents. This conversion is needed to allow systemtlevequiring thousands of internal states for their models. Re
transient simulations and verifications starting from aiveat quirements for models of such complexity arise, for instéanc
characterization that is typically available in the freqeyedo- in power bus modeling and optimization, chip-package co-
main in form of tabulated scattering responses, the latardp design, and mixed-signal system design.
determined from direct measurements or full-wave numerica Our main approach is based on the fundamental idea that
solutions. there is often a lot of redundancy in the frequency responses
The above considerations led to major developments of coupled multiport structures. Following the approack-pr
macromodeling algorithms over the last few decades. Wminary documented in [29], we show in Sec. Il that a simple
can safely state that the main result that fostered these gdesjection based on a truncated Singular Value Decompositi
velopments is the introduction of the Vector Fitting (VFYSVD) [30], [31] leads to drastic compression of scattering
algorithm [1]. Despite the lack of a theoretical result prgv responses, which can be cast as a linear combination of
or disproving its convergence [2], the VF scheme formulatésw carefully selected “basis functions”. The rationalirigt
the problem of fitting a rational function to a set of frequgncof these basis functions leads to a compressed macromodel,
samples as an iterative solution of linear least squares amdich can be determined with reduced computational effort.
eigenvalue problems. Experience shows that convergenceThe structure of this compressed model is exploited in Skc. |
deed occurs in very few iterations, with excellent accura@nd IV to enforce asymptotic and global passivity at a reduce
and robustness. Since the first paper [1], many developmetsnputational cost.
have been reported to enhance applicability, scalabiiyg The effectiveness of the proposed approach is illustrated o
performance. See, e.g., [3]-[11]. a comprehensive set of benchmark cases. Numerical results
The basic VF scheme suffers two main problems. On oa&d examples are reported at the end of each section in order
hand, the computational requirements may become excessivalocument each separate macromodeling step. A synoptic
when the number of ports of the structure under modeling ig&ew of these results is presented and discussed in Sec. V.
large. Despite the smart formulation of [8], which substtyt Throughout this papet, =, andX denote a generic scalar,



vector, and matrix, respectively. Superscriptd’, and” will wheremod denotes the remainder of integer division gnfl
stand for the complex conjugate, transpose, and conjugedends its argument to the nearest larger integer. Then, all
(Hermitian) transpose, respectively. With, and I, we the vectorse, corresponding to different frequencies are
denote respectively the column vector of ones and the iggentcollected in matrixX e CLxP? defined as

matrix of size (omitted when clear from the context). The

set of eigenvalues of matriX is denoted as\(X), whereas _ _ _
o(X) stands for the set of its singular values. The 2-n¢rig X=1: : e N (%)
is defined as{|m||§ =%, |z¢|? for vectors (euclidean norm) — L, — o

and || X[, = max ¢ (X) for matrices (spectral norm). Note that each columa, of this matrix collects all frequency

samples of a single scattering respofisg), = S;; (Jwe).

Il. COMPRESSEDRATIONAL APPROXIMATION Following [29], we compute the truncated SVD [30], [31]

We consider a linear and time-invariaftport interconnect
system. We suppose that the scattering makixe CF*F [RG{X}} ~Osv? ©6)
at a suitable set of frequency pointg with £ = 1,.... L is Im{X}

known. We want to derive a rational macromodel in form \yhere s € R7*¢ collects in its diagonal the first singular

NoOR, valueso, sorted in descending order, and wh&fes R2L>7,
H(s) = Roo + Z s — pn @O ve RP**¢ with U' U = IandV’' V = I. We are interested
n=t in enforcing the condition

where the poleg,,, the residue matriceR,,, and the direct
coupling matrix R, are determined via some fitting or p < min{2L, P*}, (7)
approximation process. A very effective and popular metho,

ology to obtain macromodel (1) is to apply some formulatiognd thin” matricesU, V. If (7) holds and the a L
" . . , V. pproximation
of the Vector Fitting (VF) algorithm [1]-[11], which compes error in (6) is small, then the assumption of redundancy\n ra

all model pcz;\ra_metersl by anb||terat|ve sq(ljgt|on ?f Ilnga;II:eaaata is true. We will show that this is indeed the case through
squares and eigenvalue problems, providing a lineariaatfo .. o .- humerical examples. Defining now

the global nonlinear optimization

\%hich ensures that (6) is a low-rank approximation with|“tal

L P W=, jI.]U%, (8)
. 2
o Z Z |Hij(gwe) — (He)iz|™ - () we can rewrite (6) as
{pn;Rn;Roo} (=11i,j=1
o =T
The computational cost of VF in terms of CPU and memory X=X=WV . 9)

occupation may grow excessively large for complex St“ﬂﬂurEquivaIently
characterized by many ports and possibly many frequency
samples over an extended frequency band, and requiring a 5 XP:U -
k= kqWyq
g=1

if we extract thé-th column of X, we obtain

possibly large number of poles in the rational approxinratio (10)

