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Ch.mo Prof. Niccoló RINALDI Ch.mo Prof. Antonia Maria TULINO

A. A. 2010–2011





“You will not really understand something until you

are able to explain it to your grandmother!”

A. E.

“If you think I’m wrong, then you’re wrong twice!”

P. M.





Acknowledgments

Firstly, I want to express my sincere gratitude to my family for their support

and encouragement to pursue my dream of working in scientific research. Spe-

cial thanks to Professor Antonia Tulino, my mentor and friend, who supported

my research interests and aptitudes. Thanks to her, I could stay three months at

Bell Laboratories in the U.S.A. where I could compare with excellent minds,

learning a lot. Besides, I infinitely thank the National Institute of Optics of

CNR, in particular Dr. Pietro Ferraro, who has followed me in many research

activities in these three years of study, and Dr. Melania Paturzo, collabora-

tor and dear friend, who shared with me ”joys and sorrows” of my scientific

activity and, obviously, the other colleagues Lisa, Sara, Veronica, Simonetta,

Francesco and Andrea. Finally, I thank all the professors of DIBET, with par-

ticular regard to Professor Ernesto Conte, with who I have often been able to

exchange views of both a scientific and everyday life.

Pasquale Memmolo

v





Contents

Acknowledgments v

List of Figures ix

List of Tables xiii

Introduction xv

1 Compressed Sensing 1

1.1 Sparse signals . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Geometry of sparse signals . . . . . . . . . . . . . . . 2

1.1.2 Compressible signals . . . . . . . . . . . . . . . . . . 3

1.2 Sensing matrices . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Null space condition . . . . . . . . . . . . . . . . . . 4

1.2.2 The restricted isometry property . . . . . . . . . . . . 4

1.2.3 Coherence matrices . . . . . . . . . . . . . . . . . . . 5

1.2.4 Sensing matrix construction . . . . . . . . . . . . . . 5

1.3 Signal recovery via l1-minimization . . . . . . . . . . . . . . 6

1.3.1 Noiseless signal recovery . . . . . . . . . . . . . . . . 7

1.3.2 Noisy signal recovery . . . . . . . . . . . . . . . . . . 7

1.4 Algorithms for signal recovery . . . . . . . . . . . . . . . . . 8

1.4.1 Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Orthogonal Matching Pursuit . . . . . . . . . . . . . . 9

1.4.3 Stagewise Orthogonal Matching Pursuit . . . . . . . . 10

1.4.4 Least Angle Regression method . . . . . . . . . . . . 11

2 Digital Holography 13

2.1 Hologram formation . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Digital recording . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



viii CONTENTS

2.2.1 Digital holograms recorded in microscope configuration 17

2.2.2 Digital holograms recorded in lensless configuration . 20

2.3 Image formation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Noise components . . . . . . . . . . . . . . . . . . . 23

2.4 Numerical reconstruction . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Amplitude reconstruction . . . . . . . . . . . . . . . . 24

2.4.2 Auto-focusing . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Phase reconstruction . . . . . . . . . . . . . . . . . . 31

3 Digital holograms recovery using CS 33

3.1 Nyquist/Shannon sampling theorem in DH . . . . . . . . . . . 34

3.2 Sparse representation of digital holograms . . . . . . . . . . . 36

3.3 Recovery of digital holograms using CS . . . . . . . . . . . . 38

3.3.1 Recovery of lensless holograms . . . . . . . . . . . . 39

3.3.2 Recovery of microscope holograms . . . . . . . . . . 42

4 Denoising of digital holograms using CS 47

4.1 Denoising method . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 1D test case . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 2D case: denoising of digital holograms . . . . . . . . . . . . 51

4.2.1 BFP reconstruction optimization . . . . . . . . . . . . 51

4.2.2 Fresnel reconstruction optimization . . . . . . . . . . 55

4.3 3D holographic display . . . . . . . . . . . . . . . . . . . . . 55

4.4 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . 59

Conclusion 61

A Appendix 65

A.1 Review of Convex Optimization . . . . . . . . . . . . . . . . 65

A.1.1 Formulation of COP . . . . . . . . . . . . . . . . . . 65

A.1.2 Special cases of COP . . . . . . . . . . . . . . . . . . 67

A.1.3 Nonconvex optimization problems . . . . . . . . . . . 68

A.2 MATLAB code’s description . . . . . . . . . . . . . . . . . . 68

A.2.1 Scripts for chapter 1 . . . . . . . . . . . . . . . . . . 69

A.2.2 Scripts for chapter 2 . . . . . . . . . . . . . . . . . . 71

A.2.3 Scripts for chapters 3 and 4 . . . . . . . . . . . . . . . 73



List of Figures

2.1 (a) Hologram recording: the interference pattern produced by

the reference wave and the object wave is recorded; (b) Image

reconstruction: light diffracted by the hologram reconstructs

the object wave. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 (a) Microscopic photo of the MEMS. (b,c) are two recorded

holograms of (a) in different experimental conditions . . . . . 18

2.3 (a) In-vitro cell’s photo in white light. (b,c) are two recorded

holograms of (a) taken in different location . . . . . . . . . . 19

2.4 Superposition unit of the microscope DH setup in (a) trans-

mission mode and (b) reflection mode: S, sample; BS, beam

splitter; MO, microscope objectives. . . . . . . . . . . . . . . 19

2.5 Setup for recording the holograms of astronaut puppet and

Venus statuettes . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 (a) Photo of the puppet of astronaut. (b) is the recorded holo-

gram of (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 (a) Photo of the statuette of Venus. (b) is the recorded holo-

gram of (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 (a,b) are the amplitude reconstructions of holograms of

MEMS, while (c,d) are the amplitude reconstructions of holo-

grams of in-vitro cell . . . . . . . . . . . . . . . . . . . . . . 25

2.9 (a,b) are the amplitude reconstructions of holograms of MEMS

with focus on the -1 order, while (c,d) are the amplitude recon-

structions of holograms of in-vitro cell with focus on the -1

order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 (a,c) are the amplitude reconstructions of holograms with fo-

cus on the +1 order, while (b,d) are the amplitude reconstruc-

tions of holograms with focus on the -1 order . . . . . . . . . 27

ix



x LIST OF FIGURES

2.11 (a) is the amplitude BFP reconstructions of holograms of

MEMS, while (b) is the amplitude BFP reconstructions of

holograms of in-vitro cell . . . . . . . . . . . . . . . . . . . . 28

2.12 Results of the autofocusing algorithm for the estimation of the

in-focus distance for the astronaut (a) and the BFP distance for

the MEMS (b) . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13 (a) is the phase reconstruction of the hologram of MEMS,

while (b) is the phase reconstruction of the hologram of in-

vitro cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.14 Unwrapped phases of holograms of MEMS (a) and in-vitro

cell (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Schematic view of the angular extent of the object: θ is the

angular extent of the object and the maximum angle between

object and reference wave; d0 is the distance along the optical

axis between the CCD chip and the object; D is the transversal

size of the object, normal to the optical axis. . . . . . . . . . . 35

3.2 Wavelet transform (a) and gradient image (b) for the MEMS.

The gradient is computed on the magnification of the +1 order. 36

3.3 Gradient image of astronaut (a) and Venus (b). . . . . . . . . . 37

3.4 Schemes of reconstructed field in off-axis configuration with-

out overlap (a) and with overlap (b)between the diffraction orders 38

3.5 Results of recovery algorithm on the astronaut with m =

n/64(a), m = n/32(c) and m = n/16(e) and relatively residual

images (b,d,f) . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Results of recovery algorithm on the Venus with m = n/64(a),

m = n/32(c) and m = n/16(e) and relatively residual images (b,d,f) 41

3.7 Results of recovery algorithm on the MEMS with m = n/64(a),

m = n/32(c) and m = n/16(e) and relatively residual images (b,d,f) 43

3.8 Results of recovery algorithm on the in-vitro cell with m =

n/64(a), m = n/32(c) and m = n/16(e) and relatively residual

images (b,d,f) . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Results of recovery algorithm on the MEMS (a) and in-vitro

cell (c), with m = n/16(e) in the BFP and relatively residual

images (b,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



LIST OF FIGURES xi

4.1 Results of the denoising algorithms for 1D example. (a) is the

noiseless signal f(t), (b) is the noisy signal corrupted by zero-

mean additive Gaussian noise with standard deviation σ = 0.2.

(c,d) are the recovered signals form IGA and ISMGA respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Results of the ISMGA denoising (b,d) on the holograms of

MEMS (a,c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Results of the ISMGA denoising (b,d) on the holograms of in-

vitro cell (a,c) . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Results of the ISMGA denoising (b,d) on the holograms of

MEMS (a) and in-vitro cell (b) in the in-focus plane . . . . . . 54

4.5 Unwrapped phase of MEMS without denoising (a) and after

ISMGA denoising (b) . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Original numerical reconstruction of the astronaut (a) and de-

noised one(b) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Original numerical reconstruction of Venus (a) and denoised

one(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Set-up used for the optical projection of the 3D scene; MO: mi-

croscope objective, SF: spatial filter, L: lens, BS: beam splitter,

SLM: spatial light modulator, M: mirror. . . . . . . . . . . . . 57

4.9 Projections of lensless holograms using SLM. (a) and (c) are

the magnification of the +1 order projections of the original

holograms, while (b) and (d) are the projections of the de-

noised ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1 Examples of a convex set (left) and a non-convex set (right) . . 66

A.2 Graph of a convex function. The line connecting two points on

the graph must lie above the function. . . . . . . . . . . . . . 66





List of Tables

3.1 Calculation of the residualE for the astronaut and Venus holo-

grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Calculation of the residual E for the MEMS and in-vitro cell

holograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Calculation of SDR . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Calculation of contrast C . . . . . . . . . . . . . . . . . . . . 60

xiii





Introduction

S
ignal acquisition is a fundamental task of most contemporary digital sys-

tems. Due to the time varying nature of most practical signals, a great

deal of adaptive and/or robust techniques as well as a fine tuning are required

to get close to optimal reconstruction performances. A fundamental results

in signal processing is the Nyquist/Shannon sampling theorem, which states

that the number of samples needed to reconstruct a signal without error is de-

termined by its bandwidth. This sampling procedure allows to transform any

bandlimited continuous time signal in a discrete time signal without any loss

of information, and at the same time, provides a direct way of reconstruct-

ing the original signal. However, there are two main problems which arise

with this sampling technique. On one hand, sampling becomes more difficult

when the frequency support of the signal spans through a larger bandwidth,

on the other hand, depending on the entropy of the source, the discrete time

signal produced by the sampling may contain redundant samples, making a

source encoder necessary to describe the signal more compactly. Interestingly,

the Nyquist/Shannon rate sampling theorem, which has dominated digital pro-

cessing in science and technology since its origins, can be surprisingly leaped

over through Compressed Sensing (CS) theory. In fact, because most signals

of practical interest admit a sparse representation in a given basis, the emer-

gent framework of Compressed Sensing (CS) [1],[2], can potentially provide

a practical solution. It exploits the underlying sparsity, like l0 and l1 mini-

mization techniques as well as all suitable greedy algorithms typical of the CS

literature. Recently, it has shown that [1],[2],[3],[4],[5],[6] a signal having a

sparse representation can be recovered exactly from a small set of linear, non-

adaptive measurements. This result suggests that it may be possible to sense

sparse signals by taking far fewer measurements, hence the name compressed

sensing. However, there are three principal differences between the classi-

cal sampling and the CS. Firstly, sampling theory typically considers infinite

length, continuous-time signals, while CS is a mathematical theory focused on

xv



xvi Introduction

measuring finite-dimensional vectors in Rn. Secondly, rather than sampling

the signal at specific points in time, CS systems typically acquire measure-

ments in the form of inner products between the signal and more general test

functions. Thirdly, the two frameworks differ in the manner in which they deal

with signal recovery, i.e., the problem of recovering the original signal from

the compressive measurements. In the Nyquist-Shannon framework, signal

recovery is achieved through sinc-function interpolation, while, in CS, signal

recovery is typically achieved using highly nonlinear methods [7].

In recent years, CS has attracted considerable attention in areas of applied

mathematics, computer science, and electrical engineering by suggesting that it

may be possible to surpass the traditional limits of sampling theory. CS builds

upon the fundamental fact that we can represent many signals using only a few

non-zero coefficients in a suitable basis, i.e. sparse representation in a par-

ticular domain. Sparsity has long been exploited in signal processing and ap-

proximation theory for tasks such as compression [8] and denoising [9], and in

statistics and learning theory as a method for avoiding overfitting [10]. Sparsity

also figures prominently in the theory of statistical estimation and model selec-

tion [11], in the study of the human visual system [12], and has been exploited

heavily in image processing tasks, since the multiscale wavelet transform [13]

provides nearly sparse representations for natural images. The recent results

in [14] have proved insight on the theoretical bounds for the support recovery

error rate of the sparse signal, and at the same time has established a link be-

tween compressed sensing, information theory, statistical physics and random

matrix theory. However, the interdisciplinary nature of CS, as connected to in-

formation theory, signal processing, communications, algorithm design (such

as belief propagation), statistical physics and other related fields, has not been

yet fully explored. In particular, in this thesis we present the application of

CS framework in the field of Digital Holography (DH) [15],[16],[17], that is a

relatively recent interferometric technique. Holographic basic principle is the

recording of an interference pattern on a photographic plate (classical holog-

raphy) or by a charge coupled device (digital holography). In the latter case,

from the reconstructed wavefront, it is possible to manage the amplitude as

well as the phase of the optical wavefield. The capability to perform amplitude

image and phase contrast image makes DH a suitable tool in many application

fields from metrology to 3D display. Some of the applications of CS in DH

are described in [18],[19] for improvements in terms of experimental schemes,

compression and recently for holograms denoising [20]. Therefore, the thesis

is focused on the aforementioned tasks in DH with a particular attention on the
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problem of the denoising in DH for an efficient reconstruction and 3D display.

