
Compressed Pattern Matching in DNA Sequences

Lei Chen, Shiyong Lu, and Jeffrey Ram

Wayne State University

ak3230@wayne.edu, shiyong@cs.wayne.edu, and jeffram@med.wayne.edu

Abstract

We propose derivative Boyer-Moore (d-BM), a new

compressed pattern matching algorithm in DNA

sequences. This algorithm is based on the Boyer-

Moore method, which is one of the most popular string

matching algorithms. In this approach, we compress

both DNA sequences and patterns by using two bits to

represent each A, T, C, G character. Experiments

indicate that this compressed pattern matching

algorithm searches long DNA patterns (length > 50)

more than 10 times faster than the exact match routine

of the software package Agrep, which is known as the

fastest pattern matching tool. Moreover, compression

of DNA sequences by this method gives a guaranteed

space saving of 75%. In part the enhanced speed of the

algorithm is due to the increased efficiency of the

Boyer-Moore method resulting from an increase in

alphabet size from 4 to 256.

1. Introduction

String pattern matching is a common important

operation in many applications. Various good solutions

have been presented for pattern matching. One of the

most efficient methods is the Boyer-Moore algorithm

(BM) [3, 5] that was developed by R. S. Boyer and J.

S. Moore. The Boyer-Moore algorithm uses three

clever ideas [10]: the right-to-left scan, the bad

character shift rule, and the good suffix shift rule.

Together, these ideas lead to a method that typically

runs in “sublinear” time for sufficiently large alphabets

and sufficiently long patterns.

An interesting application of string matching is in

pattern matching in DNA sequences consisting of four

characters A, C, G and T. DNA is the genetic blueprint

that determines heritable traits of living organisms. A

DNA sequence for an organism can be long and

contain a lot of information. Large numbers of DNA

sequences require efficient storage. Recently, the

compressed pattern matching problem attracted special

interest, with the goal of enhancing storage efficiency

while speeding up the search time. The compressed

pattern matching problem was first defined in the work

of Amir and Benson [1] as the task of finding pattern

occurrences in compressed sequence without first

decompressing it. Using this technique we can

compress DNA sequences to reduce their size and I/O

overhead considerably and reduce the time to search

patterns directly in compressed DNA sequences.

Various compression methods have been extensively

studied in the last decade from both theoretical and

practical points of view [14, 2, 20, 6, 8, 13, 15, 16, 17,

18, 19].

In this paper, we propose a new compression

method for DNA sequences and a new search method

to search patterns directly in the compressed DNA

sequences. In particular, we compress DNA sequences

and patterns by using two bits to represent each A, T,

C, G character [4]. The search method is our new

compressed pattern matching algorithm d-BM, which

is based on the Boyer-Moore method. We also present

experiments showing that for long patterns our

algorithm is more than 10 times faster than the exact

match routine based on the Boyer-Moore-Horspool

algorithm [12] in the software package Agrep [21, 22],

which is known as the fastest available DNA pattern

matching program.

Most existing text compression methods fall into

two categories: statistical compression and dictionary-

based compression. For the former category, Huffman

encoding [15] is usually used. The one dealing with

Huffman encoded files runs faster than the Aho-

Corasick (AC) [4] algorithm compared to the original

files by the same factor as the compression ratio. For

the dictionary-based compression, Shibata [19] used

byte-pair encoding (BPE) [9]. Utilizing a combined

Boyer-Moore and BPE algorithm, DNA string

matching runs about three times faster than the exact

match routine of the software package Agrep. In [6],

de Moura, et al. proposed a compression scheme that

uses a Huffman coding on words. They presented an

algorithm that runs twice as fast as Agrep. However,

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

the compression method is not applicable to DNA

sequences, which cannot be segmented into words.

The rest of the paper is organized as follows:

Sections 2 and 3 describe the compression methods for

DNA sequences and patterns respectively. Section 4

presents our proposed d-BM algorithm. Section 5

reports our experimental results and analysis, and

Section 6 discusses and concludes the paper.

2. Compressing DNA sequences

Given a DNA sequence consisting of A, C, T, G

characters, we use two bits to encode each character:

“00” for A, “01” for C, “10” for T, and “11” for G. As

a result, each byte can represent four DNA characters

with each cell of 2 bits representing one DNA

character. For example, DNA sequence GACCGTCT

is encoded by binary sequence 11 00 01 01 11 10 01

10, which amounts to 8 cells or two bytes.