Therefore, before resorting to the VF scheme, we try to -

eliminate any redundancy in the raw data, in order to redusdere w, € C* denotes theg-th column of W. We will
the size of the “independent” data points to be fed by thiepeatedly denotev, as “basis functions” in the following.
rational approximation engine. As pointed in [29], thereymaTl his denomination is motivated by the fact that with a suéab
be a lot of redundancy in the scattering responses of typicdioice of coefficients,, € R, any scattering responsg;
electrical interconnects. Many responses look similad,iais  can be approximated by a linear combination of spdbasis
very likely that a high degree of compression can be achievkthctions. The coefficients,, are the elements of matri¥’
by smarter data representation. In the remainder of thigssgc collecting the firstp right singular vectors of (6).

we recall and complete the basic results of [29], in order to We now list two results that will be useful in the following.
set the notation for later developments. Section II-A agses ~ Lemma 1: The euclidean norm of the-th basis function
data compression, while Sec. II-B exploits this comprassiav, is |[w,|, = o4.

to derive a reduced-complexity Vector Fitting scheme. Lemma 2: The error in the approximation (9) is bounded
by
A. Data Compression &= X=X, < V20,41, (11)

W(_a start by. collecting theP? .eIemen.ts of the scattering\,\,herecprrl is the largest neglected singular value.

matrix H, at single frequency, into a single row vector  The proof of these two lemmas is omitted, being a direct
x; = vec(H,)T | (3) consequence of standard properties of the SVD decomposi-

. . tion [30], [31], see also [29]. These two lemmas are quite

where operatorec(-) stacks all columns of its matrix elementy, hortant for our application. In fact, Lemma 1 guarantees

into a single column vector [32]. Equivalently.)x = (He)ij  hat the most significant contributions appear first in thedr

with mappingk « (i, j) defined as superposition (10). Lemma 2 provides an explicit bound for

iy . t=1+mod(k—1,P), the approximation error through the magnitude of the first
k=it (G-1P, { j=1[k/P], ) neglected term.



TABLE |
BENCHMARK STRUCTURES L IS THE NUMBER OF RAW FREQUENCY

B. Compressed Macromodeling
A . e SAMPLES, P THE NUMBER OF PORTS$p THE NUMBER OF BASIS
Instead of building a global rational macromodel by fitting FUNCTIONS(TO BE COMPARED WITHP2); N, AND N,, DENOTE THE

directly the raw data as in (2), we will fit the basis functions NUMBER OF POLES USED FOR FULL AND COMPRESSED FITTING
w,. To this end, we define RESPECTIVELY

w(s) = (wi(s) wa(s) ... w,(s 12 [Case L P P2 p__Nu No|
(5) = (wi(s) ws(s) o(5)) - (12) 71 12 144 17 20 22
690 48 2304 24 27 28
1001 56 3136 30 30 30
572 25 6% 5 5 5

2
3
N 4

T 5 71 92 8464 22 22 23
wq(5) = Tgoo + Y ——. (13) 2
n= 7
8

—_

where each component is a rational function

S — pn 570 34 1156 40 57 58
1 1001 24 576 13 12 12
1228 83 6889 31 30 31

The unknown polesp,, residuesr,, and direct coupling

. 9 100 8 64 6 29 29

constantsr,, are computed by applying the VF scheme to 10 197 245 60025 14 45 29
solve 11 13 52 2704 3 3 3
L »p 12 40 800 640000 8 8 8

min ZZ lwq (Jwe) — (@q)d? ) (14) 13 572 41 1681 10 11 11

14 141 542 293764 16 21 0
15 1000 34 1156 10 10 15

Only p basis functions are concurrently fitted with (14) instead 16 501 28 784 9 12 16
f the P? responses in (2). Therefore, the computational cost Ir 364 20 400 40 58 %9
0 : pon: - Thel ' L put 18 367 181 32761 6 24 39
that will be required for the rational fitting stage is expmett
to be drastically reduced. Moreover, since we use a set of
common polesp,, for all basis functions, due to (10) eachy; V; € RP*¢ collecting theP rows {j(P—1)+1, ..., 5P}
scattering response will be modeled as a rational functigim W ¢ matrix V -
the same poles, thus matching the general form (1). Vi
We now construct a state-space realization for the resgultin v=|:]. (20)
compressed macromodel. First, we define a state-space real- =
N . . . Vp
ization for the basis function models, collected in a column
vector as In (18), the size of the various matricesAsc RY*N B €
RNXP C e RPXN D € RP*P where N = N, P denotes

{pn;"‘qnarqoo} (=1 q=1

T _ -1
w(s)" = Culsl = Ay)™ by +dy (15)  the global dynamic order of the realization. The transfetrina
< Ay | by > of the compressed macromodel associated to (18) reads
Cu | dw

H(s)=C(sI-A)"'B+D. (21)

