
Compressed Representation of Kohn−Sham Orbitals via Selected
Columns of the Density Matrix

Anil Damle,*,† Lin Lin,‡,§ and Lexing Ying†,∇

†Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California, United States
‡Department of Mathematics, University of California, Berkeley, Berkeley, California, United States
§Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
∇Department of Mathematics, Stanford University, Stanford, California, United States

*S Supporting Information

ABSTRACT: Given a set of Kohn−Sham orbitals from an insulating system, we present a
simple, robust, efficient, and highly parallelizable method to construct a set of optionally
orthogonal, localized basis functions for the associated subspace. Our method explicitly uses
the fact that density matrices associated with insulating systems decay exponentially along the
off-diagonal direction in the real space representation. We avoid the usage of an optimization
procedure, and the localized basis functions are constructed directly from a set of selected
columns of the density matrix (SCDM). Consequently, the core portion of our localization
procedure is not dependent on any adjustable parameters. The only adjustable parameters
present pertain to the use of the SCDM after their computation (for example, at what value
should the SCDM be truncated). Our method can be used in any electronic structure software
package with an arbitrary basis set. We demonstrate the numerical accuracy and parallel
scalability of the SCDM procedure using orbitals generated by the Quantum ESPRESSO
software package. We also demonstrate a procedure for combining the orthogonalized SCDM with Hockney’s algorithm to
efficiently perform Hartree−Fock exchange energy calculations with near-linear scaling.

1. INTRODUCTION

Kohn−Sham density functional theory (KSDFT)1,2 is the most
widely used electronic structure theory for molecules and
systems in condensed phase. In KSDFT, the many-body
electronic structure properties are, in principle, exactly mapped
into a fictitious single-particle system. The Kohn−Sham
orbitals, which are orthonormal eigenfunctions of the single
particle Kohn−Sham Hamiltonian operator, can describe
various physical quantities, such as density, energy, and atomic
forces. However, it is expensive to compute and store the
Kohn−Sham orbitals of large systems, which are spatially
delocalized. Let N be the number of degrees of freedom and Ne

be the number of electrons in the system. The cost for storing
the Kohn−Sham orbitals is NN( )e , and the cost for

computing them is generally NN( )e
2 , or “cubic scaling”,

assuming N ≈ N( )e . In modern KSDFT calculations, the
Hartree−Fock exact exchange term is also often taken into
account in the form of hybrid functionals.3,4 The computational
cost for this step not only scales cubicly but also has a large
preconstant, which limits the application of hybrid functional
calculations to hundreds of atoms.
In order to reduce both the storage requirements and the

cost associated with subsequent computations, it is important
to realize that the Kohn−Sham orbitals are not unique. Any
nondegenerate linear transformation of the set of Kohn−Sham
orbitals yields exactly the same physical properties of a system.
In other words, the physically relevant quantity is the subspace

spanned by the Kohn−Sham orbitals. Various efforts5−10 have
been made to utilize this fact and to find a set of localized
orbitals that form a compressed representation of a Kohn−
Sham subspace. For example, the Boys localization5 and,
subsequently, the Marzari−Vanderbilt6,7 construction of
maximally localized Wannier functions (MLWFs) uses a
nonlinear optimization approach to find a unitary trans-
formation of the Kohn−Sham subspace into a set of orthogonal
functions localized in real space. The locality, or the
“nearsightedness” principle, is guaranteed for insulating systems
with a finite HOMO−LUMO gap.11,12 The localized orbitals
have wide applications in chemistry and physics. For instance,
localized orbitals can be be used to construct linear scaling
methods for solving KSDFT using local and semilocal
functionals,13,14 and for calculations using hybrid func-
tionals.15,16