In the first part of this thesis, the CS theory is described mathematically as

well as the holographic process, then the second part considers the principal

results of the application of CS in DH. More precisely, Chapter 1 includes the

mathematical formulation of CS theory, focused firstly on the property of spar-

sity for the signals, then on the design of a sensing matrices that can be used

to recover the signals from undersampled measurements, and finally on the

noiseless as well as noisy signal recovery. In addition there is a description of

the most popular recovery algorithms that can be applied for both noiseless and

noisy signals. Chapter 2 contains the theoretical description of the full holo-

graphic process (optical and digital), from the recording to the reconstruction,

considering digital holograms recorded in both microscope and lensless con-

figurations. Using the discrete version of the Fresnel integral, the analysis of

the diffracted complex field is achieved through the in-focus numerical recon-

structions for both kind of digital holograms and the BFP reconstructions for

the digital holograms recorded in microscope configuration. It is shown also

the phase reconstructions and is proposed an algorithm of automatic search of

the in-focus reconstruction distance and BFP distance. Chapter 3 addresses

the combination between CS and DH in order to achieve a general imaging

scheme to optimize the digital recording. In particular, through the application

of the CS, we are able to recover the digital holograms using undersampled

measurements. It is also proposed an unified procedure of recovery of both

classes of aforementioned digital holograms, based on the sparsity transform

that is suitable for the different types of digital holograms, i.e. microscope

recording and lensless recording. Several examples are considered to confirm

the choice of the transform domain. In the Chapter 4 we address to the prob-

lem of recovery of the noisy digital holograms and we propose a new greedy

algorithm, based on a simple modification of the sparsity minimization algo-

rithm, that permits to achieve an efficient and robust denoising without any

prior information about the statistics of noise. Also in this case, several exam-

ple are considered to test the proposed method, which is compared with other

two denoising algorithms. In addition, display tests are performed in order to

show the effectiveness of the new denoising algorithm. Finally, upon com-

pletion of the dissertation, there are two appendices. the first one is focused

on a simple review of the Convex Optimization theory, on which the recov-

ery algorithms are based, while in the second one there is a description of the

MATLAB scripts realized to implement the algorithms for DH analysis and

recovery.





Chapter 1

Compressed Sensing

T
he sampling of continuous-time band limited signals is the theoretical

basis on which it has developed the digital revolution. The works of

Nyquist [21] and Shannon [22] show that the signals can be exactly recovered

from a set of uniformly spaced samples, taken at the Nyquist rate of twice the

highest frequency present in the signal of interest and, capitalizing on this dis-

covery, much of signal processing has moved from the analog to the digital

domain. Unfortunately, in many important applications, the resulting Nyquist

rate is so high that we end up with far too many samples. Therefore, despite ex-

traordinary advances in computational power, the acquisition and processing

of signals in several application areas continues to pose a remarkable chal-

lenge. Using the same concept of transform coding [23],[24], Compressed

Sensing (CS) has emerged as a new framework for signal acquisition. CS en-

ables a potentially large reduction in the sampling and computation costs for

sensing signals that have a sparse or compressible representation. While the

Nyquist/Shannon sampling theorem states that a certain minimum number of

samples is required in order to perfectly capture an arbitrary bandlimited sig-

nal, when the signal is sparse in a known basis we can reduce the number of

measurements that need to be stored. Consequently, when sensing sparse sig-

nals we might be able to do better than suggested by classical results. The

works of Candés, Romberg, Tao and Danoho [1-6] demonstrate that a finite-

dimensional signal having a sparse or compressible representation can be re-

covered from a small set of linear, nonadaptive measurements. In other word,

they claim that it may be possible to sense sparse signals by taking far fewer

measurements. In this chapter, there is a mathematical description of CS. The

first section is focused on the property of sparsity for the signals, then the de-

1



2 CHAPTER 1. COMPRESSED SENSING

sign of a sensing matrices for different applications and finally the description

of the problem of signal recovery in both cases of noiseless and noisy signals.

Finally, there is a description of the most popular algorithms able to solve the

recovery problem.

1.1 Sparse signals

Signals can often be well-approximated as a linear combination of just a few

elements from a known basis or dictionary. When this representation is exact

we say that the signal is sparse. Sparse signal models provide a mathematical

framework for capturing the fact that in many cases these high-dimensional

signals contain relatively little information compared to their ambient dimen-

sion. Mathematically, we say that a signal x, represented by a n-vector, is

k-sparse when it has at most k nonzeros

Σk = {x : ‖x‖0 ≤ k} (1.1)

where ‖ ·‖0 is the l0-norm. Σk denote the set of all k-sparse signals. Typically,

we will be dealing with signals that are not themselves sparse, but which admit

a sparse representation in some basis Ψ, that is an n × n matrix, and, in this

case we will still refer to x as being k-sparse, with the understanding that we

can express x as x = Ψc with ‖c‖0 ≤ k. The vector c represent the set of n
coefficients obtained by the projections of the signal on the basis and they can

be computed as ci = 〈x, ψi〉, i = 1, . . . , n, where {ψi}
n
i=1 are the vectors of

orthonormal basis.

As a traditional application of sparse models, we consider the problems

of image compression and image denoising. Most natural images are char-

acterized by large smooth or textured regions and relatively few sharp edges.

Signals with this structure are known to be very nearly sparse when represented

using a multiscale wavelet transform [13]. In a wavelet transform of a typical

natural image, most coefficients are very small. Hence, a good approximation

of the signal can be obtain by setting the small coefficients to zero to obtain a

k-sparse representation.

1.1.1 Geometry of sparse signals

Sparsity is a highly nonlinear model, since the choice of which dictionary el-

ements are used can change from signal to signal [25]. This can be seen by

observing that, given a pair of k-sparse signals, a linear combination of the



1.2. SENSING MATRICES 3

two signals will in general no longer be k sparse, since their supports may not

coincide. That is, for any x, z ∈ Σk we do not necessarily have that x+z ∈ Σk.

The set of sparse signals Σk does not form a linear space. Instead, it consists

of the union of all possible

(
n
k

)
canonical subspaces. For larger values of n

and k we must consider a potentially huge number of subspaces. This will have

significant algorithmic consequences in the development of the algorithms for

sparse approximation and sparse recovery.

1.1.2 Compressible signals

An important point in practice is that few real-world signals are truly sparse.

Rather they are compressible, meaning that they can be well-approximated by

a sparse signal. Such signals have been termed compressible, approximately

sparse, or relatively sparse in various contexts. Compressible signals are well

approximated by sparse signals in the same way that signals living close to a

subspace are well approximated by the first few principal components [26]. In

fact, we can quantify the compressibility by calculating the error incurred in

the approximation of a signal x by some x̂ ∈ Σk

σk,p(x) = min
x̂∈Σk

‖x− x̂‖p (1.2)

where ‖ · ‖p is the lp-norm. If x ∈ Σk then obviously σk,p(x) = 0 ∀p.

1.2 Sensing matrices

In this section there is the description of the standard finite-dimensional CS

model. Given a signal x ∈ Rn and a measurement systems that acquire m
linear measurements, we can represent this process mathematically as

y = Φx (1.3)

where Φ is anm×n-matrix and y is am-vector. The matrix Φ represents a di-

mensionality reduction, i.e., it mapsRn intoRm where typicallym≪ n. Note

that in the standard CS framework we assume that the measurements are non-

adaptive, meaning that the rows of Φ are fixed in advance and do not depend

on the previously acquired measurements. In certain settings, adaptive mea-

surement schemes can lead to significant performance gains. As noted earlier,

although the standard CS framework assumes that x is a finite-length vector
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with a discrete-valued index (such as time or space), in practice we will often

be interested in designing measurement systems for acquiring continuously-

indexed signals such as continuous-time signals or images. It is sometimes

possible to extend this model to continuously-indexed signals using an in-

termediate discrete representation. For now, we will simply think of x as a

finite-length window of Nyquist-rate samples, and we will temporarily ignore

the issue of how to directly acquire compressive measurements without firstly

sampling at the Nyquist rate. In the following subsection, we give details about

how to design the sensing matrix Φ to ensure that it preserves the information

in the signal x and how can be recovered the original signal x from the mea-

surements y. Because we want consider the case in which our data is sparse

or compressible, we will see that we can design matrices Φ with m ≪ n that

ensure that we will be able to recover the original signal accurately and effi-

ciently using a variety of practical algorithms. In the following we consider

firstly a few desirable properties that we might wish Φ to have and finally we

give a design procedure.

1.2.1 Null space condition

A natural place to begin is by considering the null space of Φ, denoted

N (Φ) = {z : Φz = 0} (1.4)

If we wish to be able to recover all sparse signals x from the measurements

Φx, then it is immediately clear that for any pair of distinct vectors x,x′ ∈ Σk,

we must have Φx 6= Φx′, otherwise it would be impossible to distinguish x

from x′ based solely on the measurements y. This concept is expressed by the

following theorem

Theorem 1.1: Φ uniquely represents all x ∈ Σk if and only if N (Φ)
contain no vector in Σ2k.

Proof: if Φx = Φx′, then Φ(x− x′) = 0 with x− x′ ∈ Σ2k.

1.2.2 The restricted isometry property

When the measurements are contaminated with noise or have been corrupted

by some errors such as quantization, it will be useful to consider somewhat

stronger conditions. In [27], Candés and Tao introduced the following isometry

condition on matrices Φ and established its important role in CS.
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Definition 1.1: The matrix Φ satisfies the restricted isometry property

(RIP) of order k if there exists a δk ∈ (0, 1) such that

(1− δk)‖x‖
2
2 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖

2
2 (1.5)

holds ∀x ∈ Σk

If a matrix Φ satisfies the RIP, then this is sufficient for a variety of algo-

rithms to be able to successfully recover a sparse signal from noisy measure-

ments.

1.2.3 Coherence matrices

While the Null Space Condition (NSP) and RIP all provide guarantees for the

recovery of k-sparse signals, verifying that a general matrix Φ satisfies any of

these properties has a combinatorial computational complexity, since in each

case one must essentially consider

(
n
k

)
submatrices. In many cases it is

preferable to use properties of Φ that are easily computable to provide more

concrete recovery guarantees. The coherence of a matrix is one such property

[28],[29].

Definition 1.2: The coherence of a matrix Φ is the largest absolute inner

product between any two columns φi, φj of (Φ)

µ (Φ) = max
1≤i<j≤n

|〈φi, φj〉|

‖φi‖2‖φj‖2
(1.6)

It is possible to show that the coherence of a matrix is always in the range

µ (Φ) ∈
[√

m−n
m(n−1) , 1

]
, where the lower bound is known as the Welch bound

[30],[31].

1.2.4 Sensing matrix construction

The goal of this section is to show the different choice of sensing matrix that

satisfied the three conditions defined above, i.e NSP, RIP and Coherence. De-

spite there are well known matrices that verified the above properties as for

example the Vandermonde matrix [32], the Gabor frame generated from the

Alltop sequence [33] and more general equiangular tight frames [31] and oth-

ers. Unfortunately, in many real-world settings, these results would lead to

an unacceptably large requirement on m dimension. These limitations can
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be overcome by randomizing the matrix construction. For example, it can be

shown that random matrices will satisfy the RIP with high probability if the

entries are chosen according to a Gaussian, Bernoulli, or more generally any

sub-gaussian distribution. In addition, using random matrices to construct Φ

has a different benefits. It is possible to recover a signal using any sufficiently

large subset of the measurements [34]. More important is that, in practice, we

are often more interested in the setting where x is sparse with respect to some

basis Ψ. In this case what we actually require is that the product ΦΨ satisfies

the RIP. If we were to use a deterministic construction then we would need to

explicitly take Ψ into account in our construction of Φ, but when Φ is chosen

randomly we can avoid this consideration.

Therefore, to recover efficiently the signal x, the much simple choice is to

take Φ according to any sub-gaussian distributions and Ψ as an orthonormal

basis. In fact, in this case it can easily show that the matrix ΦΨ will also have

a sub-gaussian distribution, and so provided that m is sufficiently high ΦΨ

will satisfy the RIP with high probability. This property, sometimes referred

to as universality, constitutes a significant advantage of using random matrices

to construct Φ.

1.3 Signal recovery via l1-minimization

Now we consider a natural first approach to the problem of sparse recovery.

Given measurements y and the knowledge that our original signal x is sparse

(or compressible) in a particular basis Ψ, it is natural to attempt to recover x

by solving the following optimization problem

x̂ = argmin ‖Ψx‖0 subject to x ∈ S(y) (1.7)

where the set S(y) ensures that x̂ is consistent with the measurements. The

objective function in (1.7) is nonconvex, therefore the research of a solution

that approximates the true minimum is an NP-hard problem. However, by

minimizing the ℓ1-norm instead, the relaxation leads to the convex problem

x̂ = argmin ‖Ψx‖1 subject to x ∈ S(y) (1.8)

which makes it computationally feasible if S(y) is convex. The relaxation

is justified to the fact that, within the CS framework, it is well known that

in the absence of additive Gaussian noise, l0 and l1-minimization techniques

allow perfect reconstruction of the original sparse signal. This property, in
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conjunction with the Lipschitz continuity of the l0 and l1 norms, guarantees,

in the presence of low-power noise, a robust performance in terms of signal

reconstruction. In the hypothesis that the constraint S(y) is convex, it can be

formulated the optimization problem (1.8) as a linear programming problem,

that is typically considered computationally tractable. More details about the

relaxation procedure and linear programming is give in Appendix A.1. Now

we consider two different formulation of the optimization problem (1.8) related

to the choice of the constraint.

1.3.1 Noiseless signal recovery

In the case in which the measurements (y) are exact and noise-free, we can

take the set S(y) as

S(y) = {x : y = ΦΨx} (1.9)

and the optimization problem (1.8) becomes

x̂ = argmin ‖Ψx‖1 subject to y = ΦΨx (1.10)

In literature several algorithms that permit to solve the problem (1.10) in an

efficient computational time exist. In fact, this problem has been studied in

the signal analysis literature under the name Basis Pursuit (BP) [35]. Other

recent algorithms are Orthogonal Matching Pursuit (OMP) [36] and Stagewise

Orthogonal Matching Pursuit (StOMP) [37], which is a greedy algorithm sim-

ilar to OMP, but faster than it, in the sense that it requires less iterations in the

recovery process. The description of these algorithm is reported in the section

1.4.

1.3.2 Noisy signal recovery

The ability to perfectly reconstruct a sparse signal from noise-free measure-

ments represents a very promising result. However, in most real-world sys-

tems the measurements are likely to be contaminated by some form of noise.

In fact, systems which are implemented in physical hardware will be subject

to a variety of different types of noise depending on the setting. Another im-

portant noise source is on the signal itself. In many settings the signal x to be

estimated is contaminated by some form of random noise. The implications of

this type of noise on the achievable sampling rates has been recently analyzed

in [38],[39],[40]. Therefore, it is very important to consider a much real case
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of recovering in which we have a noisy signals. In this case, we can take the

set S(y) as

S(y) = {x : ‖y − ΦΨx‖
2
≤ ǫ} (1.11)

where ǫ is a system parameter dependent on the noise variance. Replacing this

constraint in the problem (1.8), it becomes

x̂ = argmin ‖Ψx‖1 subject to ‖y − ΦΨx‖2 ≤ ǫ (1.12)

To solve this problem, typically it uses the Least Angle Regression (LARS)

algorithm [41] of which there is a brief description in the following section.

