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AbstractÐMost systems that support visual interaction with 3D models use shape representations based on triangle meshes. The

size of these representations imposes limits on applications for which complex 3D models must be accessed remotely. Techniques for

simplifying and compressing 3D models reduce the transmission time. Multiresolution formats provide quick access to a crude model

and then refine it progressively. Unfortunately, compared to the best nonprogressive compression methods, previously proposed

progressive refinement techniques impose a significant overhead when the full resolution model must be downloaded. The CPM

(Compressed Progressive Meshes) approach proposed here eliminates this overhead. It uses a new technique, which refines the

topology of the mesh in batches, which each increase the number of vertices by up to 50 percent. Less than an amortized total of 4 bits

per triangle encode where and how the topological refinements should be applied. We estimate the position of new vertices from the

positions of their topological neighbors in the less refined mesh using a new estimator that leads to representations of vertex

coordinates that are 50 percent more compact than previously reported progressive geometry compression techniques.

Index TermsÐTriangle mesh compression, geometry compression, progressive meshes, multiresolution modeling.

æ

1 INTRODUCTION

ALTHOUGHmany representations have been proposed for
3D models [26], polyhedra (or, more precisely,

triangular meshes) are the de facto standard for exchanging
and viewing 3D data sets. This trend is reinforced by the
wide spread of 3D graphic libraries (OpenGL [22], VRML
[2]), and of 3D graphics adapters for PCs that have been
optimized for triangles. Therefore, triangle count is a
suitable measure of a model's complexity. Common
representations of triangulated meshes usually store the
triangles as an indexed face list, where the coordinates of
each vertex are three floating-point numbers and the
incidence relation between triangles and vertices uses three
integer vertex references per triangle. Therefore, each
triangle requires 12 bytes for the indices and every vertex,
12 bytes for the coordinates, which adds up to 18 bytes per
triangle (there are roughly twice as many triangles as
vertices in a typical model), not counting color and texture
information. Even when using short-integer fixed point
coordinates and short-integer incidence indices, an indexed
face list for triangles still requires 9 bytes per triangle.

The complexity of 3D models in CAD, AEC, GIS, and

medical applications has been rising steadily, fueled by the

improvements in interactive 3D design tools, in data

acquisition technologies, and in the storage, processing,

and graphics capabilities of personal workstations. Early

designers and scientists were deliberately limiting the

accuracy of their data sets to what could be stored and

manipulated on their workstations. Today, the more

complex models used by the automotive, aerospace,

construction, petroleum, and architecture industries contain

millions, or even hundreds of millions, of triangles. Their
complexity will continue to increase rapidly in response to a
need for higher accuracy during analysis, planning, and
inspection.

The internet and the intranet provide a convenient
medium for posting 3D databases online for general or
restricted access. However, users who need to access these
databases are often equipped with personal computers and
standard telephone line connections. They do not have
enough storage to locally cache all the models they wish to
interact with and lack automatic consistency maintenance
procedures for keeping such local copies updated. Conse-
quently, most PC users must download the 3D models each
time they wish to inspect or use them. A transmission cost
of 18 bytes per triangle over a 56Kbps line implies a
transmission rate of 400 triangles per second or, equiva-
lently, only 1.5M triangles per hour.

Because the exact representation of the visible geometry
is not always required to produce an image of sufficient
accuracy for navigation or inspection, geometric simplifica-
tion and compression techniques may be invoked to reduce
the transmission and rendering time. Geometric compres-
sion reduces the number of bits used to encode a geometric
model. Simplification techniques reduce the number of
triangles in an object's representation and may be viewed as
a form of lossy compression. Progressive transmission first
sends a coarse model and then sends information used to
refine the representation of the entire model or of specific
features of the model.

This paper introduces several novel techniques which
improve upon previously reported compression and pro-
gressive transmission approaches [15], [32], [21]. The
comparison of progressive transmission solutions often
involves subjective (visual) criteria and may not be safely
reduced to the comparison of a single scalar measure. We
suggest the use of error/time curves (Fig. 1), which express
how the accuracy of the model increases with time, or more
generally with the total number of transmitted bits.
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Nonprogressive approaches are often unacceptable
because they require the user to wait a long time before

the entire model is decoded. A simple alternative would be

to precompute a crude model, send it first, and then send
the full resolution model independently, not taking advan-

tage of the information received as part of the crude model.
The user may start navigating the crude model immedi-

ately, but will have to wait more than the full transmission
time of the complete model to see a more accurate

resolution. For reference, this approach is shown by the

dashed curve in Fig. 1.
Fine-grain compression techniques, which refine the

model by inserting one vertex at a time, may offer

increasingly better accuracy early on, but require signifi-
cantly longer to reproduce the full resolution model and,

thus, tie up the communication channel for longer than

needed. This penalty results from the overhead of encoding
the refinement steps individually. The gray curve in Fig. 1

shows an ideal fine-grain progressive transmission.
Techniques that group refinements into batches strike an

optimal compromise. Although the accuracy remains

constant while the next batch of upgrades is received and

decoded, the overall waiting time is reduced because
batched upgrades may be compressed more efficiently than

individual upgrades exploiting economy of scale. In Fig. 1,
the black staircase curve illustrates the approach presented

in this paper, which groups the refinements in batches and,
hence, achieves a better compression. This technique may,

at times, show higher error values than the fine-grain one

and take slightly longer to download the full model than a
nonprogressive approach.

The novel techniques introduced here encode each batch

of refinements more efficiently than previously reported
solutions [32], [21]. As a result, they provide a whole series

of accuracy refinements with little or no effect on the overall

transmission time for the full resolution model, when
compared to previous single-resolution compression tech-

niques [6], [35], [11]. The actual error curve produced by the
CPM method for the Bunny model of Table 1 is shown in

Fig. 1.

The following section reviews the relevant prior art in

geometric compression and progressive refinement. Then,

we provide a short overview of the CPM technique in

Section 3. Next follow detailed descriptions of the CPM

format (Section 4), of the compression algorithm (Section 5),

and of the decompression process (Section 6). We analyze

the storage cost in Section 7 and discuss our experimental

results in Section 8. Finally, the paper is concluded with a

summary in Section 9.

