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Abstract

We propose derivative Boyer-Moore (d-BM), a new 

compressed pattern matching algorithm in DNA 

sequences. This algorithm is based on the Boyer-

Moore method, which is one of the most popular string 

matching algorithms. In this approach, we compress 

both DNA sequences and patterns by using two bits to 

represent each A, T, C, G character. Experiments 

indicate that this compressed pattern matching 

algorithm searches long DNA patterns (length > 50) 

more than 10 times faster than the exact match routine 

of the software package Agrep, which is known as the 

fastest pattern matching tool. Moreover, compression 

of DNA sequences by this method gives a guaranteed 

space saving of 75%. In part the enhanced speed of the 

algorithm is due to the increased efficiency of the 

Boyer-Moore method resulting from an increase in 

alphabet size from 4 to 256.  

1. Introduction 

String pattern matching is a common important 

operation in many applications. Various good solutions 

have been presented for pattern matching. One of the 

most efficient methods is the Boyer-Moore algorithm 

(BM) [3, 5] that was developed by R. S. Boyer and J. 

S. Moore. The Boyer-Moore algorithm uses three 

clever ideas [10]: the right-to-left scan, the bad 

character shift rule, and the good suffix shift rule. 

Together, these ideas lead to a method that typically 

runs in “sublinear” time for sufficiently large alphabets 

and sufficiently long patterns.  

An interesting application of string matching is in 

pattern matching in DNA sequences consisting of four 

characters A, C, G and T. DNA is the genetic blueprint 

that determines heritable traits of living organisms. A 

DNA sequence for an organism can be long and 

contain a lot of information. Large numbers of DNA 

sequences require efficient storage. Recently, the 

compressed pattern matching problem attracted special 

interest, with the goal of enhancing storage efficiency 

while speeding up the search time. The compressed 

pattern matching problem was first defined in the work 

of Amir and Benson [1] as the task of finding pattern 

occurrences in compressed sequence without first 

decompressing it. Using this technique we can 

compress DNA sequences to reduce their size and I/O 

overhead considerably and reduce the time to search 

patterns directly in compressed DNA sequences. 

Various compression methods have been extensively 

studied in the last decade from both theoretical and 

practical points of view [14, 2, 20, 6, 8, 13, 15, 16, 17, 

18, 19]. 

In this paper, we propose a new compression 

method for DNA sequences and a new search method 

to search patterns directly in the compressed DNA 

sequences. In particular, we compress DNA sequences 

and patterns by using two bits to represent each A, T, 

C, G character [4]. The search method is our new 

compressed pattern matching algorithm d-BM, which 

is based on the Boyer-Moore method.  We also present 

experiments showing that for long patterns our 

algorithm is more than 10 times faster than the exact 

match routine based on the Boyer-Moore-Horspool 

algorithm [12] in the software package Agrep [21, 22], 

which is known as the fastest available DNA pattern 

matching program. 

Most existing text compression methods fall into 

two categories: statistical compression and dictionary-

based compression. For the former category, Huffman 

encoding [15] is usually used. The one dealing with 

Huffman encoded files runs faster than the Aho-

Corasick (AC) [4] algorithm compared to the original 

files by the same factor as the compression ratio. For 

the dictionary-based compression, Shibata [19] used 

byte-pair encoding (BPE) [9]. Utilizing a combined 

Boyer-Moore and BPE algorithm, DNA string 

matching runs about three times faster than the exact 

match routine of the software package Agrep. In [6], 

de Moura, et al. proposed a compression scheme that 

uses a Huffman coding on words. They presented an 

algorithm that runs twice as fast as Agrep. However, 
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the compression method is not applicable to DNA 

sequences, which cannot be segmented into words. 

The rest of the paper is organized as follows: 

Sections 2 and 3 describe the compression methods for 

DNA sequences and patterns respectively. Section 4 

presents our proposed d-BM algorithm. Section 5 

reports our experimental results and analysis, and 

Section 6 discusses and concludes the paper. 