In this manuscript, we present an alternative method to the
widely used MLWFs to compute a set of localized orbitals
associated with the Kohn−Sham subspace for insulating
systems. Our method is simple, robust, efficient, and highly
parallelizable. We explicitly use the fact that for insulating
systems the single particle density matrix is exponentially
localized along the off-diagonal direction in the real-space
representation.11,17−21 Our algorithm finds a set of localized
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orbitals by directly using selected columns of the density matrix
(SCDM) associated with the Kohn−Sham orbitals. Con-
sequently, by construction the SCDM are localized in the
real space representation. As opposed to the MLWFs which are
orthonormal, the SCDM are not orthonormal in general.
However, a set of orthonormal and localized functions
spanning the Kohn−Sham subspace can be obtained via a
simple linear transformation of the SCDM.
In contrast with Boys localized orbitals or MLWFs, our

method does not attempt to minimize a given localization
criteria via a minimization procedure. Consequently, our
method does not require any initial guess of localized orbitals,
is of fixed cost for a given problem size, and avoids some of the
potential problems of a minimization scheme, such as getting
stuck at a local minimum. In fact, our method should be more
robust than an iterative minimization procedure for finding
localized orbitals. The locality of the SCDM is a direct
consequence of the locality of the density matrix, and is
comparable to that obtained from the MLWF procedure.
Furthermore, the localization procedure we present is not
explicitly dependent on any adjustable parameters. Rather, the
only adjustable parameter we later discuss is the truncation
threshold to subsequently apply to our computed localized
functions. Finally, if desired, the SCDM and MLWF procedures
could be combined, since the orthogonalized SCDM should
already be a very good initial guess for an optimization-based
approach.
Our method can be used in any electronic structure software

package with any basis set, ranging from planewaves to
Gaussian basis sets, provided that the Kohn−Sham orbitals
can be represented on a real space grid. One striking feature of
our method is its simplicity: a prototype sequential
implementation takes just a few lines of code. The construction
of the SCDM only involves simple linear algebra routines such
as a rank-revealing QR factorization and matrix−matrix
multiplication. Therefore, the parallel implementation for
computing the SCDM can straightforwardly scale, for the
problem size we tested, to more than 1000 processors. This
enables the computation of localized basis functions for the self-
consistent treatment of the Hartree−Fock terms in KSDFT
calculations with hybrid exchange-correlation functionals.
As an application, we also demonstrate a procedure for

combining the orthogonalized SCDM with Hockney’s algo-
rithm to efficiently compute the Hartree−Fock exchange
energy.

2. THEORY

For insulating systems, the locality of the single particle density
matrix along the off-diagonal direction generally can be
observed in the real-space representation.11,12 For the sake of
clarity, in this manuscript, we explicitly require the Kohn−
Sham orbitals to be represented on a real space grid defined as
below. In some cases, the real-space representation may not be
necessary, and we postpone such a discussion to the conclusion.
Let {ψj(x)}j=1

Ne be a set of Kohn−Sham orbitals that satisfy the
orthonormality condition

∫ ψ ψ δ* =′ ′x x x( ) ( ) d
j j jj (1)

and we have access to ψj(x) evaluated at a set of discrete grid
points {xi}i=1

N . Let {ωi}i=1
N be a set of positive integration weights

associated with the grid points {xi}i=1
N , then the discrete

orthonormality condition corresponding to eq 1 is given by

∑ ψ ψ ω δ=
=

′ ′x x( ) ( )
i

N

j i j i i jj

1 (2)

Let ψj = [ψj(x1),ψj(x2), ..., ψj(xN)]
T be a column vector, and Ψ̃

= [ψ1, ..., ψNe
] be a matrix of size N × Ne. In this paper, we call

Ψ̃ the real-space representation of the Kohn−Sham orbitals. We
also define a diagonal matrix W = diag[ω1, ..., ωN].
It should be noted that the real-space representation of

Kohn−Sham orbitals can be obtained with any type of basis set;
therefore, our method is applicable for any electronic structure
software package. For instance, if the Kohn−Sham orbitals are
represented using the planewave basis functions, their real-
space representation can be obtained on a uniform grid
efficiently with the fast Fourier transform (FFT) technique. In
such case, the parameter ωi takes the same constant value for all
i. For general basis sets such as Gaussian basis functions or
localized atomic orbitals, let {χk(x)}k=1

M be the collection of basis
functions (usually M ≪ N). We first evaluate each basis
function on the real-space grid as χk = [χk(x1), χk(x2), ...,
χk(xN)]