2 PRIOR ART

We distinguish between lossless, lossy, and progressive

compression. Previously reported lossless compression

techniques include:

. A bit-efficient encoding of the connectivity graph,
which captures triangle-vertex incidence from which
other incidence and adjacency relations may be
derived. See, for example, [6], [35], [11], [36]. A more
comprehensive survey may be found in [25] and in
[36]. In practice, these approaches produce a
compressed format with less than 2 bits per triangle
for the connectivity information alone.

. A predictor-based compression of the vertex loca-
tions: These solutions encode the corrections be-
tween the actual and the estimated location of each
vertex. If the predictions are accurate, the corrective
vectors are short and their integer coordinates may
be efficiently encoded using entropy coding [16], [4].
In [35] each vertex is predicted using a linear
combination of its ancestors in a vertex spanning
tree. In [15], if a vertex v is split into an edge, v is
used as a predictor for the other end of the new
edge. The approach in [31] constructs a chamfered
parallelogram to estimate the location of the free
vertex of a new triangle that is adjacent to a known
triangle.

Additional compression may be achieved through the

following lossy approaches:
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Fig. 1. Progressive transmission solutions are compared in terms of the accuracy of the resulting model expressed as a function of the number of
transmitted bits. (a) For simplicity, we assume that it takes a bits to transmit the crude model for all cases. A simple approach of sending a
precomputed crude model and, subsequently, the full resolution mesh is depicted by the dashed line; after receiving the crude model, the user has to
wait until the full resolution model is received at time b. An ideal fine-grain progressive technique (gray curve) immediately starts improving the crude
model, but takes much longer (d bits) than a nonprogressive technique to download the entire model. The black staircase curve illustrates batched
updates which take slightly longer to download the full model, in time c, than a nonprogressive approach, but much less time than the fine-grain
methods. (b) Presents actual CPM compression results for the small Bunny model.



. Vertex locations may be quantized by expressing the
vertex coordinates as k-bit integers in a normalized
coordinate system derived from a minimum axis-
aligned bounding box [6], [23], [35]. The origin is
placed at one vertex of the box and the units are
selected so that the all coordinates span the range
�0::2k�. The choice of k is dictated by the absolute
precision required by the application and by the size
of the bounding box. Often, k may be kept below 12
[6], [33], which makes the entropy coding of the
corrective vectors, discussed above, very effective,
bringing the vertex location storage to between 12
and 18 bits per vertex for uniform tessellations of
smooth surfaces [33].

. The mesh may be simplified by coalescing vertices
[27], by decimating them [29], [30], or by collapsing
edges [12], [24], [9]. A more complete discussion
may be found in [34]. Most of these techniques
remove vertices one at a time in an order that
attempts to maximize the accuracy of the approx-
imating model at each stage. Saving intermediate
results generates a series of approximations at
several levels of detail. The differences between the
various techniques lie principally in the error metric
they use.

When the bandwidth precludes the transmission of the
full resolution model, a crude model may be used initially
and, then, refined when necessary by downloading higher
levels of detail [8] or by downloading upgrades which
contain information sufficient to refine the current model.
Refinements [15], [37] which insert vertices one at a time,
provide a fine-grain control of the accuracy and support
view-dependent (nonuniform) refinements. However, this
flexibility limits the compression ratio significantly and
such progressive models require about 13 bits per vertex to
encode the mesh connectivity. Grouping refinements into
larger batches reduces the flexibility, but results in an
economy of scale. For example, the Progressive Forest Split
(PFS) technique [32] cuts the triangulated surface at a subset
of its edges. The connected components of the cuts open up
to become the boundaries of holes. The cuts and the internal
triangulations of these holes may be encoded efficiently
using the Topological Surgery compression [35]. The
amortized connectivity encoding of PFS takes 10 bits per
vertex. The geometry is encoded with about 30 bits per
vertex. Concurrently to the method presented in this paper,
other progressive mesh compression techniques have been
developed that use similar batch processing [5] of updates,
and that can handle meshes of arbitrary topology [1].

Because simplified models are crude approximations of
the original model, their vertices may be quantized with
fewer bits without significantly increasing the geometric
error. Thus, upgrades should combine mesh refinements
and the encoding of the higher precision bits for vertex
coordinates [21], [18].

3 OVERVIEW

The CPM approach introduced here is based on the notion
of a global upgrade. As in Progressive Meshes (PM) [15], a

crude model is transmitted first and then refined progres-
sively through a series of vertex splits, which are the inverse
of the edge collapse operations introduced in [12], see Fig. 2
for an example.

The cost of encoding each vertex split operation
individually in the Progressive Meshes approach presented
in [15] has three components:

1. dlog2�n�e bits are needed to identify the vertex v to be
split, where n is the number of previously recovered
vertices,

2. dlog2�d � �dÿ 1��e1 bits are used to identify the two
cut-edges among all the d edges incident upon
vertex v,

3. Thirty-one to 50 bits are used to encode the
displacements of the new vertices with respect to v.

The CPM approach improves on all three components:

1. We group the vertex splits into batches, each
splitting about 50 percent of the previously decoded
vertices. We traverse the mesh and specify split-
vertices by marking vertices with one bit instead of
indexing them explicitly, as done in [15]. The
amortized cost of this marking is less than 3 bits
per vertex for the entire modelÐcompared to more
than 10 bits needed by the PM approach when
compressing an average model. In [28], a triangle-
tree traversal is used to avoid expensive point
location tests for incremental 2D Delaunay triangu-
lations, whereas, in CPM, a vertex-tree traversal is
used to reduce the storage space needed to specify
progressive refinements in 3D meshes.

2. We encode the identifiers of the two cut-edges for

each split-vertex as a choice of two out of d incident

edges. Given the degree d, this can be done using

exactly dlog2�d��dÿ1�
2

�e2 bits. Since d is known to the

decompressor as well, no bounds on the degree have

to be assumed. Because split-vertices originate from

collapsing two adjacent vertices into one, their

degree d tends to be higher than the average (six)

in a triangle mesh, in contrast to what was assumed

in [15]. Despite the higher average degree of split-

vertices, our method requires less than 5 bits per

split-vertex on average to encode the cut-edges.
3. We use a novel prediction for the displacement of

the new vertices. It reduces the average length of the
corrective vectors and compresses the quantized
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1. In [15], the permutation P �n; k� � n!
�nÿk�! was proposed to encode the

selection of two cut-edges.
2. We propose using the combination C�n; k� � n

k

ÿ �

� n!
k!�nÿk�! to encode

the unordered selection of two cut-edges.