2. Compressing DNA sequences 

Given a DNA sequence consisting of A, C, T, G 

characters, we use two bits to encode each character:  

“00” for A, “01” for C, “10” for T, and “11” for G. As 

a result, each byte can represent four DNA characters 

with each cell of 2 bits representing one DNA 

character. For example, DNA sequence GACCGTCT 

is encoded by binary sequence 11 00 01 01 11 10 01 

10, which amounts to 8 cells or two bytes.  

Since each byte can take 256 distinct values, the 

above compression method equivalently increases the 

size of an alphabet  from 4 to 256. As will be noted 

later, this increase of alphabet size significantly 

contributes to the enhanced performance of our BM-

based pattern matching algorithm. 

Using this simple encoding scheme, a DNA 

sequence T of size m is encoded by a compressed DNA 

sequence T’ of m/4 bytes. Notice that if m mod 4 

0, the last byte of T’ will only contain m mod 4 useful 

cells. For example, DNA sequence TACCGT will be 

encoded by 10 00 01 01 11 10 xx xx, with the last byte 

containing two do-not-care cells in the suffix, whose 

values are not our concern and denoted by “xx” in this 

paper.

Using this compression scheme, a DNA sequence T

is represented as a pair <T’, A> where T’ denotes the 

encoded byte sequence, and A is a non-negative 

integer, called suffix adornment, which indicates the 

number of do-not-care cells in the suffix of the last 

byte of T’. Obviously, A can only take one of the 

values from {0, 1, 2, 3}.

The above encoding scheme will guarantee a space 

saving approaching 75%. This will save not only 

storage, but also I/O time when DNA sequence 

database is large.  

3. Compressing DNA patterns 

If we compress a DNA pattern using the same 

compression scheme described above, then there might 

exist an alignment mismatch between a compressed 

pattern P’ and a compressed DNA sequence T’, which 

results in not finding some occurrences of original 

DNA pattern P in DNA sequence T. Figure 1 

illustrates such a situation: there exists an occurrence 

of the input pattern in the input DNA sequence (the 

shaded area). However, the location of the occurrence 

of the pattern in the DNA sequence is not at the 

boundary of bytes in the compression domain. As a 

result, the pattern will not be found if we apply a string 

matching algorithm directly. 

Figure 1 An example of alignment mismatch 

To solve this problem, we represent each DNA 

pattern P by four compressed patterns corresponding 

to the four alignments, each of which is searched in the 

compressed DNA sequence. Each compressed pattern 

takes the form of <P’, A1, A2> where P’ represents 

the encoded byte sequence, A1 is a non-negative 

integer, called prefix adornment, which indicates the 

number of do-not-care cells in the prefix of the first 

byte of P’, and A2 is another non-negative integer, 

called suffix adornment, which indicates the number of 

do-not-care cells in the suffix of the last byte of P’.

Obviously, both A1 and A2 can only take one of the 

values from {0, 1, 2, 3}.  For example, the above 

“ACTGA” input pattern is represented as four 

compressed patterns: <P1’, 0, 3>, <P2’, 1, 2>, <P3’,

2, 1>, and <P4’, 3, 0> where

P1’ = 00 01 10 11 00 xx xx xx,

P2’ = xx 00 01 10 11 00 xx xx,

P3’ = xx xx 00 01 10 11 00 xx, and 

P4’ = xx xx xx 00 01 10 11 00.

4. Compressed pattern matching (d-BM) 

Our compressed pattern matching algorithm is 

based on the BM algorithm. In the following, we give 

a brief overview of the BM algorithm first, and then 

describe how we adapt the BM algorithm to 

compressed pattern matching in DNA sequences.  

4.1. BM algorithm on uncompressed text 

The BM algorithm scans the characters of the 

pattern from right to left beginning with the rightmost 

one. In case of a mismatch it uses two preprocessed 

functions to shift the alignment to the right. These two 
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shift functions are called the bad character rule and

the good suffix rule. In the bad character rule, 

mismatched characters at the right end of the pattern 

allow a large shift to the next occurrence of the 

character in the pattern P, or to the end of P if the 

character is not present in P.  According to the good 

suffix rule, a mismatched character at the left end of a 

matched substring triggers a shift to the next 

occurrence of the substring or an identical left end of 

the substring. If no part of the substring is repeated in 

P, then P can be shifted its entire length. Since the bad 

character rule shift can be negative, the Boyer-Moore 

algorithm applies the maximum shift obtained with 

either the good suffix rule or the bad character rule.  A 

detailed description of the Boyer-Moore algorithm is 

beyond the scope of this paper. Interested readers are 

referred to [3, 5] for such details. 