T, and denote by X = [χ1, ..., χM] the collection of all
basis functions, where X is a matrix of size N × M. The Kohn−
Sham orbitals then can be obtained as the linear combination of
basis functions as Ψ̃ = XZ. Here, the matrix Z of size M × Ne

and is usually obtained by solving a generalized eigenvalue
problem. For these general basis functions and, in particular, in
all-electron calculations, the grid points are usually chosen to be
nonuniform to improve the accuracy of numerical quadrature;
correspondingly, the weight parameters ωi also are nonuniform.
We define Ψ =W1/2Ψ̃ to be the set of weighted Kohn−Sham

orbitals represented in the real space, in which case the discrete
orthonormality condition in eq 2 becomes Ψ*Ψ = I, where I is
an identity matrix of size Ne. We now seek a compressed basis
for the span of Ψ, denoted by the set of vectors Φ = [ϕ1, ...,
ϕNe

], such that each ϕi is localized. The single particle density

matrix is defined as P = ΨΨ*. The nearsightedness principle
states that, for insulating systems, each column of the matrix P
is localized. As a result, selecting any linearly independent
subset of Ne of them will yield a localized basis for the span of
Ψ. However, picking Ne random columns of P may result in a
poorly conditioned basis if, for example, there is too much
overlap between the selected columns. Therefore, we would
like a means for choosing a well-conditioned set of columns,
denoted as , to use as the localized basis. Intuitively, we expect
such a basis to select columns to minimize overlaps with each
other when possible.
To achieve this we utilize the so-called interpolative

decomposition.22 Given an N × N matrix A with rank k, such
a factorization seeks to find a permutation matrix Π, a subset of
k columns of A whose indices form the set and a matrix T
such that

Π =A A I T[ ]:, (3)

and ∥T∥ should be small. The interpolative decomposition can
be computed via the (strong) rank revealing QR factoriza-
tion.22,23 Such a factorization computes AΠ = Q[R1 R2], where
Q is an N × k orthonormal matrix, R1 is an upper triangular
matrix, and Π is a permutation matrix. The permutation Π is
chosen to keep R1 well-conditioned. The interpolative
decomposition is a powerful technique, and it can be used to
build low-rank approximations for a matrix A with many small
singular values (i.e., A has many columns that are almost
linearly dependent). In such cases, algorithms for constructing
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these factorizations often choose k to ensure that a certain
relative accuracy in the approximation of A is achieved.
However, in our situation, we know P is exactly of rank Ne and
are thus not concerned with approximation error.
It may not be feasible to compute an interpolative

decomposition of P directly, because we would have to
construct P explicitly. The storage cost of P is N2, and
computing a partial rank revealing QR factorization of P scales

as NN( )e
2 , which is prohibitively expensive. Randomized

algorithms exist that would reduce this cost, for example,24,25

but they do not achieve the desired computational scaling. To
achieve the desired scaling, observe that, for any rank revealing
QR factorization of Ψ*,

Ψ*Π = QR

where Q is an Ne × Ne matrix with orthonormal columns, then

Π = ΨP Q R( )

It can be readily verified that ΨQ is an N × Ne matrix with
orthonormal columns. Therefore, rather than computing a rank
revealing QR factorization of P, we may equivalently compute a
rank revealing QR factorization of Ψ*. This computation scales

as N N( )e
2 . The permutation matrix Π reveals the selection of

columns , and the SCDM can be computed as

Φ̃ ≡ = ΨΨ*P:, ,:

Using the SCDM we may recover the density matrix in a
simple manner. Since P is a rank Ne, Hermitian, and positive
semidefinite matrix, and P:, has linearly independent columns,

we may write P in the form = *P P DP:, :, , where D is an Ne ×

Ne matrix. By restricting P to the row and column indices,

= *P P DP, , , , we observe that = −D P( ),
1 is uniquely

determined. Therefore,

= *−P P P P( ):, ,
1

:, (4)

Equation 4 also suggests a method for the construction of
orthonormal and localized basis functions. If we let

= *P LL,

be a Cholesky factorization of P , , then

Φ = Φ̃ *−L

has orthogonal columns and they may be used as a basis for the
span of Ψ. In this case we may also write P = ΦΦ*. The
orthogonality of Φ follows from P being an orthogonal
projector. Based on the locality of the columns of P and
because the permutation Π picks columns of P that form a well-
conditioned basis, P , decays rapidly, exponentially given our

assumptions on P, away from the diagonal. Consequently, for
the systems that we consider, the orthogonalization step will
not significantly impact the localization of the basis functions.
Concisely, we construct the SCDM Φ̃ or the orthogonalized

SCDM Φ via the algorithm below.