Fig. 2. Edge collapse and vertex split for triangle mesh simplification and

reconstruction. The cut-edges are marked with thick lines.



coordinates by 50 percent. Our vertex displacement
prediction could be viewed as a reverse variant of
the edge-split Butterfly subdivision scheme [7], [38]. It
is based on the solution of two simultaneous vector
equations, constructed using a generalization of the
Butterfly scheme.

In order to reduce the total cost of marking the split
vertices, we seek to maximize the ratio of split-vertices at
each batch. On the other hand, we must ensure a clear
separation of the different cut-edges, so that each pairÐ-
belonging to a vertex splitÐmay be encoded without
ambiguities with a minimum number of bits. Our solution,
detailed in Section 5.1, is the most effective compromise
among all the variations that we have considered.

As a result, the CPM format takes 50 percent less storage
than the PM format. In fact, our experimental results show
that, thanks to the combination of the three new techniques
mentioned above, the CPM format is competitive with
previously reported nonprogressive compressed formats [35],
[31], [11, [6]. Thus, the benefits of progressive refinements
come at little or no additional cost.

The CPM method compares favorably with other
progressive transmission methods. For example, the PFS
experiments in [32] need up to 50 percent more bits per
triangle for the connectivity information and may require
even up to 100 percent more storage cost for the vertex
coordinates than our CPM format. Similarly, [21] requires
dlog2�n� 6�e bits per vertex for connectivity, which is
50 percent more than our CPM format for average meshes.

4 CPM FORMAT

The CPM compressed format is organized as follows: The
crude model, M0, is stored using a single resolution
compressed format [25]. The vertex geometry in M0 is
stored at a reduced resolution optimized for M0 using ideas
from [18].M0 usually contains 5 to 10 percent of the number
of triangles of the entire model. The second part of the CPM
format contains the missing least significant bits of the
vertex coordinates of M0. (For simplicity, we chose not to
implement the full progressive coordinate encoding scheme
by [21] in our reported experiments.)

The third part of the CPM format contains the sequence
of the refinement batches. These may be downloaded
systematically, or only on request, and create the sequence
of increasingly precise approximations M1;M2; . . . ;Mmax.
For instance, if the model's screen representation remains
small, only M0 may be needed. Each batch Mi ! Mi�1

includes the split-vertex marking bits in Mi, the cut-edges

encoding for every split-vertex, and the entropy encoded

prediction correction vectors of the split-vector.

5 COMPRESSION ALGORITHM

5.1 Batched Simplification

The full resolution mesh, Mmax, is simplified in batches,

creating a series of meshes

Mmax;Mmaxÿ1; . . . ;Mi�1;Mi; . . . ;M1;M0

of decreasing accuracy. The simplification stops at a crude

model M0, when a given error threshold or mesh complex-

ity is reached. This model M0 is then used as the initial base

mesh for reconstruction, and encoded using an efficient

single-resolution mesh compression method [25]. In each

simplification batch Mi�1 ! Mi, the number of triangles

jMi�1j is decreased by 3 � �ejMi�1j. The ratio �e denotes the

fraction of edges of Mi�1 that can be collapsed in the same

batch (typically 11 percent).
Fig. 3 shows three out of the eight different levels of

detail produced by the CPM method, where the triangles

inserted by the previous refinement batch are indicated in

red. The batches are created by the CPM compression

process by selecting, at each batch, about 11 percent of the

model's edges, by collapsing them, and by encoding the

information necessary to reverse these steps.3

To optimize coding, CPM attempts to maximize the

selection ratio �e of collapsed edges for a simplification

batch Mi�1 ! Mi. However, to be able to uniquely identify

the respective independent vertex splits in the simplified

mesh Mi and to avoid singularities, the following three

restrictions for collapsing edges in Mi�1 must be fulfilled:

1. At most two vertices may be collapsed into one.
2. For each edge e � �v1; v2� that will be collapsed and

any vertex w that is connected by an edge to both v1
and v2, the triple �v1; v2; w� must define a valid
triangle in Mi�1.

3. For each edge e1 � �v1; v2� that will be collapsed and
any edge e2 � �w1; w2� forming a quadrilateral
�v1; v2; w1; w2� with e1 in Mi�1, e1 and e2 cannot be
collapsed in the same batch.
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3. Collapsing 11 percent of the edges reduces the number of vertices by
33 percent because there are about three times more edges than vertices. A
33 percent reduction in the number of vertices during simplification results
in a 50 percent relative increase during refinement.

Fig. 3. Batches of edge collapses.



Examples of invalid edge collapses that do not fulfill the
above requirements are depicted in Fig. 4. As a result of
these constraints, a split-vertex in the simplified mesh Mi

will yield a single edge in the refined meshMi�1 and no cut-
edge is used for more than one vertex split.

To achieve a good approximation at each stage, the CPM
method uses an error metric to evaluate the error
introduced by every single edge collapse. However, the
CPM approach is independent of the error metric, which
may be selected so as to satisfy the application require-
ments. The error metric used in our current implementation
is an estimation of the Hausdorff distance, see Section 5.4 for
details. Based on that error metric, the CPM method selects
a subset of the less expensive edges that do not violate the
constraints defined above. These will be collapsed in the
next batch. Different selection strategies might be applied to
achieve an optimum with respect to the approximation
error introduced per batch. In fact, the batch-wise proces-
sing of simplifications in CPM cannot anymore guarantee
the same optimal order as proposed in [15] or [9].

The current CPM implementation greedily selects col-
lapsible edges in order of increasing approximation error,
as long as they do not conflict with the topological
restrictions mentioned above. Updating the ordered list of
collapsible edges and maintaining a dynamic heap during
this selection process is not necessary because all edges that
change their error are incident to a selected edge collapse
and cannot be collapsed within the same batch because of
the restrictions mentioned above. Thus, it is both necessary
and sufficient to compute the approximation errors and sort
the edges accordingly, once for each batch. One could also
avoid the sorting by selecting edges iteratively with
increasing threshold until no more can be selected due to
topological restrictions. Choosing a good initial and incre-
mental threshold will result in few iterations.