. N x N . . -

\l’)V'thiAi” €R | stotrmg tfhe p0£$n mﬂg‘jxr?vim d:lag?_nal, The final approximation error accounting for both compres-
w = N, COIUMN Vector Ol Ones, € COTECNg gion and fitting can be characterized as follows. We denote

. p ; . . an g
all residuesry, andd,, € R” collecting the direct coupllng with W and X the matrices collecting, respectively, the
constantsr,... In case of complex conjugate pole/residue

. responses of compressed macromodel (15) and those of the
terms, the above state-space matrices are complex-vadued, P P (15)

a standard similarity transformation [38] can be applied trgconstructed global macromodel (21) at the same freqesnci

obtain a purely real realization in form (15). we. We have
A global rational macromodel can be obtained by defining HX - }A(H < |xX-=X]|,+ HX — }A(H , (22)
_ 2 T2 2
H(S) = mat(V'wT(s)) R (16) <V20,41 16X,

where themat(-) operator reconstructs  x P matrix of where the individual contributions of SVD truncatief2o, 1
rational functions starting from it$? x 1 vector argument. and VF approximatior|éX||, are explicit. We remark that,
Following [29], we can show that a state-space realization due to the orthonormality of the columns Wi, we have
H(s) is obtained as

Jox, =[x - X| = [w-wW]| . (23)
Al B 2 2
H(s) < <T’T) (17)  so that the global fitting error can be controlled directlyidg
the compressed fitting stage.
with
A =1Ip®A,, B =Ip®by,, C. Examples

C =¥(IrpeCy), D =¥(Ir®d,), (18) We present here all benchmark cases that will be analyzed
where® denotes the Kronecker matrix product [32] and throughout this work. Table | lists a total of 18 interconnec
structures, characterized by different number of pdttand
U= (VyV, - Vp) (19) raw frequency samplek. These structures include high-speed
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Fig. 1. Two sample scattering responses for case 6 befosaztted lines) g o First three basis functions for case 6. Original tiepy samples
and after (dashed lines) compression, compared to the essgu rational w, (dashed lines) and rational model, (s) (solid lines).
fitted model responses (solid lines).

CPUTIME IN SECONDS REQUIFII?I;BIF_ER”DATA COMPRESSIOWsyp) AND
connectors (cases 2, 3, 7), PCB interconnects (cases 9, 17PMPRESSED FITTINGTyrw) COMPARED TO FULL FITTING (Tvrx).-
package interconnects (cases 5, 8, 13, 15, 16), power or
mixed signal/power distribution networks (cases 1, 4, 6, 10
11, 14, 18), and Through Silicon Via (TSV) fields (case 12). D)
All raw frequency samples were obtained from 2D or 3D 3
field characterizations. All numerical tests in this workreve 4 %278 8-% ;—);‘i 2-36
performed with a laptop (2 GHz clock and 4 GB memory). 2 033 106 3555 351

7
8
9

[ Case Tsvp [s] Tvrew [S] Tvrx [s] Speedup|
1 0.03 0.66 42 6.03
0.8 1.7 1835 705
13 37 419.7 82.4

The last column in Table | shows the number of poles 0.37 0.28 11.6 17.8
N, that were required by a standard application of Vector 3.2 4.6 1273 160
Fitting to fit the full set of responseX with a global model- 0.004 0.2 0.94 4.44

o , 10 2.4 12 1609 4371
vs-data deviation|dX||, < eyp. Details on how to choose 11 0.01 0.006 02 12
the thresholdyr will be postponed to Sec. V. The publicly 12 12.8 0.04 592 458
available VF code [9] based on the formulation [8] was used ﬁ é; 8-2 17.8 8.8
for these tes_ts and applied by iteratively.i.ncreasing thaber 15 78 15 79 51
of poles until the above accuracy condition was met. 16 0.3 0.154 12 24.2
In this section, we are interested in comparing the perfor- 17 0.15 8.05 773 9.4
18 22 0.4 2074 760.4

mance of standard and compressed VF. To this end, we use the
thresholdesyp to control the compression errék, defined
in (11), andeyr to control the approximation error achieved

by the compressed VF. This choice results in a number of baiyyn: for fi(';ting the p (lj)alsiz functions and %opstructilng the
functionsp and in a number of poles for the basis function§CMPressed macromodet, enotediagw, and for applying

N,, also reported in Table I. These results show collective andard VF to the full set of raw responses, denoteBas.

that he overall speedup reported in the last column demonstrate

) ) , how effective can the compressed macromodeling approach be
« the number of basis functions always resylts< <, ¢ those cases that are characterized by a large port count o

therefore the computational complexity of the comj |54 number of frequency samples. For case 14, standard

pressed VF run always results much less than the stand@@ could not even be applied due to an excessive memory

full VF; _ occupation.
« the number of poles required for the compressed and the

full macromodels is comparablgy,, ~ N,, showing o
that the compression strategy does not create spuriditsPassivity
or artificial components in the basis functions that would There is no guarantee that the global macromodel (21) with
require an excessive number of poles for their fitting; state-space matrices (18) is passive. We can however iyplic