(1) Compute the index set associated with an interpolative
decomposition of Ψ* via a rank revealing QR
decomposition.

(2) Compute the SCDM Φ̃ = = Ψ Ψ *P ( ):, ,: as the new

localized basis. If the orthogonalized SCDM are desired,
then

(3) Compute the Cholesky factorization = *P LL,

(4) Compute the orthogonal basis Φ by solving Φ * = Φ̃L

This algorithm is completely deterministic and can be
applied to any local or nonlocal basis set. In general, when
computing the rank revealing QR factorization for an
interpolative decomposition, a so-called strong rank revealing
QR factorization is technically required. However, for the types
of systems that we are interested in, a more traditional rank
revealing QR factorization, such as the one implemented in
LAPACK26 as DGEQP3, suffices. The use of a Cholesky
factorization allows us to avoid explicit inversion of P , and,

instead, use triangular solves to either apply the spectral
projector or orthogonalize the basis.

The overall cost of the algorithm is +N N N( )e
2

e
3 to build

Φ or Φ̃. The cost of the necessary rank revealing QR is

N N( )e
2 and the dominant cost in Ne that has no dependence

on N is the Cholesky factorization, which costs N( )e
3 . The

cost of forming the columns of Φ̃ is N N( )e
2 , as is the cost of

constructing Φ via triangular solves. Because the algorithm is
constructed from simple and standard linear algebra routines, it
is easy to parallelize. Specifically, steps 1, 2, and 4 in the
preceding algorithm may each use a parallel version (e.g., from
ScaLAPACK)27 of the respective linear algebra routine.
Because the required Cholesky factorization is of a Ne × Ne

matrix, it is often not necessary to parallelize that portion of the
algorithm, although one certainly could. By utilizing common
factorizations and operations, the algorithm immediately
benefits from improvements to the underlying, serial or parallel,
linear algebra routines and does not require any specialized
code. One example of this would be the use of recent variants
for computing a parallel rank revealing QR factorizations such
as the communication avoiding version discussed in ref 28. The
efficiency of a parallel version will be briefly discussed in the
Numerical Results section.
To illustrate the simplicity of the algorithm, we present a

serial implementation of the algorithm in MATLAB.29 The
following two lines of code implement the above algorithm and
compute the SCDM. The discrete input Ψ, which has
orthonormal columns, is represented as Psi and Ne is the
column dimension of Ψ, and therefore the number of localized
basis functions. When complete, the matrix Pc contains the
localized SCDM.

[Q, R, piv] = qr(Psi’,0);

Pc = Psi∗(Psi(piv(1:Ne),:)′);

If a set of orthonormal and localized orbitals are to be
computed, the following three lines can be added, and the
matrix Phi contains the orthogonalized and localized SCDM.

S = Pc(piv(1:Ne),:);

Rchol = chol(S);

Phi = Pc/(Rchol);

3. NUMERICAL RESULTS

3.1. Localized Basis Functions. We now demonstrate the
effectiveness of our algorithm from both qualitative and
quantitative points of view. For all of our numerical
experiments, we used QUANTUM ESPRESSO30 to compute the
eigenfunctions. The SCDM are then computed from the
Kohn−Sham orbitals for the occupied states.
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We first demonstrate the method qualitatively by computing
localized basis functions for two different three-dimensional
systems. Figure 1a shows one of the orthogonalized SCDM
obtained from a silicon crystal with 512 atoms consisting of 4 ×
4 × 4 unit cells with diamond structure, and the dimension of
each unit cell is 10.26 a.u. × 10.26 a.u. × 10.26 a.u. Figure 1b
shows one of the orthogonalized SCDM obtained from a water
system with 64 molecules in a cubic supercell with dimensions
of 22.08 a.u. × 22.08 a.u. × 22.08 a.u., which corresponds to a
density of 1.2 g/cm3. The kinetic energy cutoff for the silicon
crystal is 10 Ry, and for water is 75 Ry. For all calculations, we
use the Troullier−Martins pseudo-potential31 with the
Perdew−Burke−Ernzerhof (PBE) functional.32 The orbitals
are very localized in the real space and resemble the shape of
MLWFs.6 In fact, in this case, our method automatically finds
the centers of all localized orbitals, which, for the silicon crystal,
are in the middle of the Si−Si bond, and, for water, is closer to
the oxygen atoms than to the hydrogen atoms.
The locality of the SCDM is demonstrated by computing the