To reduce the number of coordinates that define a vertex
split, all selected edges are always collapsed to their
midpoint.

5.2 Connectivity Coding

The encoding of the connectivity information needed to
restore Mi�1 from Mi can be summarized as follows:

1. We construct and traverse a vertex spanning tree of
Mi and mark split-vertices (i.e., the results of an edge
collapse in Mi�1). For every marked split-vertex v,
we encode its cut-edges as follows:

2. We compute the indices of the two cut-edges in the
sorted list of the incident edges on v, clockwise,

starting with the edge from v to its parent in the
vertex spanning tree (Fig. 5).

3. Given the degree d of the split-vertex in meshMi, the

two edge numbers being identified as one possible

choice out of d
2

ÿ �

for selecting the cut-edges, we

encode this choice using exactly dlog2 d
2

ÿ �

e bits.

Since the degree d of a split-vertex in Mi is known by the

encoder and the decoder, in Step 3, we can use a table look-

up mechanism for the conversion between the two cut-edge

numbers and the index out of d
2

ÿ �

. Fig. 5 illustrates a vertex

spanning tree and the corresponding vertex enumeration

order. Four vertices are marked as split-vertices (7, 10, 13,

and 15). The corresponding cut-edges are indicated. The

two cut-edges of a split are identified by a pair of numbers

as explained above. For example f0; 2g means that edges 0,

edge to parent in vertex tree, and 2, second in clockwise

ordering, are the two cut-edges of the current split-vertex.

5.3 Geometry Prediction and Coding

To complete the compression, we encode the geometry

coordinates of the original vertices of the collapsed edges. In

CPM, we apply the prediction error coding model used for

image compression [19] to 3D geometry coordinates. The

basic idea is to predict an unknown vector from known

vertices and to encode the prediction error. The decom-

pression process uses the same prediction and reconstructs

the correct vector by adding the decoded correction.

1. We estimate the originally collapsed vertex locations
by A0 and B0, based on the split-vertex V and cut-
edges e and f in mesh Mi.

2. We calculate the prediction correction vector E �
~BAÿ ~B0A0 between the estimated and actual vertex

locations, see Fig. 6.
3. We encode the prediction error E using an entropy

coding scheme.

CPM uses a prediction method inspired by the Butterfly

subdivision [7], [38] to estimate the original noncollapsed

vertex locations. The Butterfly interpolation inserts a new

vertex by splitting an edge, as shown in Fig. 7, and the

location of the new vertex is a weighted sum of the

surrounding vertices using the weights shown in Fig. 7.
We extend this idea as follows: A vertex A can be

approximated by a linear combination of its immediate

neighbors ai, with topological distance 1 on the triangula-

tion graph, and the vertices ci at topological distance 2, as

shown in Fig. 8. The approximation A0 of A is:
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Fig. 4. Invalid edge collapses during CPM simplification. (a) The three vertices v1, v2, and v3 may not be collapsed into one. (b) The triple �v1; v2; w� is
not a valid triangle of the mesh. (c) Edges v1; v2 and w1; w2 may not be collapsed in the same simplification batch.



A0 � � �
Pk

i�1 ai
k

� �1ÿ �� �
Pk

i�1 ci
k

: �1�

Specifying a value of less than 1 for the parameter �

denotes a weighted averaging between the two crowns ai
and ci, and a value of more than 1 expresses more of an
extrapolation based on the difference between the two
crowns for estimating A. The value of � can be adjusted for
each model if needed; in our experiments, we constantly
used 1.15, which produced consistently good estimates for
all models.

Using the vertex prediction model of (1), we can estimate
the new vertex positions A and B after the vertex split as a
linear combination of each other. Fig. 9 depicts the vertex
prediction situation for a vertex split; the area of the vertices
which are used for the prediction of one of the new vertices
is shown in different grays for the two estimates A0 and B0.
Using the prediction function of (1) and the notations of
Fig. 9, we can get a prediction formula for the two original
vertices A and B of an edge collapse and estimate them as:

A0 � � �
Pka

i�1 ai � v1 � v2 �B0

ka � 3

� �1ÿ �� �
Pka�1

i�1 ci � b1 � bkb
ka � 3

�2�

B0 � � �
Pkb

i�1 bi � v1 � v2 �A0

kb � 3

� �1ÿ �� �
Pkb�1

i�1 di � a1 � aka
kb � 3

:

�3�

Based on the collapsed vertex V � �A�B�=2 and the
split-vector D � BÿA, we have A � V ÿ 0:5D and
B � V � 0:5D. Therefore, we can express both (2) and (3)
in terms of an estimated split-vector D0. To simplify the
expressions, we introduce SA � �Pka

i�1 ai � v1 � v2�=�ka � 3�
and CA � �Pka�1

i�1 ci � b1 � bkb�=�ka � 3� (for SB and CB,
respectively). Thus, using D0, (2) and (3) can be rewritten as:

V ÿ 0:5D0 � � � SA � V � 0:5D0

ka � 3

� �

� �1ÿ �� � CA �4�

V � 0:5D0 � � � SB � V ÿ 0:5D0

kb � 3

� �

� �1ÿ �� � CB: �5�

Now, we are left with two equations and only one
unknown D0. Therefore, we have two estimates for D0 ((6)
and (7)), D0

A based on the prediction of A0 and D0
B based on

the prediction of B0.

ÿ 0:5 �D0
A � �ka � 3���1ÿ ��CA � �SA� � ��ÿ ka ÿ 3�V

ka � 3� �

�6�

0:5 �D0
B � �kb � 3���1ÿ ��CB � �SB� � ��ÿ kb ÿ 3�V

kb � 3� �
: �7�

At decompression time. everything is known but the
split-vector D, for which we want to have a short encoding.
Using (6) and (7), we can predict A0 � V ÿ 0:5D0

A and B0 �
V � 0:5D0

B and, with D0 � B0 ÿA0, we get

D0 � 0:5�D0
A �D0

B�:

Since D0 is known at compression and decompression time,
we can encode the prediction error E � DÿD0 only. At
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Fig. 5. Vertex spanning tree traversal, split-vertex marking, and cut-
edges encoding. The vertex spanning tree is shown using thick lines
(solid and dashed); vertices 7, 10, 13, and 15 are marked as split-
vertices. The cut-edges are drawn as dashed gray lines and numbered
clockwise with youngest first (edge to parent vertex).