« the size of compressed macromodég) P is comparable enforce model (asymptotic) stability by constraining thdes
to the size of full macromodeV, P (assuming full-rank p,, to have a strictly negative real part, a standard practice in
residue matrices, which was verified in all examples). VF applications [1]. Under this assumption, the macromodel

Figure 1 compares the compressed data and the compredsd¥ssive if and only if [12], [13], [14]
macromodel results_ to the raw scattering responses forhbgnc min M@®(w)} >0, Vo, (24)
mark case 6, showing that an excellent accuracy is obtained.
Figure 2 shows some of the corresponding basis functiontere® (jw) = Ip — H” (jw)H(jw).
together with their rational fitted models. The passivity condition (24), which can be checked either
Table Il reports the execution time in seconds that waga adaptive frequency sampling [26] or through identifica-
required by SVD algorithm [31] for compression, denoted a®n of imaginary eigenvalues of the associated Hamiltonia



matrix [15], can be violated over finite or infinite frequency|¥ (Ir ® n,,)|/, is minimized, as required by (28). However,
bands. In particular, this second case occurs if the modelsisce the compressed macromodel will be re-generated via
not asymptotically passive, i.emin \{®(c0)} < 0. In this a new constrained vector fitting run (30), the asymptotic
situation, asymptotic passivity can be recovered by pleirtigr perturbation will have a significant effect only well beyathe
just the direct coupling matriP. This will be the subject of last available frequency point, resulting in a quite acabfet
Sec. Ill. Then, we will describe in Sec. IV a global passivitaccuracy within the modeling band. These statements will be
compensation scheme for enforcing (24) at all frequenciesvalidated through numerical examples in IlI-D. Therefahés
scaling method is actually quite competitive with the more

I1l. ASYMPTOTIC PASSIVITY ENFORCEMENT precise approaches that follow due to its simplicity.

The macromodel (21) is asymptotically (strictly) passifve i
B. Linearization

IDll; < v <1, (25) The method described in this section is based on two
wherer is some desired passivity threshold. In case (25) is naimplifications of (28). First, the norm af,, is minimized
verified, we modify matrixD so that this condition is met. Weinstead of the norm ofD, — D. Second, the constraint
want to operate directly on the compressed macromodel (1),[/, < v is replaced by an approximate constraintmgp
so we add some perturbation vectpy, to the corresponding based on a linearization process. These two conditionsttead
direct coupling vectord,,, preserving the projection coeffi-a problem of smaller size with respect to (28), which should

cients in matrix®. The perturbed matrix results require less computational effort for its solution.
We start with a SVD decomposition dD = LY R”.
D, = ¥[Ip @ (dw +m,)], (26) Denoting the singular values as, i« = 1,..., P with the
with associated left and right singular vectérsandr;, we have
D,-D=¥(Ip®n,). (27) o =1TDr;. (32)

We Wf”‘”t to achieve.asymptotic pass.ivity by a minimal P€[et us now apply the same projection to the perturbed direct
turbation of (27), which we measure in the standard 2'”°”E‘oupling matrixD... We obtain
-

This leads to the following formulation
UDyri =g+ 1 O(1p@n,)r;. (33)

Note that this quantity is not equal to thigh singular value
The solution of (28) is addressed using various differeg}; of D,, but it provides only a first-order approximation.
approaches in Sections IlI-A-l11-C, with results preseia@d Thus, condition
compared in Sec. llI-D. U'Dyr <v (34)
Once a solutiom,, of (28) is available, an asymptotically
passive macromodel is constructed by
1) constructing the vectad, = d., + n,,;
2) subtracting the-th componentl,, , of this vector from
the frequency samples of theth basis functionw, by (rFotHvn, <v-—g. (35)
redefining

min [¥(1p @ m,), st Dyl <v.  (28)

corresponds to a linearized projection of constrgib, |, <
v. Using (33), after some straightforward algebraic marapul
tions, we obtain

Collecting the various constraints (35) for alleads to the
linear underdetermined system
3) fitting the resulting frequency samples with a strictly

’l._Uq — ’ljjq — dp7q1L (29)

proper rational function Mn,, =&, (36)
N, where the number of rows i defines the number of
wy(s) = Z qn ’ (30) singular values oD being perturbed. Among all vectorg,
=15 Pn satisfying (36), we seek the minimum-norm solution, whigh i
where the poleg,, are kept fixed to the poles of theavallable in closed form as
original unperturbed macromodel (13); N, =M'¢, (37)

4) defining the state-space realization of the compressed ; . .
macromodel as in (15), but with,, replaced byd,. with M denoting the Moore-Penrose pseudoinversd/bf

Due to the approximate nature of (35), the solution (37)

of (36) does not guarantee thgD,||, < v. Therefore, we

A. Direct scaling can iterate the process until this condition is achievedeakth
The easiest way to enforce the asymptotic passivity iteration, two slightly different constraints can be udedding

through the following rescaling to different numerical schemes
d,—d v D, = U(Ip®d,). (31) 1) system (36) si formed by collecting al singular