Since each byte can take 256 distinct values, the

above compression method equivalently increases the

size of an alphabet from 4 to 256. As will be noted

later, this increase of alphabet size significantly

contributes to the enhanced performance of our BM-

based pattern matching algorithm.

Using this simple encoding scheme, a DNA

sequence T of size m is encoded by a compressed DNA

sequence T’ of m/4 bytes. Notice that if m mod 4

0, the last byte of T’ will only contain m mod 4 useful

cells. For example, DNA sequence TACCGT will be

encoded by 10 00 01 01 11 10 xx xx, with the last byte

containing two do-not-care cells in the suffix, whose

values are not our concern and denoted by “xx” in this

paper.

Using this compression scheme, a DNA sequence T

is represented as a pair <T’, A> where T’ denotes the

encoded byte sequence, and A is a non-negative

integer, called suffix adornment, which indicates the

number of do-not-care cells in the suffix of the last

byte of T’. Obviously, A can only take one of the

values from {0, 1, 2, 3}.

The above encoding scheme will guarantee a space

saving approaching 75%. This will save not only

storage, but also I/O time when DNA sequence

database is large.

3. Compressing DNA patterns

If we compress a DNA pattern using the same

compression scheme described above, then there might

exist an alignment mismatch between a compressed

pattern P’ and a compressed DNA sequence T’, which

results in not finding some occurrences of original

DNA pattern P in DNA sequence T. Figure 1

illustrates such a situation: there exists an occurrence

of the input pattern in the input DNA sequence (the

shaded area). However, the location of the occurrence

of the pattern in the DNA sequence is not at the

boundary of bytes in the compression domain. As a

result, the pattern will not be found if we apply a string

matching algorithm directly.

Figure 1 An example of alignment mismatch

To solve this problem, we represent each DNA

pattern P by four compressed patterns corresponding

to the four alignments, each of which is searched in the

compressed DNA sequence. Each compressed pattern

takes the form of <P’, A1, A2> where P’ represents

the encoded byte sequence, A1 is a non-negative

integer, called prefix adornment, which indicates the

number of do-not-care cells in the prefix of the first

byte of P’, and A2 is another non-negative integer,

called suffix adornment, which indicates the number of

do-not-care cells in the suffix of the last byte of P’.

Obviously, both A1 and A2 can only take one of the

values from {0, 1, 2, 3}. For example, the above

“ACTGA” input pattern is represented as four

compressed patterns: <P1’, 0, 3>, <P2’, 1, 2>, <P3’,

2, 1>, and <P4’, 3, 0> where

P1’ = 00 01 10 11 00 xx xx xx,

P2’ = xx 00 01 10 11 00 xx xx,

P3’ = xx xx 00 01 10 11 00 xx, and

P4’ = xx xx xx 00 01 10 11 00.

4. Compressed pattern matching (d-BM)

Our compressed pattern matching algorithm is

based on the BM algorithm. In the following, we give

a brief overview of the BM algorithm first, and then

describe how we adapt the BM algorithm to

compressed pattern matching in DNA sequences.

4.1. BM algorithm on uncompressed text

The BM algorithm scans the characters of the

pattern from right to left beginning with the rightmost

one. In case of a mismatch it uses two preprocessed

functions to shift the alignment to the right. These two

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

shift functions are called the bad character rule and

the good suffix rule. In the bad character rule,

mismatched characters at the right end of the pattern

allow a large shift to the next occurrence of the

character in the pattern P, or to the end of P if the

character is not present in P. According to the good

suffix rule, a mismatched character at the left end of a

matched substring triggers a shift to the next

occurrence of the substring or an identical left end of

the substring. If no part of the substring is repeated in

P, then P can be shifted its entire length. Since the bad

character rule shift can be negative, the Boyer-Moore

algorithm applies the maximum shift obtained with

either the good suffix rule or the bad character rule. A

detailed description of the Boyer-Moore algorithm is

beyond the scope of this paper. Interested readers are

referred to [3, 5] for such details.

4.2. d-BM algorithm on compressed DNA

sequences

Our d-BM applies the BM algorithm to search the

compressed DNA sequence using four compressed

patterns instead of one.