Fig. 6. Geometry prediction.

Fig. 7. Butterfly interpolation.

Fig. 8. Vertex prediction as weighted sum of surrounding vertices.



decompression, D is reconstructed by adding the decoded
correction vector E to the estimate D0.

One can observe that prediction errors for good
estimators have a probability distribution that decreases
exponentially with the absolute value of the prediction
error. Instead of storing frequency or coding tables for the
actual prediction errors of a refinement batch, we approx-
imate the prediction error histogram by a Laplace probability
distribution:

L�x� � 1
�����

2�
p eÿ

��

2
�

p
jxÿ�j:

For symmetric error distributions, the mean � is 0 and
the variance � uniquely defines the shape of the Laplace
distribution. For each batch of vertex splits, the variance of
the prediction errors, � � PEi2batch

i �Ei ÿ ��2=jbatchj, is
computed and encoded with the compressed refinement
batch.

Given this probability distribution, entropy coding
methods can efficiently compress the quantized coordinate
prediction errors. Based on the variance � and the
probability distribution L�x�, we compute a different
Huffman code [16] for each batch to compress the
corresponding prediction errors. In contrast to other
geometry compression approaches, CPM does not require
storing an entire Huffman coding table for each batch, but
only the variance value �. This is sufficient for the
decompression algorithm to reconstruct the required Huff-
man coding table.

Even though Huffman and arithmetic coding [4] both
provide minimal redundancy entropy codes, arithmetic
coding yields slightly better compression ratios in the limit.
However, the slowness in processing arithmetic codes and
its difficulty streaming different encoding methods within
the same bit sequence make it inappropriate for the
intended use.

The CPM experiments in Section 8 demonstrate that this
prediction error coding model indeed produces short
codings for the geometry coordinates of the tested models.

5.4 Error Metric

Most attempts at estimating the error that results from
using approximations to nominal shapes for graphics are

either limited to view-independent geometric deviations

[27], [12], [17], [9] or to heuristic measures focused on

preserving image characteristics, such as the location of

silhouettes or highlights [14], [20]. In the current CPM

implementation, we chose to use the Hausdorff distance to

measure the approximation accuracy. However, instead of

using the exact Hausdorff distance, the CPM simplification

process uses a variation of the Quadric Error Metrics [9] to

estimate the error of a collapsible edge. In CPM, we

enhanced this error measure by a normalization factor for

every error quadricÐthe number of planes. Note that CPM

does not depend on a specific error measure; many other

object-space error metrics could be used to estimate the

error introduced by an edge collapse.

6 DECOMPRESSION ALGORITHM

The decompression algorithm performs the inverse opera-

tions of the compression process to reconstruct the sequence

of meshes M0;M1; . . . ;Mmaxÿ1;Mmax. Geomorphs [15] may

be used to eliminate the popping effect of each update. At

the beginning, prior to the actual CPM method, the base

mesh M0 is decompressed. Thereafter, the individual

refinement batches Mi ! Mi�1 are decompressed from the

CPM file as needed. In each batch, the number of triangles

is increased by �v � jMij on average. The decompression

builds a vertex spanning tree of Mi and uses the same

vertex traversal order as the compression algorithm to read

and process the CPM vertex markings. Within each batch,

the following steps are performed for every visited vertex in

the vertex tree traversal of Mi:

1. Read bit of CPM data. If 0, the vertex is not marked to
split; continue reading the marking bit for the next
vertex. If 1, the vertex has to be split andwe extract the
additional vertex split information in Steps 2 and 3.

2. Read dlog2 d
2

ÿ �

e bits of CPM data, where d is the
degree of the current marked vertex in Mi, and use
these bits to identify the corresponding two cut-
edges in Mi.

3. Decompress the prediction error vector E from the
CPM data and add it to the estimated split vector D0
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Fig. 9. CPM Butterfly vertex prediction. (a) Shows the vertices used to predict A and (b) depicts the situation for estimating B.



in Mi to reconstruct the correct split vector as D �
D0 � E for the current split-vertex.

Note that, in Step 1, all cut-edges are numbered with
respect to mesh Mi. Therefore, the actual mesh refinements
of one batch have to be performed only after all cut-edges of
that batch have been identified in Mi.

At the beginning of each batch, the variance � is read
from the CPM data and the corresponding Huffman table is
constructed in the same way as in the compression
algorithm. Using that Huffman code, the prediction errors
E can exactly be decompressed in Step 3.

7 AMORTIZED STORAGE COST ANALYSIS FOR

CONNECTIVITY

We want to express the number of bits used to encode the
connectivity of a triangle mesh as a function of the size of
the final mesh. For this, we first consider only one batch of
refinement steps that increase the number of triangles from
jMij in the coarser model to jMi�1j in the finer model.
Assume that, in each batch, we can select �v � jMij vertices to
be split, thus we have jMi�1j � �1� �v�jMij. Furthermore, to
encode such a refinement, we need B � jMij bits (B bits per
triangle in Mi), which means B=�1� �v� bits per triangle in
Mi�1.

Now, we can examine a sequence of refinement batches,
each of which increases the number of triangles by a factor
of 1� �v. Expressing the overall cost based on the refined
mesh Mi, we derive the following recursive cost function:

C�jMij� � B � jMiÿ1j � C�jMiÿ1j� � B
jMij
1� �v

� C
jMij
1� �v

� �

This recursive cost function can be rewritten as a
geometric sum with � � 1=�1� �v� as:

C�jMmaxj� � B�jMmaxj � B�2jMmaxj � . . .

� B�jMmaxj�1� � � �2 � . . .�

� B � �jMmaxj
�k ÿ 1

� ÿ 1
:

When the number k of refinement batches is large and
because � < 1, this cost can be bounded as follows:

C�jMmaxj� � B � �

1ÿ �
jMmaxj � B � 1

�v
jMmaxj: �8�

Therefore, the overall cost to transmit a series of
refinement batches can be expressed as B=�v bits per
triangle. Thus, the coding scheme depends strongly on the
fraction �v of split-vertices that are selected in every batch
and on the encoding of one single batch, expressed as B bits
per triangle of the batch's input mesh.