YDl
This definition imposes asymptotic passivity by constacti b = { vV—¢ G >U,

values, setting at the right hand side

but does not guarantee that the asymtpotic model pertorbati 0 G SV (38)



This choice tries to explicitly preserve those singular V. GLOBAL PASSIVITY ENFORCEMENT

values that are already below the thresheld We now address the enforcement of global passivity for
2) only constraints with;; > v are formed, so that only the macromodel (21) characterized by the state-spaceaeali
the singular value terms exceeding the thresholare jon (18), assumed to be asymptotically stable and asyiaptot

explicitly perturbed. cally passive. We will therefore assume that (24) is vialate
some frequencies € 2, where) is the union of finite-width
C. Linear Matrix Inequa““es frequency bands.

The problem stated in (28) can be cast as a Linear MatrixIn order to enforce passivity, we can follow one of the
Inequality (LMI) [33], [34]. In fact, introducing the slack standard perturbation approaches. The main differencken t
variable~, minimization of the objective function in (28) canpresent framework with respect to published results is that

be restated as the system perturbation should not be arbitrary but stredtu
_ AIp T(Ip®n,) according to the form of (18). We choose to perturb only the
min~y st |:(IP @ nT)w” Ip 0, (39) state-to-output map
whereas the asymptotic passivity constraint is equivalent C,=C+Ac, (41)
vip D+Y(Ip®mn,) 0 (40) where the perturbation teriA - is defined as
DT+(IP®7]5)‘I’T vip ’

Ac=TY(Ip®Ag,). (42)
Expressions (39) and (40) form a system of LMI's. This ) o

formulation is based on convex constraints with a convé}$ for the asymptotic passivity enforcement of Sec. Ill, we
objective function. Therefore, its solution can be achiena- Preserve the expansion/projection coefficients in makriand
merically within arbitrary precision and with a finite nunttog  We perturb only the lower-dimensional compressed macro-
steps using some specialized software. All results doctedenmodel (15) using a local eigenvalue perturbation stratégy. [

in the following were obtained with the SeDuMi package [35].

A. Passivity enforcement

D. Numerical Results Let us consider a single frequenay at which condition

Table Il compares the asymptotic passivity enforcg24) is violated by some negative eigenvalue< 0, and let
ment results obtained by the various schemes presentiee corresponding eigenvector @f(jw,) be ¢;, normalized
in Sections IlI-A-IlI-C for those cases that resulted norsuch that||(;|, = 1. Applying (41) leads to a first-order
asymptotically passive after the compressed fitting stige. approximation of the perturbed eigenvalue [36]
maximum singular valudD||,, of the direct coupling matrix
is reported for convenijnc!fin the second column. The four Api = X+ G Aa, (43)
schemes are compared in terms of direct coupling pertamativhere
amountA = D, — D measured in the spectral norm, number Ag ~ —KéchHo _ HéquKo (44)
of iterations (when applicable), and total runtime. Theelat
includes not only the direct coupling perturbation, bubatse 2"
computation of the perturbed residues and the construofion Ho=D+CKo, Ko=(wl-A)"'B. (45)
the global state-space realization, as described in Sec. Il

The direct scaling method requires no iterations. Only thetandard manipulations lead to
computation of the normiD]||, is required. Scaling requires Api = Ay + £ vec(Ac) (46)
negligible time, so that the total runtime is practicallgdgor e ’
recomputing the updated residue matrices. The linariaatial Where the row-vectot; is defined as
the LMI methods instead require several iterations andirequ - T H
significantly larger runtime. These three methods fail foe t ti = —2Re{(Ko¢;)" @ (HoG,)™ ) (47)
largest cases 12 and 14 due to excessive memory occupakaforcing now), ; > 0 leads to the following linear inequality
(LMI) or lack of convergence (linearization) within a maxi-constraint
mum number of 600 iterations. If converging, the lineaiaat tivec(Ag) = —\;. (48)
methods are faster than the LMI approach. However,
liearization methods are not guaranteed to attain the apti
solution, as does the LMI approach. This is confirmed by the tivec(Acg) < 1— )\ (49)

amount of perturbation, which is smallest for the LMI case ) )
among all other methods. We see however that the simplisﬁ: guarantee that the perturbed eigenvalue remains bounded

direct scaling approach provides final perturbation ertbas LY ON€, as required by the assumed scattering representatio
are comparable with the LMI scheme. Due to its efficiency, we€ above constraints are built for all eigenvalues);
indicate the direct scaling approach as most competitife. £ P& perturbed, possibly at multiple frequencies [16], and
course, in case the resulting perturbation is excessivegan ormulated as

resort to the LMI scheme, which is guaranteed to be optimal
though slow.

t . .. .
rSﬁe also include the additional constraint

[vec(Ac)|f3 < 6

Tvec(Ac) > b (50)

minf S.t. {



TABLE Il

COMPARISON OF ASYMPTOTIC PASSIVITY ENFORCEMENT METHODS INBRMS OF PERTURBATION AMOUNT||A|,, NUMBER OF ITERATIONSY it, AND
RUNTIME IN SECONDS SEE TEXT FOR ADDITIONAL DETAILS.