fraction of entries, averaged across all Ne localized functions,
that remain nonzero (denoted by nz%) after truncating each
basis function below a certain relative threshold (denoted by ε).
The diameter of the localized region is proportional to the
cubic root of the volume and, thus, is proportional to (nz%)1/3.

Exponential decay implies that exp[−C(nz%)1/3] ≈ ε, where C
is a constant independent of ε. Therefore, exponentially
localized orbitals should manifest themselves as a straight line
when (nz%)1/3 is plotted on a linear scale, and ε is plotted on a
log-scale. Figure 2 shows such a relation for the SCDM basis
functions, both before and after orthogonalization, as the
relative truncation threshold is varied.
When the relative truncation value is 10−2, the average

fraction of nonzero entries of each localized basis function is
roughly 0.3% for both the 512-atom silicon crystal and the 64
water molecules, thereby significantly reducing the storage cost
for the orbitals. We note that the orthogonalization procedure
does not significantly impact the locality of the functions,
although, generally, we do not expect this procedure to result in
more localized functions. The good localization properties also
imply that P , should be a well-conditioned matrix. In fact, we

observe that the condition number is only 3.18 for the silicon
crystal and 2.83 for the water molecules.

3.2. Computation of Hartree−Fock Exchange Energy.
We now use the orthogonalized SCDM to compute the
Hartree−Fock exchange energy with, under some mild
assumptions, linear scaling cost. The Hartree−Fock exchange
energy is invariant under unitary transformation of the Kohn−
Sham orbitals, and can be computed as

Figure 1. Isosurface for an orthogonalized SCDM for (a) a silicon crystal with 512 Si atoms (yellow balls) and (b) a water system with 64 O atoms
(red balls) and 128 H atoms (white balls). In panel (a), the red isosurface (at a value of 0.029 a.u.) characterizes the orthogonalized SCDM located
between two Si atoms. In panel (b), the yellow and blue isosurfaces characterize the positive (at a value of 0.008 a.u.) and negative (at a value of
−0.008 a.u.) portions of the orthogonalized SCDM, respectively.

Figure 2. Average fraction of nonzero entries after truncation for the SCDM and the orthogonalized SCDM for (a) the 512-atom silicon crystal and
(b) 64 water molecules.
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∫ ∫∑
ϕ ϕ ϕ ϕ

= −
| − |

=

E
x x y y

x y
x y

1

2

( ) ( ) ( ) ( )
d dx

i j

N
i j j i

, 1

e

(5)

Here, {ϕi}i=1
Ne can be the Kohn−Sham orbitals, or any unitary

transformation of them. We remark that for periodic systems
the Coulomb integral in the Fourier basis should be treated
with care. In this manuscript, we use 4π/G2(|G| ≠ 0) as the
Coulomb kernel in the Fourier basis for simplicity, where G is a
reciprocal lattice vector. We refer readers to, for example, ref 33
for more-detailed discussion on the comparison of different
Coulomb kernels for periodic systems. Note that the efficiency
of the algorithm here is not affected by specific choices of
Coulomb kernels.
When eq 5 is computed using the Kohn−Sham orbitals

{ψi}i=1
Ne directly the standard method is to use the planewave

basis set and solve Poisson’s equation for each pair of Kohn−

Sham orbitals. This results in having to solve N( )e
2 discrete

versions of Poisson’s equation with periodic boundary
conditions and enforcing zero mean in the solution, which
may be done via use of the Fast Fourier Transform (FFT). The

overall cost for computing the energy is then N N N( log )e
2 ,

where the log N factor arises from the FFT. In a hybrid
functional calculation such as PBE0 functionals3 the cost of this
step can be dominating, compared to a calculation using
semilocal exchange-correlation functionals.
By using the orthogonalized and truncated SCDM instead of

the delocalized Kohn−Sham orbitals, the computational cost
can be significantly reduced, at the expense of introducing some
controllable error. Let Φ̂ = [ϕ̂1, ..., ϕ̂Ne