1.4 Algorithms for signal recovery

In this appendix there is a description of different algorithms able to solve the

convex optimization problem (1.10). First of all, it is shown how to reformulate

this problem as a LP. In fact, write it out in an equivalent form, with θ = Ψx

being the optimization variable:

min ‖θ‖1 subject to y = Φθ (1.13)

This can be formulated as a linear programming problem: let A = [Φ −Φ]
be the m× 2n matrix. The following LP

min 1T z subject to y = Az, z � 0 (1.14)

has an optimal solution z∗ ∈ R2n which can be partitioned as z∗ = [u∗ v∗]
with u∗,v∗ ∈ Rn. It is possible to show that [2] the optimal solution of

problem (1.13) is θ∗ = u∗ − v∗ and, therefore, x∗ = ΨT θ∗ is the optimal

solution of the problem (1.10). Similar calculations lead to the optimal solution

also for the optimization problem (1.12)

1.4.1 Basis Pursuit

BP [35] finds signal representations in overcomplete dictionaries by convex

optimization. It obtains the decomposition that minimizes the l1 norm of the

coefficients occurring in the representation. Because of the non differentiabil-

ity of the l1 norm, this optimization principle leads to decompositions that can

have very different properties from the Method of Frames [42]. Because it is
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based on global optimization, it can stably super-resolve in ways that Match-

ing Pursuit (MP) [43] can not. BP can be used with noisy data by solving an

optimization problem trading off a quadratic misfit measure with an l1 norm

of coefficients. It can stably suppress noise while preserving structure that is

well-expressed in the dictionary under consideration. The principle of BP is to

find a representation of the signal that solves the optimization problem (1.13).

The BP problem can be reformulated as a LP in the standard form by making

the translations given in Eq. (1.14). Several algorithms from the LP literature

as a candidate for solving the BP optimization problem. Both the simplex and

interior-point algorithms offer interesting insights into BP.

With a simple changes, the optimization problem (1.13) becomes a denois-

ing problem. It is called Basis Pursuit De-Noising [35] (BPDN), and refers to

solution of

min
1

2
‖y −Φθ‖22 + ǫ ‖θ‖1 (1.15)

where the solution θ̂ is a function of the parameter ǫ, that controls the size of

the residual. In [44] is showed that this optimization problem can be solved

using the perturbed linear programming, that is a quadratic programming, but

retains structure similar to LP.

1.4.2 Orthogonal Matching Pursuit

A family of iterative greedy algorithms are shown to have the approximate

reconstruction property, generally with small computational complexity. Such

algorithms include MP [43], OMP [29],[36] and their derivations [45],[46].

OMP iteratively incorporates in the reconstructed signal the component from

the measurement set that explains the largest portion of the residual from the

previous iteration [29]. With reference to the optimization problem (1.13) the

algorithm is

Algorithm 1 (OMP)

INPUT:

• Sensing matrix Φ ∈ Rm×n

• Vector of measurement y ∈ Rm

OUTPUT:

• Signal estimated θ̂ ∈ Rn
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• Support estimated ΛK , where K is the number of iterations

• Residual r(K) ∈ Rm

PSEUDOCODE

• Initialization: r(0) = y, Λ(0) = ∅

• Repeat until {stopping criteria}

c
(k)
i = 〈φir

(k−1)〉

λ(k) = argmaxi |c
(k)
i |

Λ(k) = Λ(k−1) ∪ {λ(k)}
Φ(k) = [Φ(k)φλ(k) ]
θ(k) = argminθ ‖y −Φ(k)θ‖22
r(k) = y −Φ(k)θ(k)

The stopping criteria can be a fixed number of iterations or iterate until

‖r(k)‖2 ≤ ̺, with a predeterminate ̺ ≥ 0. The conditions for proper termina-

tion involve knowledge of the signal sparsity or the noise variance to achieve

the desired denoising effect.

1.4.3 Stagewise Orthogonal Matching Pursuit

StOMP [37] aims to achieve an approximate solution to y = Φθ, where the

sensing matrix Φ comes from the Uniform Spherical ensemble (USE). It oper-

ates in S iterations, building up a sequence of approximations θ(0), . . . θ(S) by

removing detected structure from a sequence of residual vectors r(0), . . . r(S).
For each s = 1, . . . , S, let I(s) the estimation of the locations of the nonzeros

in θ(s), σ(s) a formal noise level, t(s) a threshold parameter, ΦI(s) them×|I(s)|
matrix with columns chosen using index set I(s), the algorithm operates as fol-

low

Algorithm 2 (StOMP)

INPUT:

• Sensing matrix Φ ∈ Rm×n

• Vector of measurement y ∈ Rm

OUTPUT:

• Sequence of signal estimated θ(0), . . . θ(S)
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• Sequence of the residual r(0), . . . r(S)

• Sequence of estimates I(1), . . . , I(S) of the locations of the nonzeros

PSEUDOCODE

• Initialization: r(0) = y, θ(0) = 0

• Repeat until {s ≤ S}
c(s) = ΦT r(s−1)

J (s) = {j : |c
(s)
j | ≥ t(s)σ(s)}

I(s) = I(s−1) ∪ J (s)

(
θ(s)

)
I(s)

=
(
ΦT

I(s)
ΦI(s)

)−1
ΦT

I(s)
y

r(s) = y −Φ(s)θ(s)

s := s+ 1

The term
(
θ(s)

)
I(s)

represents the approximation θ(s) supported in I(s).
StOMP runs much faster than competing proposals for sparse solutions, such

as l1 minimization and OMP, and so is attractive for solving large-scale prob-

lems.

1.4.4 Least Angle Regression method

LARS [41] is a new model selection algorithm that is a useful and less greedy

version of traditional forward selection methods. Both Lasso and Stagewise

are variants of a basic procedure called of Least Angle Regression, abbrevi-

ated LARS (the final S suggesting Lasso and Stagewise). LARS is a stylized

version of the Stagewise procedure that uses a simple mathematical formula to

accelerate the computations. The steps of the LARS algorithm are listed below

• Start with all coefficients equal to zero.

• At iteration β = 1, find the predictor most correlated with the response,

say p1.

• At iteration β = 2 take the largest step possible in the direction of this

predictor until some other predictor, say p2, has as much correlation with

the current residual.

• At iteration β = 3, proceed in a direction equiangular between the two

predictors until a third variable p3
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• Repeat until β = B

Therefore, the LARS algorithm proceeds equiangularly between β − 1
predictors, i.e. along the least angle direction, until a βth variable enters, for

β = 1, . . . , B.



Chapter 2

Digital Holography

H
olography got its name from the Greek words holos, meaning whole,

and graphein, meaning to write. It is a means for recording and re-

constructing the whole information contained in an optical wavefront, namely

amplitude and phase, and not just intensity as in photography. Dennis Gabor

invented holography in 1948 as a lensless process for image formation by re-

constructed wavefront with the aim of improving electron microscope images

[47]. Gabor’s ideas was unsuccessful in the field of electron microscopy be-

cause of practical problems but its validity in the optical field was confirmed

by other researches [48], [49]. Because of the superimposition and the poor

quality of the reconstructed images, the interest around holography declined up

to the 1960s when the development of lasers made available a powerful source

of coherent light. Holography is made of two separated processes: the record-

ing of the hologram, and the object retrieval. The first stage is accomplished

by means of a photographic film recording the interference pattern produced

by the light waves scattered by an object and a reference beam derived from

the same coherent light source, as shown in Figure 2.1 (a). Since the inten-

sity at any point in this interference pattern also depends on the phase of the

object wave, the resulting recording (the hologram) contains information on

the phase as well as the amplitude of the object wave. The second stage is

the formation of the object’s image. If the hologram is illuminated once again

with the original reference wave, as shown in Figure 2.1 (b), it reconstructs

the original object wave. Indeed, when the hologram was illuminated with the

original collimated beam, it produced two diffracted waves, one reconstruct-

ing an image of the object in its original location, and the other, with the same

amplitude but the opposite phase, forming a second, conjugate image. A ma-

13
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Figure 2.1: (a) Hologram recording: the interference pattern produced

by the reference wave and the object wave is recorded; (b) Image re-

construction: light diffracted by the hologram reconstructs the object

wave.

jor drawback of the technique proposed in [47] was the poor quality of the

reconstructed image, because it was degraded by the conjugate image, which

was superimposed on it, as well as by scattered light from the directly trans-

mitted beam. The twin-image problem was solved in [50], [51] by developing

of the off-axis reference beam technique. They used a separate reference wave

incident on the photographic plate at an appreciable angle in respect to the ob-

ject wave. As a result, when the hologram was illuminated with the original

reference beam, the two images were separated by large enough angles from

the directly transmitted beam, and from each other, to ensure that they did not

overlap. Holography became a working tool to record and reconstruct whole

wavefields both in amplitude and phase and thanks to this unique feature it

found application in numerous fields. One of the most important is the use

od holographic interferometry in the field of interferometric metrology [52],

[53]. This technique allows the measurement of the changes of the phase of

the wavefield and thus the changes of any physical quantities that affect the

phase. The idea of using computer for reconstructing a hologram was first pro-

posed by Goodman and Laurence in 1967 and then by Kronrod et al. [15], [54].

However, numerical reconstruction of imaged objects has been accomplished

quite recently [17]. The development of computer technology and solid state

image sensors made it possible to record hologram directly on charge cou-

pled device (CCD) cameras. This important step enabled full digital recording

and reconstruction of holograms without the use of photographic media, com-

monly referred to as digital holography (DH). Since then, many spectacular

applications have been demonstrated such as microscopic imaging by phase-

contrast digital holographic microscopy [55], 3D object recognition [56] and
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3D dynamic display [57]. This chapter describes the entire holographic pro-

cess by a detailed analysis of image formation in digital Fresnel holography

[58].

2.1 Hologram formation

Phenomena involved in a digital holographic process are linear processes.

Thus, it seems to be a pertinent way to search for a general relation between

object and image that includes convolution products. The main processes that

must be taken into account are the following: diffraction, interferences, spa-

tial integration and sampling by pixels, and digital reconstruction. The recon-

structed field can be written in the form of a convolution product between the

real object and the impulse response of the full digital holographic process.

Considering a reference system of coordinates {x, y}, attached to the princi-

pal surface of a real object, and a z-axis, perpendicular to this surface, that

corresponds to the propagation direction of the diffracted light beam, we have

FR(x, y) = F (x, y)⊗ T (x, y) (2.1)

where FR(x, y) is the reconstructed field, F (x, y) is the real object and

T (x, y) is the full process related to the image formation. The object surface

illuminated by a coherent beam produces the following object wavefront

F (x, y) = F0(x, y) exp (jφ0(x, y)) (2.2)

where φ0(x, y) is related to the roughness of the object surface and can be

modeled as uniformly distributed, i.e. φ0(x, y) ∼ U(−π, π). Is possible that

the object is not perfectly centered in the reference set of coordinates x,y but it

is slightly laterally shifted at coordinate {x0, y0}. Without loss of generality,

we consider the case x0 = y0 = 0.

The object wavefront propagates through at distance d0, in which the ref-

erence set of coordinates is chosen to be {x′, y′}, and the diffracted field pro-

duced by the object is given in the Fresnel approximations [59] by

O(x′, y′, d0) =
j exp

[

j
2πd0
λ

]

λd0

∫ ∫
R2 F (x, y)×

× exp
{
j π
λd0

[
(x− x′)2 + (y − y′)2

]}
dxdy

(2.3)

where λ is the wavelength of beam. The distance d0 is called recording

distance. With a simple mathematical manipulation, we can rewrite Eq. (2.3)
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in terms of Fourier Transform (FT )

O(x′, y′, d0) = Z(x′, y′, d0)FT {F (x, y)W (x, y, d0)} (2.4)

with 



Z(x′, y′, d0) =
j

λd0
exp

{
2π
λ

[
d0 +

x′2+y′2

2d0

]}

W (x, y, d0) = exp
{
j π
λd0

(
x2 + y2

)} (2.5)

As shown in Eq. (2.4), each optical field consists of an amplitude distri-

bution as well as a phase distribution but all detectors or recording material

only register intensity: the phase is lost in registration process. If two waves of

the same frequency interfere, the resulting intensity distribution is temporally

stable and depends on the phase difference. This is used in holography where

the phase information is coded by interference into a recordable intensity. The

diffracted field produced in Eq. (2.4) interferes with a reference wave having

spatial coordinates {uR, vR} on the plane {x′, y′}

R(x′, y′) = aR exp
{
j2π

(
uRx

′ + vRy
′
)
+ jΩ

(
x′, y′

)}
(2.6)

where the terms Ω (x′, y′) corresponds to aberrations of the reference

wavefront. The choice for a plane reference wave is motivated by the fact

that, if the reference wave is spherical, its curvature can be inserted in the

computation of the diffracted field [60], but if the curvature is false, this results

in a focusing error. Furthermore, in off-axis Fresnel holography, the main pa-

rameter is the spatial frequencies of the reference wave, even if it is plane or

spherical. This parameter is related to the angle between the object diffracted

wave and the reference wave (see figure).

Finally, in the interference plane, the hologram H is written as

H(x′, y′, d0) = |O(x′, y′, d0)|
2 + |R(x′, y′)|2+

+ R∗(x′, y′)O(x′, y′, d0) +R(x′, y′)O∗(x′, y′, d0)
(2.7)

In the Eq. (2.7) we see three terms, also called diffraction order terms. The

zero order term, indicated by Q(x′, y′, d0) is given by

Q(x′, y′, d0) =
∣∣O(x′, y′, d0)

∣∣2 +
∣∣R(x′, y′)

∣∣2 (2.8)

while the other two orders, noted by H+1(x′, y′, d0) and H−1(x′, y′, d0),
are called +1 order (or real order) and -1 order (or conjugate order)

H+1(x′, y′, d0) = R∗(x′, y′)O(x′, y′, d0)
= aR |O(x′, y′, d0)| exp {j arg [O(x′, y′, d0)]}×
× exp {−j2π (uRx

′ + vRy
′)− jΩ (x′, y′)}

(2.9)
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and, it is simple to note that H−1(x′, y′, d0) =
{
H+1(x′, y′, d0)

}∗
. Fi-

nally, the Eq. (2.7) can be rewritten as

H(x′, y′, d0) = Q(x′, y′, d0) +H+1(x′, y′, d0) +H−1(x′, y′, d0) (2.10)

2.2 Digital recording

In DH, the hologram is recorded with a matrix of pixels. Each pixel induces

a sampling of the hologram and also a spatial integration due to its extended

surface. Generally, the detector includes M × N pixels of pitches px and py,

each of them sized ∆x ×∆y. Therefore, the recorded hologram is [61]

Hp(kpx, lpy, d0) =
[
H(x′, y′, d0)⊗Π∆x,∆y(x

′, y′)
]
(kpx,lpy)

(2.11)

where Π∆x,∆y(x
′, y′) is called pixel function

Π∆x,∆y(x
′, y′) =

{ 1
∆x∆y

if ‖x′‖ ≤ ∆x/2, ‖y
′‖ ≤ ∆y/2

0 otherwise
(2.12)

Therefore, we can rewritten the Eq. (2.10) in digital form as

Hp(kpx, lpy, d0) = Qp(kpx, lpy, d0)
+ H+1

p (kpx, lpy, d0) +H−1
p (kpx, lpy, d0)

(2.13)

where the three diffraction terms are the discrete versions of the terms given

in Eq. (2.8) and Eq. (2.9) obtained by the convolution with the pixel function

(2.12).