Scaling Linearization 1 Linearization 2 LMI
Case [DI, | [Al, Tme[s | A, tit Tme[s] | [Al, &it Tme[s] | [Al, Fit Time[s]
5 1.02 0.03 1 0.11 154 12 1.9 424 14 0.03 24 26.2
9 1.041 0.05 0.04 0.051 3 0.007 0.05 3 0.005 0.05 11 0.17
11 1.26 0.28 0.15 0.29 5 0.3 0.29 5 0.01 0.28 17 2.7
12 2.74 0.3 54.3 — — — — — — — — —
14 1.04 0.07 114 — — - - — — — — -
18 1 0.01 5 1.2 600 146 1.45 136 13.6 0.01 32 434

whered is a slack variable. The last row collects in a compa&. Accuracy control

form all copstramts (48)-(49). _ _ The formulations in (50) and (56) aim at finding the
_ _We now impose the perturbation structure (42). Using (19hinimum norm of the perturbation term&c or Ac,, that

it is easy to show that are compatible with the passivity constraints. This cdaodit
however does not ensure that the energy (squaféehorm)

of the transfer matrix perturbation is minimized. To thigden
we need to seek the minimum of

Ac = (ViAc,,...,VpAc,) . (51)
Applying thevec(-) operator to the-th column block in (51)

leads to

1 o0
1auly = 5 [ e{AuGALG}. (69
vee(ViAc,) = (In, ® Vi) vec(Ac, ), 52 o
( cw) = (I JveclBc.) (52) However, it is well known that this norm can be characterized
so that (51) can be written in “vectorized” form as as [37]
IAu[%: = tr{AcPcAL} (59)
vec(A¢) = Ovec(Ag,,), (53)
where P is the controllability Gramian associated to (18),
where® ¢ RPN*rNw is defined as found as the unique, symmetric and positive definite satutio
- of the Lyapunov equation
Iy, © V) yap q
o= : (54) APc +PcA” = -BB”. (60)
Iy, ®Vp If we compute the Cholesky factorizatid® = Q5 Q. and
. - define
Finally, definingT,, € R?2*rNw as
E=AcQL, &=vec(B) = (Qg®1Ip)vec(As), (61)
- ) & (&) = (Qo & Ir) vee(Ac)
we have

we can formulate the structured and compressed passivity

2 —r—T 2
[Au[y> = tr{EE" } = [|£]5-
enforcement problem as

Therefore, problem (50) can be cast as a minimufi-

(62)

mind st { [vec(Ac,)|5 < 0 (56) norm formulation by performing the change of variable (61),
- T, vec(Ag,) > b obtaining
2
Note that matrix® is never constructed in practice, since all minfd s.t. { ¥‘6é”2><be (63)

constraints in (56) and in particular matrik,, can be built
directly using optimized code. wherel' = T(Q;' ® Ip).
If we compare the standard formulation (50) with the [et us now apply the same procedure to (56). We compute

compressed and structured formulation (56), we see that the controllability Gramian associated to the comprestd-s
latter is much more convenient, since the number of decisigface realization (15) as

variables is reduced by a factor

#{Acw} o pr o L
#acy PN Sl

A, Po, +Pc AT = —b,bL (64)

(57) together with its Cholesky factorizatioBc,, = ngch.

. . _ ~ Note that the numerical solution of (15) requires 06IyN.,, )
This makes the cost for the solution of (56) practically Regloperations due to the sparse (diagonal or tridiagonal)zeeal
gible with respect to all other macromodeling steps. No& thtion of w(s)”. This cost is negligible with respect to all other

the converse is typically the case, since passivity enfoete  macromodeling steps in the proposed framework. Defining
is usually the most demanding part of state of the art schemes

. . . . —_ T
This big advantage is due to the particular state-spacetsteu Evw =Ac¢,Qc,

65
in (18). €, = vec(Ey) = (Q¢, @1,)vec(Ac, ), (65)



. . . TABLE IV
and denoting asA,,r(s) the induced perturbation on the couparISON OF FULL AND COMPRESSED PASSIVITY ENFORCEMENT