As empty cells might appear in the suffix of a

compressed DNA sequence and in the prefix and

suffix of the compressed input pattern, special care

must be taken when comparing bytes appearing in

these areas so that matching against empty cells is

masked. Consider the search of pattern <P’, A1, A2>

of length m’ in DNA sequence <T’, A> of length n’.

We need to consider the following four cases:

1) When we match P’[1] to T’[j] (1 j n’-1),

the first A1 cells of P’[1] should be masked.

2) When we match P’[i] (2 i m’-1) to T’[j]

(1 j n’-1), no masks need to be

considered. It is a traditional character

matching.

3) When we match P’[m’] to T’[j] (1 j n’-1),

the last A2 cells of P’[m’] should be masked.

4) When we match P’[m’] to T’[n’], both the

last A2 cells of P’[m’] and the last A cells of

T’[n’] should be masked.

If we use the entire length of a pattern to do pattern

searching we have to consider all four cases in the

whole pattern and the overhead to determine which

case to compare will be significant. In order to reduce

the overhead, we consider a pattern <P’, A1, A2> as

<Pf, Pm, Pb, A1, A2> where Pf is the first byte of P’,

Pb is the last byte of P’, and Pm is the byte sequence

of P’ excluding the first and last bytes of P’. Similarly,

we consider a DNA sequence <T’, A> as <Tf, Tb, A>

where Tb is the last byte, and Tf is the byte sequence of

T’ excluding the last byte.

 Application of the d-BM algorithm is divided into

two steps: In the first step, we search four different

middle parts of patterns Pmi in the DNA sequence Tf

using the BM algorithm. In this phase we only need to

consider rule 2; if no match is found then the pattern is

not present in the DNA sequence. If a match is found,

then we start the second step which is extending

comparison to Pf with Tf[i] (0 i n’-2) (rule 1) and

to Pb with Tf[i] (0 i n’-2) (rule 3) or Pb with Tb

(rule 4). If they match, then a final match is found,

otherwise continue searching.

For example, consider searching pattern P:

“TACTTTGGA” in DNA sequence T:

“GCTACTTTGGATGCT”. Figure 2(a) shows the

corresponding compressed DNA sequence T’, Tf, and

Tb. For readability, we represent the value of each cell

by the character it encodes instead of its binary value.

Note that we have A = 1.

The algorithm searches four compressed patterns

corresponding to the four alignments. First, it searches

the middle part Pm1 of the first compressed pattern

P1’ in Tf, no match is found as shown in Figure 2(b).

 Second, it searches the middle part Pm2 of the

compressed pattern P2’ in Tf. Similarly, no match is

found as shown in Figure 2(c).

Third, it searches the middle part Pm3 of the

compressed pattern P3’ in Tf, a match is found; we

continue with the second step which performs the

extended comparisons between Pf3 and Pb3 and their

counterparts in T’. Both extended comparisons result

in matches since “xxxxTA” matches “GCTA” and

“GGAxx” matches “GGAT” (rule 3). This is

illustrated in Figure 2(d).

Finally, after searching all four encoded patterns in

the encoded DNA text, we report all the occurrences of

the patterns if they exist.

Clearly, the second step of d-BM will not be used if

the middle patterns were not present in the DNA

sequence as determined in the first step. Therefore, the

time cost in the first step dominates the whole

procedure. We sketch out the d-BM algorithm in

pseudocode in Figure 3.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

Figure 2 An example of searching pattern P in T

Algorithm d-BM
Input: pattern P and DNA sequence T
Output: report all occurences of P in T

Begin
/* Preprocessing */
 Calculate the four compressed patterns <Pfi, Pmi, Pbi, A1i, A2i> (1 i 4)
 with length m’
 Calculate the compressed DNA sequence <Tf, Tb, A> with length n’

According to the bad character rule, compute four charJump tables
with different Pmi, A1i, A2i
According to the good suffix rule, compute four matchJump
tables with different Pmi, A1i, A2i