2.2.1 Digital holograms recorded in microscope configuration

Quantitative phase-contrast microscopy (QPM) is a highly demanding exper-

imental process used in various disciplines. Among several that can be used,

two major categories exist for full-field, quantitative phase microscopy. One of

these is DH [62], which is used, for example, for silicon microelectromechani-

cal system (MEMS) structures, for biological objects [63] and for microfluidics

[64]. The QPM is obtained conceptually by subtraction of two phase maps via

optical [65] synthetic [66] method, in a manner resembling holographic inter-

ferometry [67].

In this section it shown the recording step for a particular MEMS, reported

in Figure 2.2 (a), and for an in-vitro cell, reported in Figure 2.3 (a). In order
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to compute the phase map (that is shown in the section 2.4.3), two different

digital holograms of both MEMS (see Figure 2.2 (b,c)) and cell (see Figure 2.3

(b,c)) are acquired, in the first case in reflection mode and in the other case in

transmission mode, by means of a Mach-Zehnder interferometric microscope,

superposition unit of which is shown in Figure 2.4. The setup is composed by

the laser with wavelength λ = 532nm, and the microscope objective (MO)

with a focal length f = 9.0mm. The CCD detector has 1024 × 1024 square

pixels, the size of which is px = py = 6.7µm and the recording distance for

the MEMS is d0 = 205mm, while for the cell is d0 = 100mm. Note that, in

order to isolate the in-vitro cell under analysis, holograms of different parts of

the sample are recorded. The size of these holograms are 256× 256 pixels.

Figure 2.2: (a) Microscopic photo of the MEMS. (b,c) are two

recorded holograms of (a) in different experimental conditions

In addition to the QPM, many other applications can be made of digital

holograms acquired in microscope configuration, the most of which are based

on the property of this kind of digital holograms and its numerical reconstruc-

tions. This last aspect will be clarified in the section 2.4.1.
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Figure 2.3: (a) In-vitro cell’s photo in white light. (b,c) are two

recorded holograms of (a) taken in different location

Figure 2.4: Superposition unit of the microscope DH setup in (a)

transmission mode and (b) reflection mode: S, sample; BS, beam split-

ter; MO, microscope objectives.
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2.2.2 Digital holograms recorded in lensless configuration

The lensless configuration is typically used to acquire digital holograms of

macro objects. In fact no lens is needed to magnify the objects, as shown

by the acquisition setup in Figure 2.5 This kind of holograms are suitable to

Figure 2.5: Setup for recording the holograms of astronaut puppet and

Venus statuettes

holographic displays [57], that have the unique advantage of representing all

possible visual depth cues, autostereoscopically (without glasses), with both

vertical and horizontal parallax, giving an appropriate medium for unlimited si-

multaneous viewers at arbitrary viewing positions, and without the potentially

nausea-inducing accommodation-vergence rivalry inherent in modern stereo-

scopic 3D cinema. Several macro-objects can be record with this unit, depend-

ing on the dimensions of the objects under consideration. Typically it uses

a laser with visible wavelength such as λ = 532nm. Instead, the recording

of objects with size of tens of centimeters is obtained through the same unit

shown in Figure 2.5 but using an infrared laser [68], i.e. λ = 10.6µm. In this

section two object are considered, the first one is a puppet of astronaut (Fig-

ure 2.6), about 3cm high, and the other one is a statuette of Venus (Figure 2.7),

about 20cm high, whose holograms are acquired with visible laser and infrared

laser respectively. Another difference in the used setups is the resolution of the

detectors. In fact, the recorded hologram of the astronaut puppet is composed

by 1024 × 1024 pixels, with a recording distance d0 = 790mm, by using a

CCD camera with pixel size 4.4µm× 4.4µm, while the recorded hologram of

the Venus statuette is 640× 480 pixels 25µm× 25µm in size at the recording
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distance d0 = 490mm. In addition, in the recording step, a spherical reference

wave, with curvature radius r = 450mm, is used for the Venus hologram. The

reference beam, in this case, can be written as W (x, y,−r) where W (·) is the

function defined in Eq. (2.5).

Figure 2.6: (a) Photo of the puppet of astronaut. (b) is the recorded

hologram of (a)

2.3 Image formation

According to the diffraction theory, the diffracted fields in the three diffraction

orders at any arbitrary distance d from the recording plane can be computed

with (K,L) ≥ (M,N) data points by evaluating the discrete version of Fres-

nel integral used in Eq. (2.3). Because the Fresnel transform is proportional

to a Fourier transform, as shown in Eq. (2.4), the numerical Fresnel transform

will be proportional to the Discrete Fourier Transform (DFT ). Therefore,

without loss of generality, we can write the numerical diffracted field at dis-

tance d as

FR(X,Y, d) = Z(X,Y, d)DFT {Hp(kpx, lpy, d)W (kpx, lpy, d)} (2.14)

Because the (DFT ) operator is linear, we can replace the Eq. (2.13) in the
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Figure 2.7: (a) Photo of the statuette of Venus. (b) is the recorded

hologram of (a)

Eq. (2.14) obtaining

FR(X,Y, d) = A(X,Y, d) + F+1
R (X,Y, d) + F−1

R (X,Y, d) (2.15)

whereA(X,Y, d), F+1
R (X,Y, d) and F−1

R (X,Y, d) are the discrete Fresnel

transform of zero order, +1 order and -1 order respectively. When the distance

d corresponds to the in-focus distance, i.e. d = −d0, the Eq. (2.15) is called

the image reconstruction. Note that, using the properties of DFT , the -1 order

can be obtained from the +1 order by the relation

F−1
R (X,Y,−d) = {F+1

R (−X,−Y, d)}∗ (2.16)

Still, the zero order term transports a redundant information about the

recorded object. Typically, it can be suppressed using different techniques.

There are several methods based on prior information about the object and are

typically iterative algorithms [69]. Other methods don’t use any information,

but in these cases the zero order term is only reduced. The most used of them

is the filter using High-pass kernel [70]. Finally, supposing that the zero order

term was reduced or suppressed and considering the Eq. (2.16), we will focus

only on the +1 order. In [58] is demonstrated that the +1 order can be obtained

as

F+1
R (X,Y, d) = K × F (−X d0

d
,−Y d0

d
)⊗Π∆x,∆y(X,Y )⊗

⊗ W̃ab(X,Y )⊗ W̃d(X,Y )⊗ W̃ ∗
NM (X,Y )⊗

⊗ δ (X + λuRd, Y + λvRd)

(2.17)
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This relation indicates that the reconstructed object is related to the real one

by a convolution relation with different contribution. The first term is the pixel

function, the second is due to aberrations of the reference wavefront, i.e. if

Ω (x′, y′) = 0 then W̃ab(X,Y ) = δ(X,Y ), the third is due to the focus-

ing error, i.e. if we consider the in-focus reconstruction distance d = −d0,

W̃d(X,Y ) = δ(X,Y ), the fourth is the filtering function of the 2D (DFT )

and it is due to the finite size of the recording [71], [72], [73] and the last con-

volution term is a localization function in the reconstructed field [61]. More-

over K includes irrelevant constants and phase terms. The Eq. (2.17) can be

also written in the general form given in Eq. (2.1) by introducing the impulse

response function of the holographic process

T (X,Y ) = K ×Π∆x,∆y(X,Y )⊗ W̃ab(X,Y )⊗

⊗ W̃d(X,Y )⊗ W̃ ∗
NM (X,Y )⊗

⊗ δ (X + λuRd, Y + λvRd)

(2.18)

that is called the resolution function of the digital Fresnel holography.

2.3.1 Noise components

The description of the image formation, given in the previous section, does not

consider the real situation of recording. In fact, in each real acquisition system,

always there are some contributions of noise that corrupt the recorded data. In

order to consider the presence of noise in digital holograms, firstly we rewrite

the Eq. (2.10) as follows

H(x′, y′, d0) = Q(x′, y′, d0) + 2aR
∣∣O(x′, y′, d0)

∣∣ cos
[
̺(x′, y′, d0)

]
(2.19)

where we have set

̺(x′, y′, d0) = arg [O(x′, y′, d0)]− 2π
(
uRx

′ + vRy
′
)
− Ω

(
x′, y′

)
. (2.20)

The hologram intensity is normally corrupted by a mixture of speckle noise

[74],[75],[76] ns(x
′, y′), and an additive Gaussian noise na(x

′, y′) and Eq.

(2.19) becomes

H̃(x′, y′, d0) = Q(x′, y′, d0) + 2aR |O(x′, y′, d0)| ×
× cos [̺(x′, y′, d0) + ns(x

′, y′)] + na(x
′, y′)

(2.21)

Obviously, repeating the full process of the image formation on the

recorded holograms modeled by Eq. (2.21), the image reconstruction will be

corrupted by noise.
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2.4 Numerical reconstruction

The digital recorded holograms are reconstructed in the image plane using Eq.

(2.22). However, to numerically manage the reconstructed field, it necessary to

compute efficiently the image reconstruction and then we compute the DFT
of the holograms using the Fast Fourier Transform (FFT )algorithm.

FR(k
′ρx, l

′ρy, d) = Z(k′ρx, l
′ρy, d)×

× FFT
{
H̃p(kpx, lpy, d)W (kpx, lpy, d)

}
(2.22)

The Eq. (2.22) shows the numerical diffracted field obtained by the re-

construction with FFT . Recalling that the size of digital recorded holograms

is M × N , while the size of the diffracted field is L × K, in general results

(K,L) ≥ (N,M) but typically equal dimensions are used. The quantities

ρx, ρy are the pitches in the reconstruction plane and they are related to the

pitches in the hologram plane by the following equations
{
ρx = λd0

Npx

ρy = λd0
Mpy

(2.23)

In the following are computed the numerical reconstructions of the objects

shown in the sections 2.2.1 and 2.2.2. In order to show the reconstructions we

compute both the amplitude and phase maps of diffracted fields. As told in

the section 2.3, at each holograms is applied an high-pass convolution kernel

able to suppress the zero-order term. A particular considerations is necessary

for the numerical reconstruction of the hologram of the Venus statuette. As

mentioned in the section 2.2.2, this digital holograms was acquired using a

spherical reference beam and in this case the reconstruction formula, given in

Eq. (2.22), becomes

FR(X,Y, d) = Z(X,Y, d)DFT {Hp(kpx, lpy, d)W (kpx, lpy, dIR)} (2.24)

The reconstruction distance in Eq. (2.24) is given by dIR = r−d
rd

and results

that

W

(
kpx, lpy,

r − d

rd

)
=W (kpx, lpy, d)W (kpx, lpy,−r) (2.25)

2.4.1 Amplitude reconstruction

Firstly we consider the in-focus distance given by d = −d0, i.e. for the holo-

grams recorded in microscope configuration d = −205mm for MEMS and
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d = −100mm for in-vitro cell. In Figure 2.8 are shown the amplitude recon-

structions for the cases of digital holograms recorded in microscope configu-

ration.

Figure 2.8: (a,b) are the amplitude reconstructions of holograms of

MEMS, while (c,d) are the amplitude reconstructions of holograms of

in-vitro cell

Applying the relation (2.16) we obtain the in-focus reconstruction for the

-1 order at distance d = d0 for both examples (Figure 2.9).

For both holograms of astronaut and Venus are repeated the same oper-

ations and their amplitude reconstructions are shown in Figure 2.10. There-
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Figure 2.9: (a,b) are the amplitude reconstructions of holograms of

MEMS with focus on the -1 order, while (c,d) are the amplitude recon-

structions of holograms of in-vitro cell with focus on the -1 order
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fore,for the hologram of astronaut, we have d = −790mm (focus on +1 order)

and d = 790mm (focus on -1 order). Instead, as has been said in the pre-

vious section, the hologram of Venus is reconstructed according to the Eq.

(2.24), therefore we consider both in-focus distance d = −490mm and curva-

ture radius of the spherical reference wave r = −450 for the +1 order, while

d = 490mm, r = 450mm for the -1 order).

Figure 2.10: (a,c) are the amplitude reconstructions of holograms with

focus on the +1 order, while (b,d) are the amplitude reconstructions of

holograms with focus on the -1 order

As shown in all amplitude reconstructions, the relation (2.16) is equivalent
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to the rotation of 180˚ of the complex reconstructed fields. Finally, exist an-

other digital reconstruction distance for the hologram recorded in microscope

configuration exist, called Back Focal Plane (BFP) distance, that has a great

interest in several applications [77],[78]. At this distance, the complex wave-

field is proportional to the FT F (·, ·) of the complex amplitude of the wave

at an input plane, regardless of its distance d from the lens according to the

equation [79]

g(X,Y, dBFP ) = SlSdF

(
X

λf
,
Y

λf

)
(2.26)

where Sd = exp
{
jπ

(
X2 + Y 2

) (d−f)
λf2

}
is a phase factor depending on d,

Sl =
j
λf

exp
{
−j4π f

λ

}
. and f is called the focal length. For the considered

examples, it results dBFP = −615mm for the MEMS and dBFP = −425mm
for the in-vitro cell. In Figure 2.11 are reported the amplitude BFP recon-

structions for both cases in which the terms that assume the minimum spatial

occupation are the +1 orders.

Figure 2.11: (a) is the amplitude BFP reconstructions of holograms of

MEMS, while (b) is the amplitude BFP reconstructions of holograms

of in-vitro cell
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2.4.2 Auto-focusing

The searching and recovery of the correct in-focus distance for the +1 order can

be cumbersome and time-consuming for dynamic measurements or scenes in

which hundreds of holograms are recorded and where the focus can change in

each holographic exposure. Furthermore, the evaluation of the correct in-focus

reconstruction distance is subjective, as it is usually judged by the observer. In

fact, not always the value of recording distance d0 is available. When the nu-

merical reconstruction is computed at distance d 6= −d0, in the Eq. (2.17),

results W̃d(X,Y ) 6= δ(X,Y ), i.e. an out-focus numerical reconstruction. Dif-

ferent strategies are necessary to detect the correct focal plane according to

the kind of object under investigation and the adopted configuration, i.e., pure

phase objects [80], in-line holography [81], scanning holography [82], or for

detecting depth of objects in multiple planes [83]. Moreover, an algorithm that

maximizes a sharpness metric related to the sparsity of the signal’s expansion

in distance-dependent waveletlike Fresnelet bases has been found in DH [84]

The most popular algorithms to estimate the in-focus distance [85] exploit the

cumulated edge detection to quantify the image sharpness. To this aim, the

total sum of the gradient, the Laplacian, or the variance of gray-value image

distribution is calculated for each distance considered and the maximum value

is computed. It is interesting to note that all the methods mentioned have sev-

eral local maxima points in the range of searching, that can produce a wrong

convergence during the optimization stage. Recently [86] an estimation algo-

rithm for the in-focus distance, based on the contrast texture measure model

[87], is proposed in order to overcome the wrong convergence of the other well

known methods. As a measure of contrast, is an approximation of the Tamura

coefficient is used [88]

Cδ =

√
σ(I)

〈I〉
(2.27)

where σ(I) and 〈I〉 represent the image gray-level standard deviation and

mean, respectively. The ”image”, in this case is represented by the numerical

reconstruction of hologram, computed at a particular distance δ. This method

works well for digital holograms recorded in lensless configuration, while for

the digital holograms recorded in microscope configuration it is able to find the

BFP distance. The optimization problem for the computation of the in-focus

distance is the following
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d̂ = argmax Cδ subject to δ ∈ ∆ (2.28)

where ∆ is the interval of the research. The application of this algorithm on

the astronaut and MEMS is showed in the Figure 2.12.