The relationship of split-vertices in the coarse meshMi to
the corresponding edge-collapses in the refined mesh Mi�1

can be expressed as �v � 3�e=�1ÿ 3�e� and �e � �v=�3ÿ 3�v�.
For example:

�e � 1=15 , �v � 1=4

�e � 1=12 , �v � 1=3

�e � 1=9 , �v � 1=2:

One can observe that any independent set of vertices in
Mi could be used as split-vertices defining an update batch
since the cut-edges of two independent vertices in Mi

cannot possibly interfere with any of the restrictions
mentioned in Section 5.1. Thus, a set of edge collapses that
forms an independent set of split-vertices provides a lower
bound for �e in Mi�1, respectively, split-vertex selection
ratio �v in Mi. However, we can select more independent
edge collapses in Mi�1 than only those which map to an
independent set of split-vertices in Mi. Therefore, the 4-
coloring theorem of planar graphs provides a lower bound
for the ratio �v � 1=4 of simultaneous vertex splits in Mi

and, thus, also for the ratio �e � 1=15 of independent edge
collapses in Mi�1.

Given the vertex split selection ratio �v, the overall cost

for transmitting the connectivity information of one batch is

one bit per vertex and dlog2 d
2

ÿ �

�e bits for every vertex split,

thus B � 1=2 � �1� �v � dlog2 d
2

ÿ �

e� bits per triangle in Mi.

Using (8) to calculate the amortized cost and expressing the

cost as bits per triangle in the full resolution mesh Mmax,

CPM achieves the following connectivity encoding cost per

triangle:

1

2
� 1

�v
� log2

d

2

� �� �� �

:

For practical situations, our experiments have shown
that dlog2 d

2

ÿ �

e is less than 5 bits on average and that split
ratios of �v � 1=3 are achievable. Overall, the experiments
show that CPM can encode the connectivity of the complete
mesh Mmax, including all intermediate incremental meshes
M0; . . . ;Mi; ;Mmax in about 3.5 bits per triangle of the
original mesh Mmax.

8 EXPERIMENTAL RESULTS

In all the experiments presented in this section, the base
mesh M0 is encoded using the Edgebreaker coding method
[25]. It uses 2 bits per triangle to encode the connectivity.
The vertex coordinates are not compressed and each vertex
uses three times the number of quantization bits. In the
tables, we use the notation C=4 and G=4 to denote the
number of bits per triangle used to encode the connectivity
(C=4 ) and the geometry (G=4 ). The different meshes that
result from incrementally applying the CPM refinement
batches, starting with the base mesh M0, are called levels of
detail (LODs).

First, we briefly discuss the efficiency of our prediction
method. Second, we present compression results for small
and hard to compress models that are not overtesselated in
terms of size of triangles versus vertex quantization. We
decided to include tests with small models to compare our
method more accurately against other compression meth-
ods which report compression results on such small
models. Third, we also tested the CPM method with several
large and highly tessellated models.

8.1 Geometry Prediction

The efficiency of our geometry prediction method can be
measured not only in terms of the raw compression ratio as
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presented below, but can also be expressed in relation to the
average length of collapsed edges. In progressive meshes
(PM) [15] and their efficient implementation [13], the
coordinates of the vector representing a collapsed edge
are encoded without prediction using entropy coding. We
compare our prediction error (i.e., the length of the
corrective vector) to the length of the collapsed edge. For
example, if the prediction error is a quarter of the collapsed
edge, we can expect the prediction error encoding to use
2 bits less than an encoding of the collapsed edge itself.

Fig. 10 shows the prediction errors expressed as
percentage of the length of the collapsed edges. The
prediction errors are three to four times smaller than the
respective edges. Together with the optimized frequency
distribution (exponential, Laplace-like error distribution), it
allows a short encoding of the coordinates. The last few
batches encode the locations of most of the vertices and,
therefore, their compression ratio keeps the average cost
low, despite the more expensive encoding of the early
batches (see also Table 1).

8.2 Comparative Study

Table 1 shows the detailed coding and compression results of
the CPMmethod, applied to a simplified, nonovertesselated

bunny model with 4,833 vertices, quantized to 10 bits per
coordinate. The CPM simplification was stopped at a base
meshM0 containing approximately 5 percent of the number
of input vertices. With a selection ratio of �v > 1=3 on
average, the CPM method generated a sequence of
10 refinement batches. The rows Mi ! Mi�1 show the
number of new vertices per batch, the connectivity and
geometry bits per batch, and, also, per triangle. Row M10

presents the cumulative costs of the CPM method (includ-
ing all batches and M0). The CPM representation requires
3.6 bits per triangle for encoding the connectivity of the
bunny model. The vertex coordinates are encoded using
about 5 bits each, which is equivalent to 7.7 bits per triangle.
The approximation errors, i.e., the Hausdorff distance,
between the original model and the different LODs
produced by the CPM method were estimated using the
Metro tool [3]. The error graph is plotted in Fig. 1.

Although the current CPM implementation is aimed
more at compression efficiency than speed performance, it
processes about 2,500 vertex splits per second on a 175 MHz
R10000 SGI O2. This time includes reading and decoding
marking bits, cut-edge codes, and geometry coordinates, as
well as performing the actual vertex splits and creating the
new triangles. Reading and decoding the variable length
codes is extremely fast; it uses less than 10 percent of the
processing time. Most of the time is consumed at equal
shares for vertex prediction and reconstruction, and for
refining the triangular mesh. For example, when transmit-
ting the bunny model (of Table 1) over a 56Kbps
communication line in a total of 1.9 seconds for all batches
(109,336 bits), the decoder can process the incoming data on
the fly (1.8 seconds for 4,590 vertex splits).