4.2. d-BM algorithm on compressed DNA 

sequences

Our d-BM applies the BM algorithm to search the 

compressed DNA sequence using four compressed 

patterns instead of one.  

As empty cells might appear in the suffix of a 

compressed DNA sequence and in the prefix and 

suffix of the compressed input pattern, special care 

must be taken when comparing bytes appearing in 

these areas so that matching against empty cells is 

masked.  Consider the search of pattern <P’, A1, A2>

of length m’ in DNA sequence <T’, A> of length n’.

We need to consider the following four cases: 

1) When we match P’[1] to T’[j] (1  j n’-1),

the first A1 cells of P’[1] should be masked.  

2) When we match P’[i] (2  i m’-1) to T’[j] 

(1  j n’-1), no masks need to be 

considered. It is a traditional character 

matching. 

3) When we match P’[m’] to T’[j] (1  j n’-1),

the last A2 cells of P’[m’] should be masked. 

4) When we match P’[m’] to T’[n’], both the 

last A2 cells of P’[m’] and the last A cells of 

T’[n’] should be masked.  

If we use the entire length of a pattern to do pattern 

searching we have to consider all four cases in the 

whole pattern and the overhead to determine which 

case to compare will be significant. In order to reduce 

the overhead, we consider a pattern <P’, A1, A2> as 

<Pf, Pm, Pb, A1, A2> where Pf is the first byte of P’,

Pb is the last byte of P’, and Pm is the byte sequence 

of P’ excluding the first and last bytes of P’. Similarly, 

we consider a DNA sequence <T’, A> as <Tf, Tb, A>

where Tb is the last byte, and Tf is the byte sequence of 

T’ excluding the last byte. 

 Application of the d-BM algorithm is divided into 

two steps: In the first step, we search four different 

middle parts of patterns Pmi in the DNA sequence Tf

using the BM algorithm. In this phase we only need to 

consider rule 2; if no match is found then the pattern is 

not present in the DNA sequence. If a match is found, 

then we start the second step which is extending 

comparison to Pf with Tf[i] (0  i  n’-2) (rule 1) and 

to Pb with Tf[i] (0  i  n’-2) (rule 3) or Pb with Tb

(rule 4). If they match, then a final match is found, 

otherwise continue searching.  

For example, consider searching pattern P:

“TACTTTGGA” in DNA sequence T:

“GCTACTTTGGATGCT”. Figure 2(a) shows the 

corresponding compressed DNA sequence T’, Tf, and 

Tb. For readability, we represent the value of each cell 

by the character it encodes instead of its binary value. 

Note that we have A = 1.

The algorithm searches four compressed patterns 

corresponding to the four alignments. First, it searches 

the middle part Pm1 of the first compressed pattern 

P1’ in Tf,  no match is found as shown in Figure 2(b). 

 Second, it searches the middle part Pm2 of the 

compressed pattern P2’ in Tf. Similarly, no match is 

found as shown in Figure 2(c).  

Third, it searches the middle part Pm3 of the 

compressed pattern P3’ in Tf, a match is found; we 

continue with the second step which performs the 

extended comparisons between Pf3 and Pb3 and their 

counterparts in T’.  Both extended comparisons result 

in matches since “xxxxTA” matches “GCTA” and 

“GGAxx” matches “GGAT” (rule 3).  This is 

illustrated in Figure 2(d). 

Finally, after searching all four encoded patterns in 

the encoded DNA text, we report all the occurrences of 

the patterns if they exist. 