Figure 2.12: Results of the autofocusing algorithm for the estimation

of the in-focus distance for the astronaut (a) and the BFP distance for

the MEMS (b)

It is possible to note that, even if you chose a range of research that does

not belong to the correct in-focus distance, it can easily understand how to shift

this range by increasing/decreasing the coefficient. In fact, if the coefficient in-

creases, the right extreme must be extended, while, if the coefficient decreases,

the left extreme must be reduced.



2.4. NUMERICAL RECONSTRUCTION 31

2.4.3 Phase reconstruction

Finally, in order to complete the analysis on the numerical reconstruction of

holograms, we consider the retrieve of the phase map by the subtraction be-

tween a digital hologram and its reference holograms, in the Figure 2.13 are

shown the phase reconstruction obtained by the holograms of MEMS and in-

vitro cell reported in Figure 2.2 and Figure 2.3.

Figure 2.13: (a) is the phase reconstruction of the hologram of MEMS,

while (b) is the phase reconstruction of the hologram of in-vitro cell

In order to remove the 2π ambiguity, that in the Figure 2.13 are represented

by the spatial jump form black to white and viceversa, the unwrapping process

[70], [89] is computed. Obviously, the -1 order cannot be used for phase map

analysis because is out of focus. Therefore, the unwrapping algorithm is ap-

plied only on the spatial region in which there is the +1 order. In Figure 2.14 is

reported the result of the unwrapping applied on the phase maps in Figure 2.13

Figure 2.14: Unwrapped phases of holograms of MEMS (a) and in-

vitro cell (b).
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The phase errors occurred in Figure 2.14(a) are caused by the unwrapping

algorithm that is not able to correct all the phase jumps.



Chapter 3

Digital holograms recovery

using CS

H
igh resolution holography typically involves dense data acquisition.

Several fields of research aim to reduce the amount of recorded data

limiting, for example, the acquisition in the area where is present the most

information about the signal [90], or using sample illumination [91]. How-

ever, these methods suffer from being image-content dependent for a success-

ful implementation. In the recent years, the sensing problem was performed

in terms of CS, because, as told in the previous chapters, it is independent

of the image content and does not need any feedback loop during the acquisi-

tion. The application of CS paradigm in DH is enveloped through two different

frameworks. The first framework refers to a noiseless scenario where the CS

paradigm is used as a compression method for digital holograms in order to

reduce the stored data. In fact, the possibility to recover the sparse signals us-

ing few noiseless measurements can be used for represent a digital holograms

from few pixels value achieving compression factor around 10-15 preserving

all of the information obtained in the recording step. Note that CS is a loss-

less compression technique that allow to reconstruct perfectly the signal if the

number of sample is higher that 2k where k is the sparsity of the signal (see

Eq. (1.1)). However, other recently lossy compression techniques permit to

achieve a compression factor much higher the CS, as shown in [92]. The sec-

ond framework consider a noisy scenario where degraded measurements at

high noise levels in the case of holographic microscopy in low-light condi-

tions. In most of the relevant practical scenarios the knowledge of the noise

statistics is not or only partially available. In all these scenarios CS can be

33
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to use as a powerful method to retrieve the digital holograms as also shown

[18],[19] thanks to the well-known Lipschitz continuity of the reconstruction

method which make the reconstruction algorithm designed for the noiseless

measurements robust with respect to the noise. The advantage of using typi-

cal CS reconstruction technique instead of the classical bayesian approach is

that CS algorithm do not require knowledge of the noise statistics and this

make them extremely robust with respect to imperfect knowledge of the noise

statistics. Thanks to its robustness to the noise the typical CS reconstruction

algorithm can be also used directly as denosing algorithms without exploring

its compressing aspect. Until now, the use of CS in DH has been formulated

only for the microscopy case [18],[19], without consider other kind of possi-

ble recorded objects as, for example, the digital holograms recorded in lensless

configuration, described in the section 2.2.2. This chapter describes the results

about the application of CS framework in DH as a reconstruction method from

randomly undersampled measurements. Therefore, we consider the sensing

problem of noisy data for both digital holograms recorded in lensless configu-

ration and digital holograms recorded in microscope configuration proposing a

new unified general scheme of the recovery, in order to optimize the recording

step. The case of noisy holograms recovery for the optimization of the numer-

ical reconstruction, without consider undersampled measurements but the full

recording ones, will be discussed in Chapter 4.

3.1 Nyquist/Shannon sampling theorem in DH

As shown in section 2.2, the recording process is a sampling of an interference

pattern consisting of spatial frequencies, the highest of which is given by the

largest angle between object and reference wave. The limited resolution of the

CCD chip and similar digital devices decides the maximum frequency allowed

for sampling and severely restricts the experimental set-up configuration. Ac-

cording to the Nyquist/Shannon sampling theorem [21],[22],[59],[93] each pe-

riod must be recorded by at least two detector elements. If Λ is the fringe spac-

ing and dp the detector pitch (centre-to-centre spacing between neighbouring

detector elements) in one transversal direction, then

2dp ≤ Λ (3.1)



3.1. NYQUIST/SHANNON SAMPLING THEOREM IN DH 35

A geometrical evaluation of the angle θ between the object and the reference

wave is

Λ =
λ

2 sin
(
θ
2

) (3.2)

Combining Eqs. (3.1) and (3.2) gives

θ ≤ 2 arcsin

(
λ

2dp

)
(3.3)

where fs =
1

2dp
is the sampling frequency. This means that, the angular extent

of the object, θmax, in Figure 3.1, must not exceed this limit. In order to use the

entire available bandwidth of the recording device, the equal sign in Eq. (3.3)

should be used. Another geometrical evaluation shows that if the distance d0
between the CCD and the object is

d0 ≈
2dp
λ
D (3.4)

then the maximum bandwidth is obtained without violating the sampling theo-

rem. D is the transversal size (height or width) of the object, and small angular

values are assumed according to Eq. (3.3)

Figure 3.1: Schematic view of the angular extent of the object: θ is

the angular extent of the object and the maximum angle between object

and reference wave; d0 is the distance along the optical axis between

the CCD chip and the object; D is the transversal size of the object,

normal to the optical axis.

Using the CS paradigm it is possible to reduce the limit imposed by Eq.

(3.3). In fact, as consequence of CS theory, when a generic signal x ∈ Rn
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admits a sparse representation, is possible to reduce the number of samples,

needed to reconstruct exactly the signal, below the sampling theorem’s limit.

In the following sections, we apply the CS framework on digital holograms

recorded in both lensless and microscope configurations, providing an unified

procedure, able to recover the numerical reconstruction from randomly under-

sampled measurements for both cases.

3.2 Sparse representation of digital holograms

In order to obtain an unified recovery algorithm, we must find a suitable sparse

representation available for digital holograms recorded in both lensless and mi-

croscope configurations. Recalling that, in the field of image processing, CS

exploits the fact that most images present some compact structure and redun-

dancy and was previously reported in magnetic resonance imaging acquisition

[94] and single-pixel imaging [95]. In these cases the representation of the

image in a sparse domain is obtained principally by a multiscale wavelet trans-

form and the computation of image gradient. The same approaches are used in

DH microscopy. Therefore the sparse hologram is obtained from wavelet trans-

form or gradient computation. Figure 3.2 shows an example of the wavelet

transform of the digital hologram reported in Figure 2.2(b), and the gradient of

its in-focus reconstruction, according to [18].

Figure 3.2: Wavelet transform (a) and gradient image (b) for the

MEMS. The gradient is computed on the magnification of the +1 order.
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Note that, the wavelet transform, computed using 5 decomposition level,

don’t guarantees an high degree of sparsity, instead the gradient image ob-

tained from the magnification of +1 order of MEMS gives a better results.

Moreover, the gradient does not work the same way for the digital holograms

recorded in lensless configuration. In fact, as shown in Figure 3.3, there are a

very few zero values, and then, for this kind of digital holograms, cannot be

applied the recovery algorithm reported in [18].

Figure 3.3: Gradient image of astronaut (a) and Venus (b).

However, exists other ways to represent in a sparse form the digital holo-

grams. First of all, we must consider that each real data acquisitions are corrupt

by noise, then we consider the sparsity for the noiseless data. From this consid-

eration and recalling that a generic digital hologram presents three diffraction

orders in the Fresnel domain, the much intuitively way to obtain the sparse

form of the digital holograms is to use the numerical reconstruction.

Figure 3.4 shows a general scheme of image formation for the three diffrac-

tion orders and is well clear that the noiseless numerical reconstruction is a

sparse signal. In addition, it is considered always the situation of zero-order

suppression through high-pass convolution kernel that permits to achieve a

much higher degree of sparsity. Therefore, in the follow is considered the

Fresnel transform as a basis matrix for the CS.
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Figure 3.4: Schemes of reconstructed field in off-axis configuration

without overlap (a) and with overlap (b)between the diffraction orders

3.3 Recovery of digital holograms using CS

In the section 1.2.4 was present a guideline to choice the sensing matrices

for signal recovery optimization. Obviously, the same considerations can be

adopted for digital holograms, but the size of sensing matrix depend of the

sparsity transform used. In fact if it uses the l1 minimization of discrete wavelet

transform (DWT ) or gradient function, that is called Total Variation (T V)

minimization, T V(x) = ‖grad(x)‖1, the choice of number of measurements

(row dimensionm of sensing matrix Φ) becomes a degree of freedom. In addi-

tion, because the recorded digital holograms are corrupted by noise, we should

use a noisy recovery signal optimization given in Eq. (1.12). The presence of

the parameter ǫ in this optimization problem becomes another degree of free-

dom because it depends of the noise variance, that is an additional information

that not always is available. Therefore, in the first, consider the noiseless for-

mulation given in Eq. (1.10) and rewrite it as a holograms recovery problem.

Given the measurements h̃ = vec(H̃), that is a MN -vector obtained from the

recorded digital hologram H̃, which has dimension M ×N ,

v̂ = argmin ‖v‖1 subject to Φv = ΦFδh̃ (3.5)

with v is the sparse representation of the digital hologram through the Fresnel

transform Fδ, valued at distance δ. In order to solve the optimization problem
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(3.5), we use a solver called ”SolveBP.m” that is a MATLAB script implement-

ing the BP method, available online at website http://sparselab.stanford.edu/.

The algorithm is applied on all examples given in sections 2.2.1 and 2.2.2.

Several values of dimension m of sensing matrix are considered, each of them

chosen as a fractions of the original data size n = MN . In particular, we

choose m = {n/16, n/32, n/64}. In the next two sections are shown the re-

sults of the recovery problem from undersampled measurements given in (3.5),

while the case of noisy measurements is treated in the following chapter.

3.3.1 Recovery of lensless holograms

For this kind of digital holograms, the Fresnel transform calculated at in-focus

distance, i.e. δ = d, is chosen as basis matrix for CS recovery. The recov-

ered amplitude reconstructions of the digital holograms of both astronaut (Fig-

ure 3.5) and Venus (Figure 3.6) are computed at different values of m as indi-

cated in the previous section. In order to quantify the effectiveness of recov-

ered numerical reconstructions, is computed the residual images between the

recovered undersamples ones and original ones and they are shown in the Fig-

ure 3.5(b,d,f) and Figure 3.6(b,d,f). Also we compute a numerically residual

as

E =

∥∥∥Fd(ĥ− h̃)
∥∥∥
2∥∥∥Fdh̃

∥∥∥
2

(3.6)

where h̃ is the recorded digital hologram while ĥ is the recovered one. The

Table 3.3.1 shows a summary of the residual E computed for both astronaut

and Venus.

m=n/64 m=n/32 m=n/16

Astronaut 0.5787 0.2623 0.0299

Venus 0.6461 0.1929 0.0267

Table 3.1: Calculation of the residual E for the astronaut and Venus

holograms
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Figure 3.5: Results of recovery algorithm on the astronaut with m =

n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d,f)



3.3. RECOVERY OF DIGITAL HOLOGRAMS USING CS 41

Figure 3.6: Results of recovery algorithm on the Venus with m =

n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d,f)
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3.3.2 Recovery of microscope holograms

Also in this case, we set δ = d and the results of the recovery algorithm is

shown in the Figure 3.7 and Figure 3.8 for MEMS and in-vitro cell respec-

tively. However, we consider only the holograms reported in Figure 2.2(b) and

Figure 2.3(b) because the other two holograms are the reference holograms of

these ones.

Observing the figures is clear that for the holograms recorded in micro-

scope configuration, don’t get the same quality in terms of recovery with re-

spect the lensless ones and this is related to the fact that the degree of sparsity of

these numerical reconstructions is lower than the lensless case. In other word,

with the same ratio m
n

, do not get a perfect reconstruction from undersampled

measurements. we could increase the value of m in the recovery stage, but we

can overcome this limitation, applying the recovery algorithm on the BFP re-

constructions. In fact, as has been said, in this particular reconstruction plane,

there is the much higher degree of sparsity. After the recovery in the BFP,

the in-focus reconstructions are computed and compared with the equivalent

ones, obtained by the recovery in the image plane. The Table 3.3.2 shows this

comparison in terms of the residual given in Eq. (3.6)

Figure 3.9(b,d) as well as the values of residual E computed for the BFP

reconstructions demonstrate the improvements obtained.

m=n/64 m=n/32 m=n/16 m=n/16 BFP

MEMS 0.8032 0.5605 0.2216 0.0366

Cell 0.9371 0.7478 0.3591 0.0618

Table 3.2: Calculation of the residual E for the MEMS and in-vitro

cell holograms
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Figure 3.7: Results of recovery algorithm on the MEMS with m =

n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d,f)
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Figure 3.8: Results of recovery algorithm on the in-vitro cell with m

= n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d,f)
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Figure 3.9: Results of recovery algorithm on the MEMS (a) and in-

vitro cell (c), with m = n/16(e) in the BFP and relatively residual im-

ages (b,d)





Chapter 4

Denoising of digital holograms

using CS

As has been said in the previous chapters, in most real-world systems the mea-

surements are likely to be contaminated by some forms of noise. The perfect

solution of the noisy signal recovery problem can be obtained using the for-

mulations given in Eq. (1.12) or the BPDN given in Eq. (1.15), in which both

recovery of undersampled measurements and denoising is realized. In order to

obtain a good reconstruction from noisy measurements the parameter ǫ need

to be optimized based usually on the noisy statistics (typically second order

statistics) However in most practical scenarios, the statistic characterization of

the noise isn’t available and typically a way to obtain such knowledge is to

estimate the statistics from several measurements of the signal. However, this

approach requires that the noise is an ergodic process. In most cases this as-

sumption is not always verified. Furthermore, in our specific setting, i.e. in

DH, the digital holograms typically are corrupted by two the components of

noise, speckle noise, that is a multiplicative noise, and an additive Gaussian

noise (see Eq. (2.21)), hence getting a correct estimate of the second order

statistics of the noise is not realistic since we do not knowledge of the second

order statistics of the signal and of the speckle noise, and greedy CS recon-

struction algorithms, like OMP and StOMP, analyzed in Chapter 3, where the

prior knowledge of the noise in not required, reveal as a powerful method to

retrieve the digital hologram from its noisy measuraments. In this chapter, we

focus on the noisy scenario described above and we propose a new greedy al-

gorithm based on a modification of recovery problem for noiseless data given

in Eq. (1.10), without any prior knowledge or estimation about the statistics of

47
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noise. Since the compression properties of the CS techniques applied to DH

has been already analyzed numerical in Chapter 3, in this chapter we only focus

on the denoising capability of the CS algorithms and on their robustness with

respect the lack of knowledge of the noise statistics. This is equivalent to as-

sume the sensing matrix equal to the identity matrix. The proposed algorithm

is tested in several cases for both 1D data and 2D data (digital holograms) and

compared with two denoising algorithms: a recently greedy algorithm based

on CS, described in [96], and a classical Fourier filtering [74]. In the first case,

the comparison, given only for 1D signals, starts with the same hypothesis,

in the sense that both greedy algorithms work without prior knowledge about

the statistics of noise. In the second case we compare the proposed method,

applied on the digital holograms (2D test case), with a Discrete Fourier Fil-

tering (DFF) that is based on the perfect knowledge of the signal bandwidth.