/* Compressed d-BM pattern matching */
 for(four different matchJump tables, charJump tables and Pm)
 if (BM find an occurrence of Pm in Tf with position i)
 // extend comparison to Pf and Pb

 if(i = n’ – m’ + 1) // occurrence present in the end of Tf
if(Pf ==Tf[i-1] && Pb == Tb) return i; // pattern find

else if(i < n’ – m’ + 1) // occurrence present in middle of Tf
if(Pf ==Tf[i-1] && Pb == Tf[i+m’-2]) return i; // pattern find

 else continue;
 else continue;

return; // cannot find pattern
End Algorithm

Figure 3 The pseudocode of d-BM

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

 d -BM v Agrep v BM user time,
80 MBase randomly generated DNA sequences

pattern length (bases)

20 30 50 200 300 500 200010 100 1000

u
s
e

r
tim

e
(s

e
c
o

n
d

s
)

0

1

2

3

4

d-BM
Agrep

BM

d-BM

Agrep

BM

 d -BM v Agrep v BM user time,
28.6 MBase Genbank DNA sequence

pattern length (bases)

20 30 50 200 300 500 200010 100 1000

u
s
e

r
ti
m

e
 (

s
e

c
o

n
d

s
)

0

1

2

d-BM
Agrep

BM
BM

Agrep

d-BM

Figure 4 Comparison of d-BM to uncompressed

BM and Agrep on synthetic data Figure 5 Comparison of d-BM to uncompressed BM

and Agrep on real data

Effect of alphabet size for BM algorithm

pattern length (bytes)

2 5 20 50 200
500

2000
1 10 100

1000

c
h
a
ra

c
te

rs
in

s
p
e
c
te

d
 i
n
 s

tr
in

g
 p

e
r

c
h
a

ra
c
te

r
p
a

s
s
e
d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

BM 256 alphabet, 256 alphabet text

BM 4 alphabet, ordinary DNA sequence

Figure 6 Effect of alphabet size on BM speed

5. Experimental results

5.1. Comparison of d-BM to uncompressed BM

and Agrep

Experiments were run on an Intel Pentium III

575MHz machine running Linux RedHat7.2. DNA

files that were tested included 80 megabase randomly

generated by an in-house program, as well as a 28.6

megabase DNA sequence randomly chosen from

Genbank.

 To gather the test patterns we wrote a program that

randomly selects a substring of a given length from a

source string. We used this program to select 30

patterns of length M, for each M from 20 to 2000 and

analyzed user times (seconds) in all of the experiments.

As illustrated in Figures 4 and 5, d-BM is faster than

BM analysis on uncompressed data for patterns > 20

bases in length and as much as 14 times faster than

Agrep for patterns > 50 bases in length.

5.2. Effect of alphabet size on BM algorithm

speed

Boyer-Moore have mentioned in their paper the

total number of instructions executed in order to pass

over a character decreases as the length of the pattern

increases, and that this effect is enhanced by larger

character alphabets. These effects were illustrated by

comparison with alphabets of 2, 26, and 100 characters

[3].

As described in the section 4.2, d-BM consisted of

two steps, and the first step BM search dominates the

speed of the algorithm. However, instead of searching

in the uncompressed DNA sequence with the alphabet

size of 4, we search in the compressed DNA sequence

with the alphabet size of 256. Therefore, we examined

the BM advantage of enlarging the size of alphabet

from 4 to 256. Figure 6 shows that characters

inspected in string per character passed of BM is

smaller with a 256-character alphabet.

6. Discussions and conclusions

In this paper, we propose a new derivative Boyer-

Moore approach to search for long patterns in

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

compressed DNA files. By working in the

compression domain, the algorithm provides a

guaranteed space saving of approximately 75% for

both DNA file and match pattern and an enhanced

pattern matching speed compared to several search

methods applied to the same sequences in

uncompressed format (Figures 4 and 5). A significant

proportion of the improved performance for long

patterns can be attributed to the advantage of using a

larger alphabet in a BM algorithm (Figure 6).

Shortening the length of the DNA sequence in

which the pattern is being matched shortens the search

time (compare Figure 4 to Figure 5). However, the

75% fewer bytes used for the compressed DNA

sequence compared to the uncompressed sequence

does not provide a direct time savings in the d-BM

algorithm. Although an encoded pattern could be

searched in 1/4 the time in the compressed domain, the

algorithm requires that the encoded pattern be run four

times, in each of its alignments, P1’ to P4’.

Nevertheless, due to the smaller number of bytes

needed to store the compressed DNA sequence, the

input/output time might be saved.