We can compare the CPM compression results to the PFS
method [32] using the bunny model from Table 1 and the
horse and skull models from Table 2. The PFS method
reports 4.4, 3.9, and 5.0 connectivity bits per triangle for
these three modelsÐsummation over the five LODs of the
connectivity per triangle times the number of inserted
triangles divided by the number of triangles in the final
meshÐwhich means that the CPM method improves on the
mesh connectivity by 18 percent, 10 percent, and 32 percent,
respectively. The PFS experiments use only 6 bits for
coordinate quantization and apply a smoothing operation
to avoid visual artifacts. This makes it difficult to directly
compare the geometry compression results. Nevertheless,
even using a much finer quantization of 10 instead of only
6 bits per coordinate, the CPM method outperforms the PFS
method in terms of geometry compression. Whereas the
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Fig. 10. Geometry prediction performance. (a) Prediction error of the different refinement batches (LODs) expressed as percentage of edge length

for the small 10-bit quantized bunny model (Fig. 14 and Table 1) and (b) for the larger 12-bit quantized bunny (Fig. 13 and Table 5).

TABLE 1
Progressive Compression Results for a Nonovertesselated

10 bit Quantized Bunny Model

Connectivity information amounts overall to 3.6 bits per triangle,
coordinate data requires 7.7 bits per triangle or 15.4 per vertex. See
also Fig. 3 and Fig. 14 for images of the bunny model.



PFS experiments in [32] report 18.9, 14.9, and 19.2 geometry

bits for the same three models, CPM achieves 7.7, 7.1, and

7.5 bits only, which is an improvement of 59 percent,

52 percent, and 61 percent, respectively on the geometry

compression. Overall, the CPM method improves by

roughly 50 percent on the PFS compression results (bunny

23.3 : 11.3, horse 18.8 : 10.6, skull 24.2 : 10.9).
A comparison to state-of-the-art single-resolution mesh

compression methods is given in Table 3 for two 8-bit

quantized models. The column C �G denotes the overall

data size in bytes and the column LODs shows how many

different meshes, LODs, were created with the CPM

method. The numbers of the two comparing compression

methods are replicated from the tables in [31]. One can

observe that the CPM method mainly suffers in terms of

connectivity encoding compared to the single-resolution

methods. In some cases, the geometry compression is even

better than the proposed single-resolution method [35]; on

the other hand, [31] requires about half the size for the

reported 8-bit models. In contrast to the single-resolution

methods, the CPM algorithm provides different LODs,

continuous progressive refinements, and produces good

approximations of the final shape of the model at early

stages during decompression.

In Fig. 12, a complete sequence of meshes demonstrates
the progressive mesh refinements achieved by the CPM
method. A vertex split ratio of �v � 0:43 could be achieved,
resulting in nine different LODs M0; . . . ;M8. The bits
indicated for Mi denote the cumulative bits for transmitting
all batches up to Mi, including all intermediate meshes
Mj<i.

Fig. 14 provides an overview of CPM compression
results using a set of nonovertesselated 3D models. The
rightmost column shows the original quantized models, the
number of vertices, the number of bits needed to store it
using a standard binary encoding (three vertex indices per
face and three times the number of quantization bits per
vertex), and the estimated transmission time needed for that
representation using a 56Kbit per second communication
line. The other three columns show the base mesh M0, an
intermediate mesh, and the full resolution mesh using the
CPM method. The ratio of the number of vertices to the
original model is given with each image. The number of bits
shown is the accumulated cost needed by the CPM method,
as is the transmission time indicated, thus the bits
(transmission time) for mesh Mi include all the meshes
Mj<i, too. The compression ratio of CPM compared to a
simple binary representation and, thus, also the gain in
transmission time, is between 1:4 and 1:5. In the full-
resolution models of the CPM method (column 3 of Fig. 14),
the edge collapses and the corresponding two triangles
selected by the first batch of the simplification process are
highlighted. Note that the CPM method not only saves time
and space to transmit or store the complete model
compared to a standard binary representation, but also
provides very good approximations already at small
fractions of time, or number of bits, used for the full-
resolution model.

An intuitive suggestion would be to apply a general
purpose compression method, like gzip, to the binary
indexed face list prior to evaluate CPM compression ratio.
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TABLE 2
Progressive Compression Results for Several 10 bit Quantized

Models (See Also Figs. 11 and 14)

Fig. 11. Experimental 10-bit quantized models.

TABLE 3
Comparison of Compression Results to Single-Resolution Methods for two 8-bit Quantized Models (See Also Figs. 12 and 14)

horse skull fohe fandisk



However, as Table 4 shows dramatically, this is hardly
useful since the binary indexed face representation cannot
be compressed easily using a general purpose compression
method. The compression gain using gzip is virtually zero;
in some cases, it even increases the file size. This might be
due to the fact that the allocation of bits for vertex
coordinates and vertex indices is already minimized for
this representation and it seems that the resulting bit stream
does not incorporate much redundancy or repetition of bit
patterns anymore.

8.3 Large Model Experiments

In this section, we present some experiments with much
larger triangulated models than used in the previous
section. The bunny model used here has about 70,000
triangles, the phone has 150,000, and the (happy) statue
uses about 100,000 triangles. Table 5 provides the CPM
compression results for these models, which are shown in
Fig. 13. As expected, the connectivity encoding cost of
3.6 bits per triangle is completely independent of the model
size. On the other hand, the geometry compression per-
forms even better on large and finely tessellated models, as
can be seen from Table 5. Although we used a higher

quantization resolution (12 bits) to represent these large

models accurately, compared to the smaller models (10 bits),

the geometry compression cost is not higher. Therefore,

comparing the geometry compression to the quantization

resolution yields an ever better performance for the larger

models.
We also compare our CPM approach to an improved

implementation of progressive meshes [13]. Even without

having the vertex splits ordered in decreasing approxima-

tion error, an efficient PM encoding [13] requires more than

5 bits per triangle for connectivity. If approximation quality

is taken into account for ordering the vertex splits, the cost

increases to more than 7 bits per triangle, which is more

than double the number of bits used for connectivity in the

CPM method. For example, the large bunny and happy

models each only need 3.6 bits per triangle for connectivity

with our CPM method, whereas [13] reports 8.4 (bunny)

and 10.6 bits (happy buddha) per triangle when using an

accuracy dependent vertex split ordering. Our geometry

compression method performs best on highly tessellated

models with coarse quantization, such as the 12 bit

quantized models reported in Table 5. Increasing the

quantization resolution for the same model results in a

lower geometry compression ratio. Nevertheless, also for

the 16 bit quantized large bunny and happy models, CPM

achieves a geometry compression performance of 14 to

15 bits per triangle, which is comparable to the coordinate

compression ratio reported in [13] when using vertex

ordering.
In addition to the timing presented in the previous

section, we also timed the decompression speed using the

large bunny model. The CPM decoder was able to process

more than 3,000 vertex splits per second in that case. Again,

the vertex prediction and mesh refinement dominated the

time cost over reading and decoding the variable length

codes.
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Fig. 12. CPM sequence of meshes for the triceratops model, showing the number of vertices of each LOD and the cumulative bits representing all

refinements up to the current LOD.