] denote the truncated

version of Φ. This truncation introduces some error, but the
relative truncation value may be chosen to achieve any desired
accuracy. After truncation, we may simply neglect pairs of ϕ̂i

and ϕ̂j with disjoint support, or if their product is sufficiently
small on the global domain. The latter criteria for neglecting
pairs may even be done without truncating the basis functions
to explicitly make their representations sparse. When each ϕ̂i is

localized the N( )e
2 terms in eq 5 is reduced to N( )e

significant terms. In fact, this reduction in the number of times
that the Poisson’s equation needs to be solved provides
substantial computational savings on its own. For example, for
the 64-water-molecule system, Figure 3 shows the fraction of
significant pairwise interactions, measured as the fraction of
unique i,j pairs for which ∥ϕiϕj∥1 ≥ ϵ. Note that, by
convention, we have normalized ϕ such that ∥ϕiϕi∥1 = 1.

If the functions have been explicitly truncated, the computa-
tional cost can be further reduced by noting that the solution of
Poisson’s equation is only needed on the support of ϕ̂iϕ̂j This
fact may be used to reduce the size of each FFT by using
Hockney’s algorithm.34,35 Hockney’s algorithm is a fast and
direct method that does not introduce any additional
approximation error. A brief presentation of the main idea of
Hockney’s method is provided in the Supporting Information.
Given the above techniques we still have to determine the

support of ϕ̂iϕ̂j for all i,j pairs, which scales as N( )e
2 However,

if the vectors are appropriately stored, this operation amounts
to a few logical operations per pair of ϕ̂ and will not be a
dominant portion of the computational cost. Ignoring this cost
and assuming that, as the number of atoms and size of a
molecule grows, the support of the basis functions remains
constant, yields an overall computational scaling of N( )e .
Here, the constant will be dominantly dependent on the size of
the FFTs required by Hockney’s algorithm.
To demonstrate the efficiency and accuracy of computing the

Hartree−Fock exchange energy using the orthogonalized
SCDM, we construct a quasi one-dimensional silicon crystal
extended along the z-direction. The total number of atoms
varies from 32 to 512, and, for each problem size, Ne is twice
the number of atoms. The kinetic energy cutoff and other
parameters are the same as for the aforementioned silicon
crystal. All calculations are performed on a single computational
node. Figure 4 shows the time to compute the Hartree−Fock
exchange energy when using the localized and truncated basis
functions. Our error criteria is the relative error in the
computed exchange energy. We truncate the localized basis

Figure 3. Fraction of unique i,j pairs where ∥ϕiϕj∥1 ≥ ϵ with the
localized basis functions computed for the 64-water-molecule system.

Figure 4. Time to compute the Hartree−Fock exchange energy and
the localized basis functions. The localized basis functions were
truncated to achieve (a) 4%−5% and (b) 0.3%−0.4% relative error in
the energy computation.
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functions at two different values, and achieve relative error of
4%−5% in Figure 4a and 0.3−0.4% in Figure 4b. Table 1

shows, for the scenario where a relative error of 0.3−0.4% was
achieved, the computed exchange energy per atom using
Kohn−Sham orbitals, the approximation computed by
truncating the localized basis functions and neglecting terms
of the sum in eq 5, and the absolute error.
We observe that using the localized and truncated functions

greatly reduces the computational time, even when factoring in
the cost of performing the localization to obtain the
orthogonalized SCDM. The cost for the localization scales as