Clearly, the second step of d-BM will not be used if 

the middle patterns were not present in the DNA 

sequence as determined in the first step. Therefore, the 

time cost in the first step dominates the whole 

procedure.  We sketch out the d-BM algorithm in 

pseudocode in Figure 3.  
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Figure 2 An example of searching pattern P in T 

Algorithm d-BM 
Input: pattern P and DNA sequence T 
Output: report all occurences of P in T 

Begin
/* Preprocessing */ 
 Calculate the four compressed patterns <Pfi, Pmi, Pbi, A1i, A2i> (1 i 4)
            with length m’
 Calculate the compressed DNA sequence <Tf, Tb, A> with length n’

According to the bad character rule, compute four charJump tables
with different Pmi, A1i, A2i
According to the good suffix rule, compute four matchJump
tables with different Pmi, A1i, A2i

/* Compressed d-BM pattern matching */ 
 for(four different matchJump tables, charJump tables and Pm)
 if ( BM find an occurrence of Pm in Tf  with position i ) 
  // extend comparison to Pf and Pb

 if( i = n’ – m’ + 1)   // occurrence present in the end of Tf
if( Pf ==Tf[i-1] && Pb  == Tb )  return i; // pattern find 

else if(i < n’ – m’ + 1 )   // occurrence present in middle of Tf 
if( Pf ==Tf[i-1] && Pb == Tf[i+m’-2]  )  return i; // pattern find 

  else continue; 
 else continue;  

return;   // cannot find pattern 
End Algorithm 

Figure 3 The pseudocode of d-BM 
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Figure 6 Effect of alphabet size on BM speed 

5. Experimental results 

5.1. Comparison of d-BM to uncompressed BM 

and Agrep

Experiments were run on an Intel Pentium III 

575MHz machine running Linux RedHat7.2. DNA 

files that were tested included 80 megabase randomly 

generated by an in-house program, as well as a 28.6 

megabase DNA sequence randomly chosen from 

Genbank.

 To gather the test patterns we wrote a program that 

randomly selects a substring of a given length from a 

source string. We used this program to select 30 

patterns of length M, for each M from 20 to 2000 and 

analyzed user times (seconds) in all of the experiments.  

As illustrated in Figures 4 and 5, d-BM is faster than 

BM analysis on uncompressed data for patterns > 20 

bases in length and as much as 14 times faster than 

Agrep for patterns > 50 bases in length. 

5.2. Effect of alphabet size on BM algorithm 

speed

Boyer-Moore have mentioned in their paper the 

total number of instructions executed in order to pass 

over a character decreases as the length of the pattern 

increases, and that this effect is enhanced by larger 

character alphabets. These effects were illustrated by 

comparison with alphabets of 2, 26, and 100 characters 

[3]. 

As described in the section 4.2, d-BM consisted of 

two steps, and the first step BM search dominates the 

speed of the algorithm. However, instead of searching 

in the uncompressed DNA sequence with the alphabet 

size of 4, we search in the compressed DNA sequence 

with the alphabet size of 256. Therefore, we examined 

the BM advantage of enlarging the size of alphabet 

from 4 to 256.  Figure 6 shows that characters 

inspected in string per character passed of BM is 

smaller with a 256-character alphabet.  

6. Discussions and conclusions 

In this paper, we propose a new derivative Boyer-

Moore approach to search for long patterns in 
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compressed DNA files.  By working in the 

compression domain, the algorithm provides a 

guaranteed space saving of approximately 75% for 

both DNA file and match pattern and an enhanced 

pattern matching speed compared to several search 

methods applied to the same sequences in 

uncompressed format (Figures 4 and 5).  A significant 

proportion of the improved performance for long 

patterns can be attributed to the advantage of using a 

larger alphabet in a BM algorithm (Figure 6). 

Shortening the length of the DNA sequence in 

which the pattern is being matched shortens the search 

time (compare Figure 4 to Figure 5).  However, the 

75% fewer bytes used for the compressed DNA 

sequence compared to the uncompressed sequence 

does not provide a direct time savings in the d-BM 

algorithm.  Although an encoded pattern could be 

searched in 1/4 the time in the compressed domain, the 

algorithm requires that the encoded pattern be run four 

times, in each of its alignments, P1’ to P4’.  

Nevertheless, due to the smaller number of bytes 

needed to store the compressed DNA sequence, the 

input/output time might be saved. 