compressed macromodel, we have SCHEMES IN TERMS OF NUMBER OF ITERATION$ it, RUNTIME, AND
ACCURACY [|6X||5. LAST TWO COLUMNS REPORT THE OVERALL SPEEDUP
HA TH2 , = ||£ H2 (66) (SU) AND THE SPEEDUP PER ITERATIONSUIit).
w X2 — wll2
- - Full / Compressed
so that substitution into (56) leads to Case [T Time 5] BXT; SU  suit
¢ Hz <0 1 6/7 2427152 022/026§ 16 138
mind s.t. { wll2 (67) 2 271 963/185 022/011 52 26
ry.§,=>b 3 | 1277 2557387  261/26] 661 385
4 271 377036 004/004 102 5.1
whereT,, = T,,(Qg' ®I,). The solution of (67) thus pro- 5 |12/9 6875/226 016/02] 304 22.8
; . 52 ; 6 | 50/30 3243/121 053/04]1 268 16.1
vides the m|n|21um$ norm perturbation of the compressed - b A T036 005 T00h 24T 4T
macromodeks™ (s). § [ 28710 510/159 143/126321 114
We have the following result 9 2726 5837164 4157421 35 31
Lemma 3: Defining P and P, as in (60) and (64), we 10 | 978  3865/145  3.31/3.34 26.6 236
h 9+c Cu (60) (64) 11 | 2/4 9347181 0047009 52 104
ave 12 ~732 717344 - 121 -- -
Po=1p2Pc . (68) 13 877 2477486 016/021 51 42
v 14 -713 --75049  -- [121I] --
) . ; 15 172 585/3.17 0.08/0.0§ 1.8 36
Proof: Suppose _thaIPcw_ is the splutlon of (64). We 611078 T3 17105 0917028 68 52
see thatP defined in (68) is a solution of (60) by direct 17 11076 13.77/1.26 0517051 114 68
substitution. Using (18), 18 -75 -- 71621 -~ 7679 --
AP +PcA”
= (Ip®A,)Ip@Pc,)+ (Ip2Pc,)(Ip®AL) where Y, = Achchgw. The .2 norm of the global
= Ip®(AuPc, + Po,AT) macromodel perturbation is characterized as
- w w w w
_ T 2 T
= Lr®(-bub,) |An[y: = tr{AcPcAL}

= —(Ip®by,)(Ip @ bL)

P /P
- _BBT. = <Z iTwV?>

m=1 \i=1
Since bothA and A, are strictly negative definitd?- and P E PP _
P, are the unique solutions of Lyapunov equations (60) = Z ZZZ(Vi)mZ(Tw)En(Vi)mn
and (64), which implies (68). [ | m=1i=1 n=1(=1 -
We are now ready to state the main result of this section. P . .
Theorem 1: Defining the compressed macromodel pertur- o Z_;Z(Tw)e" Z;Z;(Vi)m‘(vi)m”
bation " =1 e
A b
w w J— ‘rw
Ay ( AT > (69) ;( et
and the corresponding global macromodel perturbation = |AwT||?$2 )
A |B which completes the proof. [ |
An < ( Ac | O ) ’ (70) The practical relevance of this theorem is that the solution

of the small-size optimization problem (67), in addition to
with state-space matrices constructed as in (18), we have providing the minimum-energy perturbation of the compeess
9 9 macromodel, will also provide as a byproduct the minimum-
lAHly: = [Awr|lg- (72) energy solution of the full-size passivity enforcementyyem,
which is our main objective in this Section. Global pasgivit
enforcement is thus achieved with optimal accuracy and neg-
ligible cost through (67).

Proof: As a preliminary result, consider matrM in (6).
Using (20), the orthogonality conditioﬁ’ip\_f = I can be
rewritten in terms of its constituent blocRg; as

P P
i=1 m—1 In this section, we compare the performance of the passivity

wheres,, = 1if n = £ and 0 otherwise. Considering now (Sl)enforcement schemes (63) and (67) for each of the benchmark

and using (68), a straightforward algebraic manipulatids cases of Table I. The_resu_lts are summanzed_ in Tgble \VA
o where the total execution time and number of iterations for

p both schemes are grouped in columns 2 and 3 for convenience.
AcPcAL = Zvi-rwv? (73) We see that the number of iterations for the compressed
= scheme is practically always less than for the full scheme.



TABLE V
ACCURACY WITH RESPECT TO RAW DATA OF COMPRESSED DATA
(6XsyDp) AND COMPRESSED MACROMODEL BEFOREI Xy F) AND AFTER
(6Xpas) PASSIVITY ENFORCEMENT

Singular values

0.8

€ 0XsvD 0XvF 0Xpags
Case| SVD/VF [ [lo T lpaxe | 0o 7T Tpane | Mo 71T
1 0.1/0.1 0.07 / 0.0039 | 0.09 / 0.006 0.26 / 0.014
2 0.1/0.1 0.06 / 0.0045 | 0.09 / 0.007 0.11 / 0.007
3 0.1/0.1 0.06 / 0.0029 | 0.08 / 0.003 2.61/ 0.064
4 0.1/0.1 0.04 / 0.0015 | 0.04 / 0.002 0.04 / 0.002
! ! L 5 0.1/0.1 0.06 / 0.0105 | 0.09/0.051 0.23/ 0.057
6
7
8

0.6

0.4

0.2 — = passive
not passive

L L L
0.5 1 15 2 25 3 35 4
Frequency [GHZz]