NN( )e
2 but is more than an order of magnitude faster (even

more so if a parallel version is used) than computing the
exchange energy directly using Kohn−Sham orbitals. It is also
clear that the use of localized basis functions without using
Hockney’s algorithm (“full FFTs”) reduces the observed
computational cost to NN N( log )e , while using Hockney’s
algorithm (“Hockney”) further reduces the computational cost
to N( )e . For the largest problem size, the acceleration in
computing the exchange energy using the localized basis
functions and Hockney’s algorithm relative to the computa-
tional time using Kohn−Sham orbitals is a factor of ∼300 when
the relative error is 4%−5%, and a factor of 90 when the relative
error is 0.3%−0.4%.
3.3. Parallel Computation. The above discussion featured

results for the localization procedure and the subsequent
computation of the Hartree−Fock exchange energy when using
a single machine. For the largest quasi one-dimensional
problem considered, Ψ is a 777600 × 1024 matrix. To
demonstrate how the algorithm may be parallelized, we
implemented a simple parallel version in FORTRAN using
ScaLAPACK27 for the parallel rank-revealing QR. The pivoted
QR, the matrix multiplication to form Φ̂, and the triangular
solve to form Φ were all done using parallel versions of the
respective algorithms. We make note of the fact that the parallel
timings given here are not on machines of the same type as
those used previously for the examples, so the absolute times
are not directly comparable. Computing the orthogonalized
SCDM for the aforementioned problem using this code and
1024 processors took less than 1.5 s. This is not including the
time to distribute Ψ among the processors, which took 1.3 s,
nor the time to read Ψ from disk. In Figure 5, we show the
scaling of this parallel implementation for computing the
orthogonalized SCDM. Once again, we omit the time taken to

distribute the matrix. Here, we see that, for the given problem
size, the method scales almost ideally on up to 1024 processors.

4. CONCLUSION

We have presented a simple procedure to obtain compressed
Kohn−Sham orbitals by directly using selected columns of the
density matrix (SCDM). The nearsightedness principle
guarantees the locality of the SCDM for insulating systems.
The computation of the orthogonalized SCDM is a simple and
fast procedure that may be done immediately following the
computation of Ψ to build a well-localized orthogonal basis for
the Kohn−Sham orbital subspace. Because the algorithm is
built out of a few very simple linear algebra routines, it is simple
to implement, parallelize, and include in electronic structure
software packages.
Our work can be extended in several directions. Besides the

computation of the Hartree−Fock exchange energy, the high
parallel scalability of the SCDM procedure can enable the
computation of localized basis functions for the self-consistent
treatment of the Hartree−Fock exchange terms in Kohn−Sham
density functional theory (KSDFT) calculations with hybrid
functionals.
In this work, we explicitly require the Kohn−Sham orbitals to

be represented on a real space grid. This is very natural for
electronic structure software packages based on planewave and
finite difference methods, but may or may not be natural for
other basis sets such as localized atomic orbitals. In fact, the
locality of the single particle density matrix along the off-
diagonal direction generally holds when the density matrix is
represented using localized basis functions.17 Therefore, it
would be possible to directly find the localized representation
of the single particle density matrix represented using localized
basis functions and skip the real-space representation. The
numerical consequence of this procedure should be carefully
tested.
The cost of computing the SCDM may be reduced via a

randomized version of the algorithm. For the examples
presented here, this method slightly reduced the quality of
the localized basis functions and, consequently, was not used.
However, it may still be beneficial for very large problems. The
SCDM may also be a useful tool for achieving linear scaling
electronic structure calculations for insulating systems, as well
as higher-level quantum chemical treatment at the post-DFT
level. Our idea is not limited to the compression of Kohn−
Sham orbitals, but may also be generalized for the compression

Table 1. Comparison of the Per Atom Exchange Energy
Computed Using the Kohn−Sham Orbitals with the
Approximation Computed by Localizing the Basis
Functions, Truncating Them, and Neglecting Terms of the
Sum in eq 5a

number of
atoms

exchange energy per
atom (a.u.)

computed energy per
atom (a.u.)

error per
atom (a.u.)

32 −0.5626 −0.5607 0.0019

64 −0.9667 −0.9635 0.0031

128 −1.7811 −1.7752 0.0059

256 −3.4130 −3.4011 0.0119

512 −6.6782 −6.6541 0.0241
aThe artificial increase of the exchange energy per atom, with respect
to the increase of the system size, is due to our use of 4π/G2(|G| ≠ 0)
as the Coulomb kernel in the Fourier basis.

Figure 5. Parallel scaling for computing the orthogonalized SCDM.
The times given are the average over 10 computations, and the error
bars are one standard deviation away from the mean.
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of pair products of Kohn−Sham orbitals in excited-state
calculations.
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