In addition, a reality display of the results obtained on the digital holograms

recorded in lensless configuration, and the comparison with the original noisy

holograms, are realized and the details of the setup for 3D display is described.

4.1 Denoising method

Classic filter-based methods, as Fourier domain denoising [74] and wavelet do-

main denoising [9], have extensively been studied, but they can be applied only

to some transform domains. Moreover, such denoising methods are greatly in-

fluenced by the change of signal parameters like frequency, amplitude, etc.

Great effort has been spent on removing principally the speckle noise in dig-

ital holography [75] and speckle interferometry [76]. In order to effectively

overcome the above-mentioned shortcomings of these denoising methods, it

is relevant to design a reconstruction algorithms which are robust even in the

presence of moderate or high-power noise level. The CS paradigm can be used

as a denosing technique as demonstrate by BPDN or LARS method. The op-

timization problem, formulated for noisy data is given in Eq. (1.10) but it is

based on the knowledge of the noise variance. This information not always

is available and a previous estimation of the variance is necessary to obtain a

good results using the aforementioned methods. Recently [96], an interesting

and very simple procedure, based of an iterative noiseless recovery using the

BP algorithm, has been proposed in order to suppress the zero-mean additive

noise. Consider a signal x̃ written as x̃ = x̄ +w, i.e. composed by a sum of

an ideal noiseless signal x̄ and a zero-mean additive noise w. Let Ψ the basis

matrix such that Ψx̃ is a sparse signal and let Φi, i = 1, . . . ,K several m× n
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random sensing matrices. The denoising algorithm proposed in [96] consists

of two steps:

• Compute x̂i, i = 1, . . . ,K as a solution of the noiseless recovery prob-

lem give in Eq. (1.10) using Φi

x̂i = argmin ‖Ψx‖1 subject to yi = ΦiΨx (4.1)

where yi = ΦiΨx̃.

• The i-th recovered signal can be written as

x̂i = x̄+ ŵi, (4.2)

where ŵi is a recovered noise. Therefore the denoised signal is given by

xden =
1

K

K∑

i=1

x̂i = x̄+
1

K

K∑

i=1

ŵi (4.3)

Is clear that, when E{w} = 0, the term 1
K

∑K
i=1 ŵi goes to zero when

K increase.

Essentially, this algorithm simulates several acquisitions of a signal cor-

rupted by zero-mean additive noise. Although this technique is very interest-

ing, suffers from the problem that, to get a good denoising many simulations

are needed, i.e. K must be very large. In addition, the recovered signal at each

iteration, will be not exactly the signal given in Eq. (4.2), because the recovery

problem (4.1) is optimal for the noiseless data. In other word, there will be a

distortion of the denoised signal in Eq. (4.3) that is added to the approximation

given by the finite dimension of K. To overcome these limitations, we have

developed a new greedy algorithm [20] that produces an high efficient and ro-

bust denoising with a single noiseless recovery algorithm’s execution, using

a particular sensing matrix. In fact, simply placing Φ = In in the noiseless

recovery method in Eq. (1.10), and solving it, is possible to obtain an accurate

and robust denoising of a generic signal x corrupted by a zero-mean additive

noise as well as a multiplicative noise. It is easy to show that the identity ma-

trix satisfied the three conditions defined in the chapter 1, i.e. NSP, RIP and

Coherence, and therefore it is a correct sensing matrix. Also note that it is a

square matrix, i.e. m = n. This consequence of the choice is compatible with

the fact that do not want to recover a signal with a few measurements but clean
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up the signal from noise. Therefore, given a measurement x̃, the denoising

optimization problem is

vden = argmin ‖v‖1 subject to Ψx̃ = v (4.4)

where v is a transform of the noisy signal, with Ψ chosen so that the trans-

formed ideal noiseless signal is sparse. The algorithm that will be used to

solve the denoising problem (4.4) is the StOMP algorithm using the solver

”SolveStOMP.m”, available online at website http://sparselab.stanford.edu/.

4.1.1 1D test case

Now consider an example of a sinusoidal signal f(t) = sin(20πt), with

t ∈ [0, 1], that is a sparse signal in the Fourier domain. It is corrupted by a

zero-mean additive Gaussian noise n(t) with standard deviation σ = 0.2. Both

the method enveloped in [96], that we call Iterative Greedy Algorithm (IGA)

and the method given in Eq. (4.4), called Identity Sensing Matrix Greedy Al-

gorithm (ISMGA), are tested on the noisy signal. For the IGA we use 1000
iterations. Observing the Figure 4.1, is clear that both method give a good

Figure 4.1: Results of the denoising algorithms for 1D example. (a)

is the noiseless signal f(t), (b) is the noisy signal corrupted by zero-

mean additive Gaussian noise with standard deviation σ = 0.2. (c,d)

are the recovered signals form IGA and ISMGA respectively.

results in terms of denoising, but the IGA is worse. This is caused by the

two aforementioned limitations on the value of the number of iterations K
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and the intrinsic distortion as a consequence by the application of the noise-

less recovery algorithm on the noisy data. The ISMGA is obviously more

efficient in terms of the computation time, because it is a one-shot execution,

and it produces a small distortion then the method (4.1) because it considers

all measurements through the identity sensing matrix. The final distortion is

obtained by calculating mean squared error (MSE) between the noiseless si-

nusoidal signal f(t) and the recovered ones, results MSEIGA = 0.1707 and

MSEISMGA = 0.1437.

4.2 2D case: denoising of digital holograms

Now we apply the ISMGA on the digital holograms considered in the sec-

tions 2.2.1 and 2.2.2. We solve the denoising optimization problem given in

Eq. (4.4) replacing the measurement with h̃ and the sparse transform with the

Fresnel transform Fδ. The problem optimization becomes

vden = argmin ‖v‖1 subject to Fδh̃ = v (4.5)

As has been shown in the chapter 3, the distance of reconstruction δ is different

for the examples considered. In fact, because the numerical reconstruction of

digital holograms recorded in microscope configuration has the higher degree

of sparsity in the BFP, for this kind of holograms we set δ = dBFP , while

for digital holograms recorded in lensless configuration the best choice is the

plane of focus, i.e. for the astronaut δ = d and for Venus δ = r−d
rd

. This last

setting is related to the fact that the digital hologram of Venus was recorded

using a spherical reference wave of curvature r.

4.2.1 BFP reconstruction optimization

Consider again the digital holograms recorded in microscope configuration

shown in section (2.2.1). We apply the ISMGA for both digital hologram of

the object (MEMS and in-vitro cell) and its reference hologram. The results of

the denoising algorithm are show in Figure 4.2 and Figure 4.3

Is important to note that, it seems that some areas of noise in the BFP

reconstruction of in-vitro cell have not been suppressed by the algorithm but it

is a false sense. In fact these areas that seems noise are the residual zero-order

that high-pass kernel is not able to remove, so it’s part of the useful signal for

the algorithm. The denoised holograms are obtained by the back propagation,

of the denoised complex field, in the hologram plane, using Eq. (2.22) with
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Figure 4.2: Results of the ISMGA denoising (b,d) on the holograms

of MEMS (a,c)
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Figure 4.3: Results of the ISMGA denoising (b,d) on the holograms

of in-vitro cell (a,c)
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d = dBFP and pixels pitch according to the Eq. (2.23). Finally the numerical

reconstructions at the in-focus distance is computed. The comparison between

the original in-focus reconstructions and the denoised ones are given for one of

the holograms for both MEMS and in-vitro cell and are showed in Figure 4.4

Figure 4.4: Results of the ISMGA denoising (b,d) on the holograms

of MEMS (a) and in-vitro cell (b) in the in-focus plane

Finally, we consider again the computation of phase maps, as previous

show (section 2.4.3). As show in Figure 2.13 (a), the unwrapping process ap-

plied on the phase reconstruction of MEMS was not able to remove all of phase

jumps. Instead, computing the phase map with the denoised holograms of
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MEMS, the phase jumps are eliminated. This means that, the ISMGA helped

the unwrapping procedure, as shown the Figure 4.5.

Figure 4.5: Unwrapped phase of MEMS without denoising (a) and

after ISMGA denoising (b)

4.2.2 Fresnel reconstruction optimization

For digital holograms recorded in lensless configuration, consider the ISMGA

in which the in-focus distance for the +1 order is placed. The results of the

denoising algorithm are shown in Figure 4.6 for the astronaut puppet and Fig-

ure 4.7 for the Venus statuette.

Also in this case, the denoised images present the residual of zero-order

suppression.

4.3 3D holographic display

The numerical reconstruction of holograms recorded in lensless configuration

can be either performed numerically for a 2D screen or for display in 3D by

a spatial light modulator (SLM) [97], [98], [99]. Since the hologram can be

numerically transformed [100] to change the distance at which it will appear

in focus in the reconstruction process, an observer will see a 3D scene in both

numerical and optical reconstructions, the last one using a SLM device [57].

Figure 4.8 describes the set-up used for the optical projection of the 3D

scene. We use a DPSS laser emitting at λ = 532nm. The laser beam is ex-

panded in such a way as to obtain a convergent beam that impinges on the
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Figure 4.6: Original numerical reconstruction of the astronaut (a) and

denoised one(b)

Figure 4.7: Original numerical reconstruction of Venus (a) and de-

noised one(b)
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Figure 4.8: Set-up used for the optical projection of the 3D scene;

MO: microscope objective, SF: spatial filter, L: lens, BS: beam splitter,

SLM: spatial light modulator, M: mirror.

SLM-LCOS (PLUTO-by Holoeye, 8µm pixel pitch) that displays the holo-

gram. The real images are projected onto a scattering screen at a certain dis-

tance d̃ from the SLM and, then, acquired by a camera. The distance in which

the projection goes in-focus can be different with respect the numerical in-

focus distance because the physical parameters of SLM (like pixel pitch or

wavelength) differ, in general, from the recording parameters. However it is

possible to compute exactly the distance d̃ as a function of these changes [57].

The aim of this section is to demonstrate that the ISMGA produces an improve-

ment of the quality of the display as well as of the numerical reconstructions

shown in section 4.2.2. Therefore the original recorded holograms of astronaut

and Venus and the denoised ones, obtained simply by hden = F−1
δ vden, i.e.

the back propagation of the denoised complex field in the hologram plane, are

posed as input of SLM and the in-focus projections are acquired. The recorded

projections are showed in Figure 4.9

The projected holograms shows that the ISMGA denoising increases the

quality also of the optical reconstruction. In fact, in this case, the concept of

quality is related to the amount of laser light that reconstructs the object. A

quantitative analysis about the effectiveness of the ISMGA denoising for both

numerical and optical reconstructions is give in the following section.
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Figure 4.9: Projections of lensless holograms using SLM. (a) and (c)

are the magnification of the +1 order projections of the original holo-

grams, while (b) and (d) are the projections of the denoised ones.



4.4. ANALYSIS OF RESULTS 59

4.4 Analysis of results

In order to quantify the benefits introduced by the ISMGA denoising, two dif-

ferent parameters of efficiency are defined:

• The signal to distortion ratio (SDR) defined as

SDR =

∥∥∥Ĩ
∥∥∥
2∥∥∥Ĩ− Î

∥∥∥
2

(4.6)

where ‖ · ‖2 is the ℓ2-norm, Ĩ =
∣∣∣Fdh̃

∣∣∣ is the amplitude of the original

in-focus digital reconstruction and Î =
∣∣∣Fdĥ

∣∣∣ is the processed one.

• The measure of contrast given by Eq. (2.27), where I in one case is the

amplitude in-focus digital reconstruction of original hologram and in the

other cases is the amplitude of the processed one.

The ISMGA denoising is compared with the classical DFF [74], that is a

well known denoising technique. For digital holograms, this method consists

into numerically compute the propagation from the discrete hologram plane

to the discrete Fourier planed. Then, the Fourier plane data are filtered and

inverse discrete Fourier transformed to the image plane.

Table 4.1 and Table 4.2 report the computation of the two parameters of

efficiency for the cases under analysis. In particular, for MEMS and in-vitro

cell, it consider only one of the two cases for each one.

DFF ISMGA

Astronaut 1.1171 2.3691

Venus 1.1126 4.6181

MEMS 1.0172 3.8394

Cell 1.2427 6.2163

Table 4.1: Calculation of SDR

These results show that the ISMGA denoising provides gains both in terms

of SDR and image contrastC and this shows its effective efficiency and robust-

ness. Finally, in order to evaluate the improvement of projections in the display

test, we compute the percentage increase of intensity, G, for the recorded pro-

jections reported in Figure 4.9
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Noisy hologram DFF ISMGA

Astronaut 1.2581 1.8694 2.5757

Venus 1.4489 2.2017 4.8880

MEMS 1.0389 1.6584 2.1905

Cell 1.8801 2.8024 3.1676

Table 4.2: Calculation of contrast C

G =

∑
(x,y)∈SR

(
Î− Ĩ

)

∑
(x,y)∈SR Ĩ

(4.7)

where SR means signal regions, i.e. only the +1 order. For the puppet of

astronaut we haveG ≈ 31%, while for the statuette of Venus resultsG ≈ 16%,

then provides the improvement also in the display step.