TABLE 4
General Purpose Compression Applied to Binary Indexed Face

List Representations

The second column shows the number of bytes used for a binary
indexed face list, the third column shows the number of bytes used after
gzip compression. The last column provides the compression ratio of
uncompressed binary indexed face list compared to gzip compressed
representation.

 

M0, 163 vertices M1, 231 vertices M2, 335 vertices M3, 480 vertices M4, 684 vertices

M5, 988 vertices M6, 1400 vertices M7, 1997 vertices M8, 2832 vertices

4564 bits 6202 bits 8503 bits 11504 bits 15512 bits

21045 bits 28356 bits 38441 bits 52215 bits



9 CONCLUSION

The CPM method introduced here transmits triangulated
3D models through a series of progressive mesh refine-
ments. The progressive mesh representation constructed by
CPM preserves topology of the given high-resolution input
mesh and handles manifold triangle meshes of arbitrary
genus with boundaries. Although refinements of bound-
aries cannot be encoded using CPM exactly as described
here, simple enhancements of the CPM connectivity coding
will allow us to do so without significant overhead in
encoding cost. Handling of nonmanifold meshes can be
achieved by segmentation of the model into manifold mesh
components [10] and applying CPM to each manifold part.

The compression efficiency of CPM and total transfer
time is comparable toÐand sometimes better thanÐthe
time required to transfer the original model when using the
best nonprogressive 3D compression techniques reported so
far. However, instead of waiting until the entire transmis-
sion is over, the viewer may use a crude, but often
sufficient, approximation of the model after the initial 5 to
10 percent of this period. Furthermore, that crude approx-
imation is refined incrementally during the transfer through
a series of seven to 15 steps and its accuracy drastically
increased by the first few refinements, often reducing the
need to ever transfer the final batches of refinements.

The significant improvements in compression ratios
offered by CPM over previously reported compression
and progressive transmission techniques result from a new
approach which combines three new ideas that were
introduced in this paper:

1. Split vertices are identified using a single bit per
vertex, rather than log2�n� bits, as needed by the
original PM solution [15].

2. The two cut-edges among the d edges incident upon
a given split-vertex are identified using an optimal
code and a look-up table. The table is defined by the
value of d, which is known to both the compression
and decompression algorithms, for each split-vertex.

3. The location of the pair of vertices produced by each
vertex split is predicted with unprecedented accu-
racy by our new Butterfly estimator, which takes into
account the vertices in the topological vicinity of the
split-vertex.

We have derived simple validity conditions which
govern the simplification steps of the CPM compression
algorithm. These conditions guarantee that our 1-bit-per-
vertex marking method is unambiguous and still offer
sufficient flexibility for our greedy and simple algorithm to
achieve a 25 percent or more vertex reduction for each
batch. Furthermore, because, at each batch, CPM first marks
all the edges that must be collapsed and then collapses them
all at once, there is no need, or benefit, from maintaining a
priority queue of the edge candidates. The compression
algorithm is thus significantly simpler and more efficient. In
contrast, the optimized order of vertex splits in PM [15]
provides some approximation quality advantages at the
cost of encoding efficiency.

The CPM algorithm and format are independent of the
chosen complexity and of the particular technique used to
compress the initial crude approximation and of the
particular error metric used to select the best edge
candidates for simplification at each batch. These may be
selected based on the particular application needs.

Our experimental results conducted on a variety of
models exhibit a 50 percent improvement over progressive
compression ratios reported elsewhere [15], [32]. The
average cost per triangle for transmitting the entire mesh
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TABLE 5
Progressive Compression Results for Large 12-bit Quantized Models (See Also Fig. 13)

The transmission time is estimated with 56K-bit per second. The rightmost column denotes a binary encoding using 36 bits for vertex coordinates
and log2 jV j bits for the vertex indices of an indexed triangle list.

Fig. 13. Experimental large 12-bit quantized models.

bunny phone happy



using our progressive method is 3.6 bits for the connectivity

and 7.7 for the vertex location (for the bunny model). For

the same model, the PM approach would require 8 bits for

the connectivity (improved to 5 to 7 bits in [13]) and
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Fig. 14. The first three columns show three LODs of the CPM mehtod and the cumulative bits and estimated transmission times using a 56Kbps

connection. The fourth column references a binary encoding using 30 bits (respectively, 24 for the bottom two shapes) for vertex coordinates and

log2 jV j bits for the vertex indices in the indexed face list and presents the estimated transmission time as well.

4833 V, 521964 bits100% ∆, 109336 bits50% ∆, 60691 bits4% ∆, 8262 bits

6475 V, 699300 bits100% ∆, 147915 bits25% ∆, 44898 bits10% ∆, 22134 bits

4005 V, 408510 bits100% ∆, 98877 bits40% ∆, 45771 bits18% ∆, 21556 bits

2832 V, 271872 bits100% ∆, 52215 bits50% ∆, 28356 bits6% ∆, 4564 bits

2562 V, 245952 bits100% ∆, 53091 bits50% ∆, 29450 bits5% ∆, 3752 bits

M8 = 1.1 secM0 = 0.15 sec

M0 = 0.38 sec

M0 = 0.4 sec

M0 = 0.08 sec

M0 = 0.07 sec

M10 = 1.9 sec

M6 = 1.8 sec

M8 = 2.6 sec

M8 = 0.9 sec

M9 = 0.9 sec

M3 = 0.8 sec

M3 = 0.8 sec

M6 = 0.5 sec

M7 = 0.5 sec

binary = 9.3 sec

binary = 7.3 sec

binary = 12.5 sec

binary = 4.9 sec

binary = 4.4 sec



between 15 and 25 for the geometry. According to the
experiments reported in [32], the PFS method would
require 4.4 bits for connectivity and 18.9 bits for geometry.
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