0.1/0.1 | 0.07/0.0041 | 0.09/0.006 0.42/0.015
0.1/0.1 | 0.01/0.0005 | 0.04/0.001 0.06 / 0.002

. . . 0.1/0.5 | 0.08/0.0027 | 0.48/0.016 1.05/0.014
Fig. 3. Singular value plot before and after passivity ecéanent for case 17. 9 01701 | 005700084 | 0.0570.008 21270632

10 | 0.1/3.0 | 0.07/0.0061 | 2.21/0.048 | 2.53/0.048
11 0.1/0.1 | 0.01/0.0012 | 0.01/0.001 | 0.1870.016
This implies that, independent on the runtime required for{a12 0.170.1 [ 0.02/0.0002 | 0.05/0.001 | 1.2270.011

single iteration, the compressed scheme performs geynerallﬁ 8-1;8-1 8-8‘”8-82‘;2 8-82;8-821 g-géjg-géi
better. This consideration should be taken into accountwhe—z 01701 1006700018 100870002 1 00870002
interpreting the total runtime, reported in the second mwlu [ 76 0.170.1 | 0.0470.0147 | 0.08/0.015 | 0.2570.015
We observe that a dramatic reduction is achieved by thel?7 | 0.1/0.4 | 0.07/0.0241 | 0.39/0.315 | 0.43/0.315
compressed scheme, which is able to complete the passi Iif}]f8 01768 | 00770005 | 67970212 | 6.91/0218
enforcement also for those large cases (12, 14, and 18) for

which the full scheme requires excessive memory.

We report in the fourth column of Table IV two different
speedup factors. The first is the overall speedup factor, ¢ 1
tained as the ratio of the total runtime required by the fatl a
compressed schemes. The second is the average runtime®8|
iteration, which provides a more precise metric for assessi, |
the enhancement in efficiency that can be achieved w
proposed approach. In any case, both speedup per itera®4r
and overall speedup are between 1 and 2 orders of magnitlozf

S1 . scattering matrix entries, magnitude

== data

for the most challenging cases, except for the largest dases _ 'fn(i,”;‘éies |
which only the compressed scheme could achieve its goal. o ‘ ‘ ‘ ! ‘ ! ‘
. S 0.5 1 15 2 25 3 35
Finally, the fourth column of Table IV reports the deviatior Frequency [GHz]
of the obtained passive models with respect to the origenal r S, , scattering matrix entries, phase (degrees)

data, showing that the accuracies of both full and compdess 100 ‘ ‘ ‘ ‘ ‘
schemes are comparable. Figure 3 reports as an exan
the singular value plot for case 17, showing all singule 50
values before and after compressed passivity enforceme
As expected, the singular values of the passive model ¢ O°f
uniformly unitary bounded.

= = data
= = =compres H
model

-50

V. A SUMMARY OF NUMERICAL RESULTS
OO L L L L L L L

We now summarize the main results for all benchmar 05 1 15 2 25 3 35
cases. Table V provides a detailed report on the accuracy Frequency [GHz]
of all intermediate steps of the proposed compressed msqﬂ% 4. A scattering response of a PCB interconnect (caseb&fre
macromodeling approach. The second column reports ti@ dashed line) and after (blue dashed line) compres3iba. black line
thresholdssyp andeyy that were used, respectively, to boundepresents the response of the passive compressed maelomod
the approximation error for SVD truncation and compressed
VF. Note that these thresholds are used to bound the spectral
norm of error matricegdX]||, collecting all responses at all

frequencies. Since the relationship of these thresholdb€o gatasXgyp, compressed fitted modéK, and final model
actual deviation that is achieved at a given frequency foradter compressed passivity enforcemétp,s, respectively.
given response is not obvious, we also report the resultsTiRe table clearly shows that accuracy is well preserveditiito
terms of the worst-case norm, defined as all modeling steps. For illustration, we also report in Fegi4
16X = max |(6X) k] - (74) and 5, respectively, the responses characterized by Fhsat-wor
k case absolute error for case 17, and the responses chizedtter
The last three columns of Table V report the spectral afmy the worst-case relative error for case 2. Similar resudise
worst-case accuracies (with respect to raw data) of corspdesobtained for all other cases and are not reported here.

max
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S47,5 SCAltering matrix entries, magnitude of states of the macromodel that would be obtained by
0015 | ‘ < applying the standard Vector Fitting to the full set of raw
- - - compres responses. In case of very large number of pétishis size
model

1 may be problematic for further system-level simulatione W
believe that, unless some further hypotheses or congraint
are enforced, e.g., on the terminations to be employed in
these simulations, it will be very difficult to further redeic
the macromodel size without neglecting important dynamic
contributions and affecting accuracy. The subject of ogtim
model order reduction for large-scale interconnects [[&Y],

s, Scattering matrix entries, phase (degrees) which i§ not addressed in _this_paper, is and will remai_n

00— T : ; ‘ ‘ a very important research direction to try to overcome this
difficulty [41].

= = =compres
501 model

0.01

0.005

Frequency [GHz]
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