Conclusions

In this thesis, the CS framework has been considered as a new methodology of

signals recovery. In particular, has been described how to recover a signal that

admits a sparse representation in a suitable transform domain from undersam-

pled measurements, and how to overcome the limit imposed by the sampling

theorem for this class of signals. We are focused on the property of sparsity

for the signals, the design of the sensing matrices for different applications

and the description of the problem of signal recovery in both cases of noiseless

signals and noisy signals. Several algorithms have been considered in order

to solve the recovery problem as BP, OMP, StOMP and LARS method. CS

has attracted considerable attention in areas of applied mathematics, computer

science, electrical engineering and other research fields because it is possi-

ble to represent many natural signals using only a few non-zero coefficients

in a suitable basis. The thesis has mainly addressed the issue regarding the

application of CS in the field of DH, that is a relatively recent interferomet-

ric technique that has permitted many spectacular applications such as micro-

scopic imaging by phase-contrast digital holographic microscopy, 3D object

recognition and 3D dynamic display. The full holographic process has been

mathematically treated, from the digital recording to the numerical reconstruc-

tion, considering the two largest classes of digital holograms, those acquired in

the microscope configuration and those acquired in lensless configuration. For

both classes, we have discussed about the numerical reconstruction, obtained

by the discrete version of the Fresnel integral, in order to highlight the physi-

cal properties of the three diffraction orders. The analysis of these diffracted

complex fields is achieved through the in-focus numerical reconstructions for

both kind of digital holograms and also the BFP reconstructions for the class of

digital holograms recorded in microscope configuration. For this purpose, an

algorithm of automatic search of the in-focus reconstruction distance and BFP

distance has been described. Obviously, in order to apply the CS framework on

digital holograms, we have studied the properties of the sparsity of the digital
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holograms. Previous studies have already shown how to combine the off-axis

frequency-shifting DH to perform quadrature-resolved random measurements

of an optical field in a diffraction plane and a sparsity minimization algorithm

to reconstruct the image. The sparsity of digital holograms is obtained by cal-

culating the gradient of the in-focus numerical reconstruction. Moreover, this

CS-based imaging scheme has the limitation that it can be applied only to dig-

ital holograms recorded in microscope configuration. In fact, it is shown that

the gradient of the in-focus numerical reconstruction in the case of holograms

acquired in lensless configuration is not a sparse image. An important contri-

bution of this thesis is to propose a unified scheme for the recovery of digital

holograms belonging to both the aforementioned classes, based on the sparsity

property of the in-focus numerical reconstruction for the lensless case and of

the BFP reconstruction for the microscope case. Two examples for each class

of holograms have been considered and the BP algorithm has been applied

for the recovery from undersampled measurements. The results show that the

Fresnel transform, parameterized in terms of the reconstruction distance, is

a suitable and general sparse domain for digital holograms. However, since

digital holograms are real signals, and then corrupted by noise, it is also con-

sidered the problem of recovery for noisy signals. In this case, the recovery

algorithms, typically used, are BPDN and the modified LARS. In both cases

is necessary the knowledge about the statistics of noise, but this information is

not always available. The principal contribution of the thesis is to design and

implement a new greedy algorithm that does not use any a priori information

about the statistics of the noise. This algorithm can be obtained by the recovery

problem for noiseless signals simply replacing an identity sensing matrix. In

fact, using the total information contained in the recorded digital holograms,

we are able to estimate the support of the useful signal suppressing the noise

components. Also in this case, the sparsity domain considered is the Fresnel

transform of the digital holograms in the in-focus plane and BFP. The proposed

method, called ISMGA, is compared with another greedy algorithm, based on

repeated BP recovery with different random sensing matrices, and the classic

filtering in Fourier domain, which is based on the perfect knowledge of the sig-

nal bandwidth. The results show that the algorithm is better than the other two,

in terms of two parameters of efficiency, SDR and image contrast, demonstrat-

ing its robustness and its effectiveness. In addition, for the digital holograms

recorded in lensless configuration, we have shown that the ISMGA denoising

also produces improvements in the 3D display. We have made the projection

experiments, using the SLM, and quantified the percentage increase of image
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contrast for the originally recorded digital holograms and the processed one

with the ISMGA denoising. For both examples considered, we get a signifi-

cant increase in the image contrast, 31% in one case and 16% in the other one.

Ultimately the thesis work has contributed to the optimization of the processes

of digital recording, numerical reconstruction and 3D display thanks the CS

framework, which will surely be developed in other fields of research based on

the signal processing.
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Appendix

A.1 Review of Convex Optimization

In this appendix there are a description of a special class of optimization prob-

lems called convex optimization. These particular problems can be to solve

”efficiently”, in the sense that we can solve many real-world problems in a

reasonable amount of time. In other words, it means that, theoretically, we

can solve problems in time that depends only polynomially on the problem

size. In the following subsections there are a formulation of a general Convex

Optimization Problem (COP), some special cases of problems and different

example of nonconvex problems that can be transformed in a convex prob-

lems. Most of the material reported in this appendix is heavily based on the

book Convex Optimization [101] by Boyd and Vandenberghe (available for

free online).

A.1.1 Formulation of COP

A mathematical optimization problem has the form

min
x

f(x) subject to x ∈ C (A.1)

where x is a n-vector called optimization variable of the problem, f : Rn → R
is the objective function and x ∈ C is the constraint function. The problem

(A.1) is a COP if C is a convex set and f is a convex function of x. For the

convex set, the condition is:
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Definition A.1 A set C is convex if, for any x,y ∈ C and θ ∈ (0, 1)

θx+ (1− θ)y ∈ C

In the Figure A.1 there is an example of both convex and non-convex sets.

Instead for the objective function we have:

Definition A.2 Let D(f) the domain of f : Rn → R. The function f
is convex if D(f) is a convex set and if, for all x,y ∈ D(f) and θ ∈ (0, 1)

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

In the Figure A.2 there is an example of convex function.

Figure A.1: Examples of a convex set (left) and a non-convex set (right)

Figure A.2: Graph of a convex function. The line connecting two

points on the graph must lie above the function.

Typically, the convex setC is represented by the inequality constraint func-

tions and equality constraint functions. In this case, the convex optimization

problem (A.1) becomes

min
x

f(x) subject to

{
gi(x) ≤ 0 i = 1, . . . , p
hk(x) = 0 k = 1, . . . , q

(A.2)
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where gi, for i = 1, . . . , p, are a convex functions and hk, for k = 1, . . . , q
are affine functions. Finally, the optimal value of an optimization problem

is denoted x∗ and is equal to the minimum argument value of the objective

function in the feasible region, identified by the both inequality and equality

constraints.

x∗ = argmin f(x) subject to

{
gi(x) ≤ 0 i = 1, . . . , p
hk(x) = 0 k = 1, . . . , q

(A.3)

A.1.2 Special cases of COP

Now it consider several classes of convex optimization problems, based on the

forms that can take both the objective function and the constraints. Because the

following problems can be solved in a polynomial computational time, often

tries to formulate an optimization problem in one of these forms.

• Linear Programming: a convex optimization problem is a linear pro-

gram (LP) if both the objective function f and inequality constraints gi
are affine functions. In other words, these problems have the form

min
x

cTx+ d subject to

{
Gx � h

Ax = b
(A.4)

where c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rl×n and b ∈ Rl

are defined by the problem, and the symbol ”�” denotes elementwise

inequality.

• Quadratic Programming: a convex optimization problem is a

quadratic program (QP) if the inequality constraints gi are still all affine,

but if the objective function f is a convex quadratic function. Therefore,

these problems have the form

min
x

1

2
xTPx+ cTx+ d subject to

{
Gx � h

Ax = b
(A.5)

where P is a symmetric positive semidefinite matrix, i.e. P ∈ Sn
+.

• Semidefinite Programming: this last example is different than the pre-

vious one because the optimization variable of the problem is a n×nma-

trix. This class of problems is becoming more prevalent in many areas
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of research. We say that a convex optimization problem is a semidefinite

program (SDP) if it is of the form

min
X

tr (PX) subject to

{
tr (AiX) = bi i = 1, . . . , p
X � 0

(A.6)

where the symmetric matrices P,A1, . . . ,Ap are defined by the prob-

lem, and the constraint X � 0 means that X must to be positive semidef-

inite.

However, there are other known forms of convex optimization problems,

such as Geometric Programming, and special cases in which there are a par-

ticular functions in the formulation of problems as quasiconvex functions or

log-convex functions. In these latter cases it is always possible to bring to

a convex optimization problem using a suitable change of optimization vari-

able. However, there are many cases where it is not possible to formulate the

problem in a convex or quasiconvex program. The next section analyzes this

situation, providing a solution to the issue.

A.1.3 Nonconvex optimization problems

In the section A.1.1, it was said that the optimization problem (A.2) is convex

if the objective function and the inequality constraint functions are convex,

and the equality constraint functions are affine. Therefore, a problem is a non-

convex optimization problem if if one of these conditions are not met. In this

case it is possible to rewrite the nonconvex optimization problem in a convex

form using the relaxation method. In relaxation, each nonconvex constraint

(i.e. the objective function) is replaced with a looser, but convex, constraint

(i.e. the objective function) and provides a lower bound on the optimal value

of the nonconvex problem. For example, we have applied this technique to the

optimization problem (1.7) obtaining the convex optimization problem (1.8).

Finally, in some situations, it is possible to have that the lower bound of op-

timal value of relaxed problems is equal to the optimal solution of nonconvex

problem.

A.2 MATLAB code’s description

In this appendix are reported the list of scripts, realized in MATLAB, for the

analysis considered in this thesis. The scripts are related to the chapter in which
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they are used. We give only a list of routines used with a simple explanations,

without providing the MATLAB codes.

A.2.1 Scripts for chapter 1

The chapter 1 describes the mathematical formulation of the CS framework

and the there aren’t any simulations. However describes the algorithms that

are used to solve the recovery problem for both noiseless and noisy signals.

The following list contains the MATLAB scrips used for the recovery problem

that are available on the website http://sparselab.stanford.edu/, as is mentioned

several times in the text of the thesis.

• SolveBP.m

function sol = SolveBP(A, y, N, maxIters, lambda, OptTol)

SolveBP: Solves a Basis Pursuit problem

Usage

sol = SolveBP(A, y, N, maxIters, lambda, OptTol)

Input

A: either an explicit n × N matrix, with rank(A) = min(N,n) by as-

sumption, or a string containing the name of a function implementing an

implicit matrix (see below for details on the format of the function).

y: a vector of length n.

N: length of solution vector.

maxIters: maximum number of PDCO iterations to perform, default 20.

lambda: if 0 or omitted, Basis Pursuit is applied to the data, otherwise,

Basis Pursuit Denoising is applied with parameter lambda (default 0).

OptTol: error tolerance, default 1e-3.

Outputs

sol: solution of BP

Description

SolveBP solves the basis pursuit problem by reducing it to a linear pro-

gram, and calling PDCO, a primal-dual log-barrier algorithm. Alter-

natively, if lambda differ to 0, it solves the Basis Pursuit Denoising

(BPDN) problem by transforming it to an SOCP, and calling PDCO.

The matrix A can be either an explicit matrix, or an implicit operator

implemented as a function.

• SolveStOMP.m
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function [sol, numIters] = SolveStOMP(A, y, N, thresh, param, maxIters,

verbose, OptTol)

SolveStOMP: Implementation of Iterative Threshold-Selective Projec-

tion algorithm

Usage

[sol, numIters] = SolveStOMP(A, y, N, thresh, param, maxIters, verbose,

OptTol)

Input

A: Either an explicit n × N matrix, with rank(A) = min(N,n) by as-

sumption, or a string containing the name of a function implementing an

implicit matrix (see below for details on the format of the function).

y: a vector of length n.

N: length of solution vector.

thresh: thresholding strategy: FDR or FAR. default is FDR.

param: sensitivity parameter for threshold selection.

maxIters: maximum number of StOMP iterations to perform, default 10.

verbose: 1 to print out detailed progress at each iteration, 0 for no output

(default).

OptTol: error tolerance, default 1e-5.

Outputs

sol: solution of StOMP.

numIters: total number of steps taken.

Description

SolveStOMP implements the Stagewise Ortogonal Matching Pursuit, as

described in the paper [37].

• MatrixEnsemble.m

function Phi = MatrixEnsemble(n,m,ensemble)

MatrixEnsemble: Generates a random matrix of size n by m.

Usage

Phi = MatrixEnsemble(n,m,ensemble)

Inputs

n: number of rows.

m: number of columns.

ensemble: string containing name of matrix ensemble: ”USE”, ”RSE”,

”Fourier”, ”RST”, ”Hadamard”, ”URP”, ”IR”. Default is ’USE’.

Outputs

Phi: n by m matrix from the specified ensemble.

Description
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This function creates a matrix from the specified random matrix ensem-

ble. The following random ensembles are implemented:

”USE” - Uniform spherical ensemble. Columns are n-vectors, uniformly

distributed on the sphere Sn−1 (default).

”RSE” - Random signs ensemble. Entries in the matrix are chosen from

a Bernoulli +/−1 distribution, and columns are normalized to have unit

Euclidean length.

”Fourier” - Partial Fourier ensemble. Matrices in this ensemble are gen-

erated by taking the m by m Fourier matrix, sampling n rows at random,

and scaling columns to have unit Euclidean length.

”RST” - Partial RST (Real Fourier) ensemble. See ’Fourier’ above.

”Hadamard” - Partial Hadamard ensemble. Matrices in this ensemble

are generated by taking the m by m Hadamard matrix, sampling n rows

at random, and scaling columns to have unit Euclidean length.

”URP” - Uniform Random Projection ensemble. Matrices in this ensem-

ble are generated by sampling n rows of an m by m random orthogonal

matrix.

”IR” - Identity and Random ortho-basis. An n by 2n matrix is con-

structed, as the concatenation of the n by n identity and an n by n random

ortho-basis.

A.2.2 Scripts for chapter 2

The chapter 2 describes the full holographic process, from the recorded holo-

gram to the image formation. Therefore we give three routines related to the

numerical reconstruction of the digital holograms, the back propagation of the

numerical reconstruction in the hologram plane and finally the auto-focusing

algorithm.

• RecoHolo.m

function NR = RecoHolo(H,d)

RicoHolo: compute the numerical reconstruction of an hologram.

Usage

NR = RecoHolo(H,d)

Inputs

H: recorded hologram.

d: reconstruction distance (mm).

Output

NR: numerical reconstruction of the hologram at distance d.



72 APPENDIX A. APPENDIX

Description

This function implement the discrete version of Fresnel transform given

in Eq. (2.22).

• BackProp.m

function H = BackProp(NR,d)

BackProp: compute the back propagation of the reconstructed complex

field in the hologram plane.

Usage

H = BackProp(NR,d)

Inputs

NR: numerical reconstruction of the recorded hologram at distance d,

obtained using ”RecoHolo.m”.

d: reconstruction distance (mm).