The demonstrated algorithm is less efficient for

short patterns, but much more efficient for long

pattern. In part the lower efficiency for short patterns

is due to the fact that the BM algorithm must examine

more characters per character passed when matching

short patterns (Figure 6). In fact, the algorithm

exaggerates this effect because the number of

characters in the pattern being searched is greatly

reduced in the compression domain. For example, if

the uncompressed DNA pattern m = 16 to 19, the

compressed patterns m’ = 16/4 = 4 or m’ = 16/4 + 1 =

5, and the middle portion Pm that is actually examined

has length of Pm = 4 - 2 = 2 or length of Pm = 5 - 2 =

3, respectively. As shown in Figure 6, characters

inspected in string per character passed is about 0.3 for

the uncompressed pattern of length = 20, but about

0.33 in pattern length 3 and 0.5 in pattern length 2

when alphabet size is 256. This explains why the user

time comparing d-BM to application of BM to the

uncompressed sequence (Figures 4 and 5) extrapolates

to a greater user time for a DNA pattern length of <20.

The Agrep program is more efficient for pattern length

< 50; however, Agrep does not become more efficient

with longer pattern lengths. Hence, the increased

efficiency of the d-BM method for long patterns using

a 256-character alphabet enables it to operate more

than 10 times faster than Agrep.

This 10-fold improvement in exact pattern match

searches in DNA sequences presented in this paper is

greater than for previously described compressed

pattern matching methods. For example, Shibata et al.

[19], proposed a BM-type algorithm on genetic data

compressed by their BPE algorithm and demonstrated

only a 3-fold improvement over Agrep. They

described results of their algorithm only for short

patterns (length < 30), so it’s possible that further

improvements for longer patterns may occur; however,

they have not reported such results. The BPE

compression algorithm achieves only a 30%

compression with genomic data and therefore lacks

some of the data storage and input/output advantages

of the present algorithm. Similarly, Navarro and

Tarhio [17] tested a BM string matching approach

applied to genomic data compressed by a Ziv-Lempel

method. Their fastest method for genomic data (BM-

blocks) achieved increases in speed compared to

decompressing their DNA sequences followed by

searching with Agrep of only about 30%. We obtained

an internet accessible version of Navarro and Tarhio’s

software (www.dcc.uchile.cl/~gnavarro/software) and

can confirm that when tested on our computer with the

same sequences that we have searched experimentally

for Figures 4 and 5 of this paper that our d-BM

algorithm is more than 10 times faster than searches

using BM-blocks for patterns >100 bp in length.

Furthermore, Ziv-Lempel compression achieved only

40% compression for genomic sequences [17].

A final question concerns the types of data in which

exact pattern searches may be useful. Approximate

pattern matching is a familiar procedure in programs

such as BLASTN, for genetic database searches, and

CLUSTALW, for multisequence alignments. For

distant interspecies comparisons, such as between

human and mouse, in fact, it is rare that the distance

between consecutive nucleotide substitutions would be

as long as 25 bases (e.g., Figure 3 of [7]), and for such

comparisons exact pattern matches would usually be

inappropriate. However, intraspecies comparisons,

such as among groups of human individuals, or

interspecies comparisons at the taxonomic order level

(e.g., among primates) would be expected to have

much longer sequences in common. An example, is

the regulatory element of the alpha-globin gene cluster

compared among primates [11] which has interspecies

and intrahuman exact matches >100 bp in length,

along with a significant number of single nucleotide

polymorphisms bordering the exact matches.

Particularly in the non-coding regions, such long

stretches of conserved bases may be indicative of

important regulatory elements or other unknown

functions. In addition, searches for large mobile

genetic elements and insertions and gene

rearrangements may be assisted by efficient exact

pattern matching algorithms.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

Currently, we are investigating a compression

scheme so that, instead of searching four compressed

patterns, we only need to search for one compressed

pattern without losing any match. The result is very

encouraging and will be reported in a forthcoming

paper.

7. Acknowledgements

We are thankful to the anonymous reviewers for their

constructive comments and helpful suggestions that

help improve the quality of this paper.

8. References

[1] A. Amir, and G. Benson, “Effcient two-dimensional

compressed matching”, In Proc. DCC'92, pp. 279-288,

2002.

[2] A. Amir, G. Benson and M. Farach, “Let sleeping files

lie: Pattern matching in Z-compressed file”, Journal of

Computer and System Sciences, 52, pp. 299-307, 1996.