The demonstrated algorithm is less efficient for 

short patterns, but much more efficient for long 

pattern.  In part the lower efficiency for short patterns 

is due to the fact that the BM algorithm must examine 

more characters per character passed when matching 

short patterns (Figure 6).  In fact, the algorithm 

exaggerates this effect because the number of 

characters in the pattern being searched is greatly 

reduced in the compression domain.  For example, if 

the uncompressed DNA pattern m = 16 to 19, the 

compressed patterns m’ = 16/4 = 4 or m’ = 16/4 + 1 = 

5, and the middle portion Pm that is actually examined 

has length of Pm = 4 - 2 = 2 or length of Pm = 5 - 2 = 

3, respectively.  As shown in Figure 6, characters 

inspected in string per character passed is about 0.3 for 

the uncompressed pattern of length = 20, but about 

0.33 in pattern length 3 and 0.5 in pattern length 2 

when alphabet size is 256.  This explains why the user 

time comparing d-BM to application of BM to the 

uncompressed sequence (Figures 4 and 5) extrapolates 

to a greater user time for a DNA pattern length of <20.  

The Agrep program is more efficient for pattern length 

< 50; however, Agrep does not become more efficient 

with longer pattern lengths.  Hence, the increased 

efficiency of the d-BM method for long patterns using 

a 256-character alphabet enables it to operate more 

than 10 times faster than Agrep. 

This 10-fold improvement in exact pattern match 

searches in DNA sequences presented in this paper is 

greater than for previously described compressed 

pattern matching methods.  For example, Shibata et al. 

[19], proposed a BM-type algorithm on genetic data 

compressed by their BPE algorithm and demonstrated 

only a 3-fold improvement over Agrep.  They 

described results of their algorithm only for short 

patterns (length < 30), so it’s possible that further 

improvements for longer patterns may occur; however, 

they have not reported such results.  The BPE 

compression algorithm achieves only a 30% 

compression with genomic data and therefore lacks 

some of the data storage and input/output advantages 

of the present algorithm.  Similarly, Navarro and 

Tarhio [17] tested a BM string matching approach 

applied to genomic data compressed by a Ziv-Lempel 

method.  Their fastest method for genomic data (BM-

blocks) achieved increases in speed compared to 

decompressing their DNA sequences followed by 

searching with Agrep of only about 30%.  We obtained 

an internet accessible version of Navarro and Tarhio’s 

software (www.dcc.uchile.cl/~gnavarro/software) and 

can confirm that when tested on our computer with the 

same sequences that we have searched experimentally 

for Figures 4 and 5 of this paper that our d-BM 

algorithm is more than 10 times faster than searches 

using BM-blocks for patterns >100 bp in length.  

Furthermore, Ziv-Lempel compression achieved only 

40% compression for genomic sequences [17]. 

A final question concerns the types of data in which 

exact pattern searches may be useful.  Approximate 

pattern matching is a familiar procedure in programs 

such as BLASTN, for genetic database searches, and 

CLUSTALW, for multisequence alignments.  For 

distant interspecies comparisons, such as between 

human and mouse, in fact, it is rare that the distance 

between consecutive nucleotide substitutions would be 

as long as 25 bases (e.g., Figure 3 of [7]), and for such 

comparisons exact pattern matches would usually be 

inappropriate.  However, intraspecies comparisons, 

such as among groups of human individuals, or 

interspecies comparisons at the taxonomic order level 

(e.g., among primates) would be expected to have 

much longer sequences in common.  An example, is 

the regulatory element of the alpha-globin gene cluster 

compared among primates [11] which has interspecies 

and intrahuman exact matches >100 bp in length, 

along with a significant number of single nucleotide 

polymorphisms bordering the exact matches.  

Particularly in the non-coding regions, such long 

stretches of conserved bases may be indicative of 

important regulatory elements or other unknown 

functions.  In addition, searches for large mobile 

genetic elements and insertions and gene 

rearrangements may be assisted by efficient exact 

pattern matching algorithms. 
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Currently, we are investigating a compression 

scheme so that, instead of searching four compressed 

patterns, we only need to search for one compressed 

pattern without losing any match. The result is very 

encouraging and will be reported in a forthcoming 

paper.
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