[3] R. S. Boyer and J.S. Moore, “A fast string searching

algorithm”, Communications of the ACM, 20, 762-772, 1977.

[4] X. Chen, S. Kwong, and M. Li, “A compression

algorithm for DNA sequences and its applications in genome

comparison”, In Proc. of the 10th Workshop on Genome

Informatics (GIW'99), pp. 52-61, 1999.

[5] G. Davies and S. Browsher, “Algorithm for pattern

matching”, Software-Practice and Experience, 16, pp. 575-

601, 1986.

[6] E. S. de Moura, G. Navarro, N. Ziviani and R. Baeza-

Yates, “Direct pattern matching on compressed text”, In

Proc. 5th International Symp. on String Processing and

Information Retrieval, IEEE Computer Society, pp. 90-95,

1998.

[7] E.T. Dermitzakis and A. Reymond, R. Lyle, N.

Scamuffa, C. Ucla, S. Deutsch, B.J. Stevenson, V. Flegel, P.

Bucher, C.V. Jongeneel, and S.E. Antonarakis, “Numerous

potentially functional but non-genic conserved sequences on

human chromosome 21”, Nature, 420, 578-582, 2002.

[8] M. Farach and M. Thorup , “String-matching in Lempel-

Ziv compressed strings”, Algorithmica, 20, 388-404, 1998.

[9] P. Gage, “A new algorithm for data compression”, The C

Users Journal, 12, 193, 1994.

[10] D. Gusfield, “Algorithms on Strings, Trees, and

Sequences”, Cambridge University Press, New York, 1997.

[11] C. L. Harteveld, M. Muglia, G. Passarino, M. Kielman,

and L.F. Bernini, “Genetic polymorphism of the major

regulatory element HS-40 upstream of the human alpha-

globin gene cluster”, British Journal of Haematology, 119,

848-854, 2002.

[12] R. N. Horspool, “Practical fast searching in strings.

Software-Practice and Experience, 10, 501-506, 1980.

[13] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S.

Arikawa, “Multiple pattern matching in LZW compressed

text. In Proc. Data Compression Conference (DCC'98),

IEEE Computer Society, pp. 103-112, 1998.

[14] U. Manber, “A text compression scheme that allows fast

searching directly in the compressed file”, In Proc. 5th Ann.

Symp. on Combinatorial Pattern Matching, Springer-Verlag,

pp. 113-124, 1994.

[15] M. Miyazaki, S. Fukamachi, M. Takeda, and T.

Shinohara, “Speeding up the pattern matching machine for

compressed texts” Transactions of Information Processing,

Society of Japan, 39, 2638-2648, 1998.

[16] G. Navarro and M. Raffinot, “A general practical

approach to pattern matching over Ziv-Lempel compressed

text”, In Proc. 10th Ann. Symp. on Combinatorial Pattern

Matching, Springer-Verlag, pp. 14-36, 1999.

[17] G. Navarro and J. Tarhio, “Boyer-Moore string

matching over Ziv-Lempel compressed text”, In Proc. 11th

Ann. Symp. on Combinatorial Pattern Matching, Springer-

Verlag, pp. 166-180, 2000.

[18] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A.

Shinohara, T. Shinohara, and S. Arikawa, “Speeding up

pattern matching by text compression”, In Proc. 4th Italian

Conference on Algorithms and Complexity, Springer-Verlag,

pp. 306-315, 2000.

[19] Y. Shibata, T. Matsumoto, A. Takeda, T. Shinohara and

S. Arikawa, “A Boyer-Moore type algorithm for compressed

pattern matching”, In Proc. 11th Ann. Symp. on

Combinatorial Pattern Matching, Springer-Verlag, pp. 181-

194, 2000.

[20] M. Takeda, “Pattern matching machine for text

compressed using finite state model”, Technical Report DOI-

TR-CS-142, Department of Informatics, Kyushu University.

[21] S. Wu and U. Manber, “Agrep : a fast approximate

pattern-matching tool” In Usenix Winter 1992 Technical

Conference, pp. 153-162, 1992.

[22] S. Wu and U. Manber, “Fast text searching allowing

errors”, Comm. ACM, 35, 83-91, 1992.

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004)

0-7695-2194-0/04 $20.00 © 2004 IEEE