Output

H: digital hologram.

Description

This function implement the discrete version of Fresnel transform given

in Eq. (2.22) using the distance −d and the pixel pitches given in Eq.

(2.23).

• Autofocus.m

function [NRf,df] = Autofocus(H,dmin,dmax,iter)

Autofocus: compute the in-focus distance for the +1 order when the in-

put is an hologram recorded in lensless configuration; compute the BFP

distance for the +1 order when the input is an hologram recorded in mi-

croscope configuration.

Usage

[NRf,df] = Autofocus(H,dmin,dmax,iter)

Inputs

H: recorded hologram.

dmin: lower bound of the searching interval.

dmax: upper bound of the searching interval.

iter: number of iterations.

Outputs

NRf : numerical reconstruction of the hologram at estimated distance.

df : estimated distance: in-focus plane for digital holograms recorded
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in lensless configuration, BFP for digital holograms recorded in micro-

scope configuration.

Description

This function implement the algorithm given in [86]. It define a

grid of research considering N=iter equally spaced points in the range

[dmin,dmax]. At each point di, it compute the numerical reconstruction

of the hologram using ”RecoHolo.m” and its Tamura coefficient, given

in Eq. (2.27). At the end, evaluate the maximum value of the N re-

alization of the Tamuta coefficient which corresponds to the output df.

Finally, compute the output NRf as a numerical reconstruction of the

hologram at distance df using ”RecoHolo.m”.

A.2.3 Scripts for chapters 3 and 4

In these two chapters there is the description of the CS theory applied in DH.

More precisely, the chapter 3 describes the methodology used for the recovery

of the digital holograms from undersampled measurements, while the chapter

4 addresses the problem of denoising. In both cases, we use all the routines

described above, therefore we give the step-by-step descriptions of the scripts

for recovery and denoising, which are listed below.

• RecoveryBP.m

function [RecHOLO,RecPSIh] = RecoveryBP(H,d,m)

RecoveryBP: compute the recovered hologram form undersampled mea-

surements using BP.

Usage

[RecHOLO,RecPSIh] = RecoveryBP(H,d,m)

Inputs

H: recorded hologram.

d: reconstruction distance (mm).

m: number of samples in the sensing matrix Output

RecHOLO: recovered hologram.

RecPSIh: recovered numerical reconstruction.

Description

This function permits to obtain the recovery of a digital hologram from

undersampled measurements. The steps of the algorithm are:

1. Numerical reconstruction of the hologram at distance d: NR = Re-

coHolo(H,d).
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2. Vectorization of the numerical reconstruction: nr=vec(NR).

3. Compute the sensing matrix: PHI = MatrixEnsemble(m,N,’USE’),

where N is the length of the vector nr.

4. Compute the measurements: y=PHInr.

5. Solve the Basis Pursuit problem: sol = SolveBP(PHI,y,N).

6. Compute the outputs: RecPSIh=reshape(sol), RecHOLO = Back-

Prop(RecPSIh,d).

• ISMGA.m

function [HOLOden,RECden]=ISMGA(H,d)

ISMGA: compute the denoised hologram using the identity sensing ma-

trix in the StOMP.

Usage

[HOLOden,RECden]=ISMGA(H,d)

Inputs

H: recorded hologram.

d: reconstruction distance (mm).

Output

HOLOden: denoised hologram.

RECden: denoised numerical reconstruction.

Description

This function permits to obtain the denoising of a digital hologram using

the ISMGA described in the chapter 4. The steps of the algorithm are:

1. Numerical reconstruction of the hologram at distance d: NR = Re-

coHolo(H,d).

2. Vectorization of the numerical reconstruction: nr=vec(NR).

3. Compute the sensing matrix: PHI = IN , where N is the length of

the vector nr.

4. Solve the Stagewise Orthogonal Matching Pursuit problem:

[sol, numIters] = SolveStOMP(PHI,nr,N).

5. Compute the outputs: RECden=reshape(sol), HOLOden = Back-

Prop(RECden,d).



Bibliography

[1] E.J. Candes and T. Tao. Near-optimal signal recovery from random pro-

jections: Universal encoding strategies? IEEE Trans. Inform. Theory,

52(12):5406–5425, 2006.

[2] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory,

52(4):1289–1306, 2006.

[3] E.J. Candes. Compressive sampling. In Proc. Int. Congress of Math.,

2006.

[4] E.J. Candes and J. Romberg. Quantitative robust uncertainty principles

and optimally sparse decompositions. Found. Comput. Math., 6(2):227–

254, 2006.

[5] E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency informa-

tion. IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[6] E.J. Candes, J. Romberg, and T. Tao. Stable signal recovery from

incomplete and inaccurate measurements. Comm. Pure Appl. Math.,

59(8):1207–1223, 2006.

[7] J. Tropp and S. Wright. Computational methods for sparse solution of

linear inverse problems. Proc. IEEE, 98(6):948–958, 2010.

[8] D. Taubman and M. Marcellin. JPEG 2000: Image Compression Fun-

damentals, Stan- dards and Practice. Kluwer, 2001.

[9] D. Donoho. Denoising by soft-thresholding. IEEE Trans. Inform. The-

ory, 41(3):613–627, 1995.

[10] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,

1999.

75



76 BIBLIOGRAPHY

[11] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal

Statist. Soc B, 58(1):267–288, 1996.

[12] B. Olshausen and D. Field. Emergence of simple-cell receptive

eld properties by learning a sparse representation. Nature, 381:607–609,

1996.

[13] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[14] A.M. Tulino, G. Caire, S. Shamai, , and S. Verdú. Support recovery

with sparsely sampled free random matrices. The IEEE International

Symposium on Information Theory (ISIT 2011), 2011.

[15] J.W. Goodman and R.W. Lawrence. Digital image formation from elec-

tronically detected holograms. Appl. Phys. Lett, 11(3):77–79, 1967.

[16] M.A. Kronrod, N.S. Merzlyakov, and L.P. Yaroslavskii. Reconstruction

of a hologram with a computer. Sov. Phys. Tech. Phys, 17:333–334,

1972.

[17] U. Schnars and W. Juptner. Direct recording of holograms by a ccd

target and numerical reconstruction. Appl. Opt., 33:179–181, 1994.

[18] M.M. Marim, M. Atlan, E. Angelini, , and J-C Olivo-Marin. Com-

pressed sensing with off-axis frequency-shifting holography. Opt. Lett.,

35:871–873, 2010.

[19] M.M. Marim, E. Angelini, J-C Olivo-Marin, , and M. Atlan. Off-axis

compressed holographic microscopy in low-light conditions. Opt. Lett.,

36:79–81, 2011.

[20] P. Memmolo, I. Esnaola, A. Finizio, M. Paturzo, P. Ferraro, and A.M.

Tulino. Universal denoising in digital holography using compressed

sensing. in revision, 2011.

[21] H. Nyquist. Certain topics in telegraph transmission theory. Trans.

AIEE, 47:617–644, 1928.

[22] C. Shannon. Communication in the presence of noise. Proc. Institute of

Radio Engi- neers, 37(1):10–21, 1949.



BIBLIOGRAPHY 77

[23] A.M. Bruckstein, D.L. Donoho, and M. Elad. From sparse solutions of

systems of equations to sparse modeling of signals and images. SIAM

Rev., 51(1):34–81, 2009.

[24] M. Elad. Sparse and Redundant Representations: From Theory to Ap-

plications in Signal and Image Processing. Springer, 2010.

[25] R. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998.

[26] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning. Springer, 2001.

[27] E.J. Candes and T. Tao. Decoding by linear programming. IEEE Trans.

Inform. Theory, 51(12):4203–4215, 2005.

[28] D. Donoho and M. Elad. Optimally sparse representation in general

(nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci.,

100(5):2197–2202, 2003.

[29] J. Tropp and A. Gilbert. Signal recovery from partial information via or-

thogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655–

4666, 2007.

[30] L. Welch. Lower bounds on the maximum cross correlation of signals.

IEEE Trans. Inform. Theory, 20(3):397–399, 1974.

[31] T. Strohmer and R. Heath. Grassmanian frames with applications to

coding and communication. Appl. Comput. Harmon. Anal., 14(3):257–

275, 2003.

[32] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best

k-term approximation. J. Amer. Math. Soc., 22(1):211–231, 2009.

[33] M. Herman and T. Strohmer. High-resolution radar via compressed

sensing. IEEE Trans. Signal Processing, 57(6):2275–2284, 2009.

[34] J. Laska, P. Boufounos, M. Davenport, and R. Baraniuk. Democracy

in action: Quantization, saturation, and compressive sensing. Preprint,

2009.

[35] S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by

basis pursuit. SIAM J. Sci Comp., 20(1):33–61, 1999.



78 BIBLIOGRAPHY

[36] I. Esnaola, R.E. Carrillo, J. Garcia-Frias, and K.E. Barner. Orthogonal

matching pursuit based recovery for correlated sources with partially

disjoint supports. in Information Sciences and Systems (CISS), 2010

44th Annual Conference on, pages 1–6, 2010.

[37] D. Donoho, Y. Tsaig, I. Drori, and J-L Starck. Sparse solution of under-

determined linear equations by stagewise orthogonal matching pursuit.

Stanford Technical Report, pages 1–39, 2006.

[38] Z. Ben-Haim, T. Michaeli, and Y. C. Eldar. Performance bounds and

design criteria for estimating finite rate of innovation signals. Preprint,

2010.

[39] M. Davenport. Random observations on random observations: Sparse

signal acquisition and processing. PhD thesis, Rice University, 2010.

[40] J. Treichler, M. Davenport, and R. Baraniuk. Application of compres-

sive sensing to the design of wideband signal acquisition receivers. In

Proc. U.S./Australia Joint Work. Defense Apps. of Signal Processing

(DASP), 2009.

[41] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regres-

sion. Annals of Statistics, 32:407–499, 2004.

[42] I. Daubechies. Time-frequency localization operators: a geometric

phase space approach. Information Theory, IEEE Transactions on,

34:605–612, 1988.

[43] S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictio-

nary. Signal Processing, IEEE Transactions on, 41:3397–3415, 1993.

[44] S.S. Chen. Basis Pursuit. Ph.D. Thesis, Department of Statistics, Stan-

ford University, 1995.

[45] D. Needell and R. Vershynin. Uniform uncertaintity principle and sig-

nal reconstruction via regularized orthogonal matching pursuit. Foun-

dations of Computational Mathematics, 2008.

[46] I. Esnaola. Extensions of compressed sensing by exploiting prior knowl-

edge. Ph.D. Thesis, University of Delaware, 2011.

[47] D. Gabor. A new microscope principle. Nature, 161:777–778, 1948.



BIBLIOGRAPHY 79

[48] G.L. Rogers. Experiments in diffraction microscopy. Proc. Roy. Soc.

Edinb., 63A:193–221, 1952.

[49] H. El Sum and P. Kirkpatrick. Microscopy by reconstructed wavefronts.

Phys. Rev., 85:763, 1952.

[50] E. Leith and J. Upatnieks. Reconstructed wavefronts and communica-

tion theory. J. Opt. Soc. Am., 52:1123, 1962.

[51] E. Leith and J. Upatnieks. Wavefront reconstruction with diffused il-

lumination and three dimensional objects. J. Opt. Soc. Am., 54:1295–

1301, 1964.

[52] R. Powell and K. Stetson. Interferometric vibration analysis by wave-

front reconstruction. J. Opt. Soc. Am., 55:1593, 1965.

[53] K. Stetson and R. Powell. Interferometric hologram evaluation of real

time vibration analysis of diffuse objects. J. Opt. Soc. Am., 55:1694–

1695, 1965.

[54] M.A. Kronrod, N.S. Merzlyakov, and L.P. Yaroslavsky. Reconstruction

of holograms with a computer. Sov Phys-Tech Phys, 17:333–334, 1972.

[55] P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio,

and G. Pierattini. Quantitative phase-contrast microscopy by a lateral

shear approach to digital holographic image reconstruction. Opt. Lett.,

31:1405–1407, 2006.

[56] B. Javidi and E. Tajahuerce. Three-dimensional object recognition by

use of digital holography. Opt. Lett., 25:610–612, 2000.

[57] M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T.J. Naughton, and

P. Ferraro. Synthesis and display of dynamic holographic 3d scenes

with real-world objects. Opt. Express, 18:8806–8815, 2010.

[58] P. Picart and J. Leval. General theoretical formulation of image forma-

tion in digital fresnel holography. J. Opt. Soc. Am. A, 25(7):1744–1761,

2008.

[59] J.W. Goodman. Introduction to Fourier Optics, 2nd ed. McGraw-Hill,

1996.



80 BIBLIOGRAPHY

[60] T. Kreis, M. Adams, and W. Juptner. Methods of digital holography: a

comparison. Proc. SPIE, 3098:224–233, 1997.

[61] P. Picart, J. Leval, D. Mounier, and S. Gougeon. Some opportunities

for vibration analysis with time-averaging in digital fresnel holography.

Appl. Opt., 44:337–343, 2005.

[62] P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio,

and G. Pierattini. Quantitative phase-contrast microscopy by a lateral

shear approach to digital holographic image reconstruction. Opt. Lett.,

31:1405–1407, 2006.

[63] P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Bal-

duzzi, A. Galli, G. Coppola, and P. Ferraro. Identification of bovine

sperm head for morphometry analysis in quantitative phase-contrast

holographic microscopy. Opt. Express, 19:23215–23226, 2011.

[64] P. Memmolo, Andrea Finizio, Melania Paturzo, Lisa Miccio, and Pietro

Ferraro. Twin-beams digital holography for 3d tracking and quantitative

phase-contrast microscopy in microfluidics. Opt. Express, 2011.

[65] C. Joo, T. Akkin, B. Cense, B.H. Park, and J.F. de Boer. Spectral-

domain optical coherence phase microscopy for quantitative phase-

contrast imaging. Opt. Lett., 30:2131–2133, 2005.

[66] E. Cuche, P. Marquet, and C. Depeursinge. Simultaneous amplitude-

contrast and quantitative phase-contrast microscopy by numerical re-

construction of fresnel off-axis holograms. Appl.Opt., 38:6994–7001,

1999.

[67] P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro,

and G. Pierattini. Compensation of the inherent wave front curvature in

digital holographic coherent microscopy for quantitative phase contrast

imaging. Appl. Opt., 42(11):1936–1946, 2003.

[68] A. Geltrude, M. Locatelli, R. Meucci, A. Pelagotti, M. Paturzo, P. Poggi,

and P. Ferraro. Infrared digital holography for large object investigation.

Digital Holography and Three-Dimensional Imaging, OSA Techinal Di-

gest (CD) (Optical Society of America), DWC13, 2011.

[69] N. Pavillon, C. Arfire, I. Bergoend, and C. Depeursinge. Iterative

method for zero-order suppression in off-axis digital holography. Opt.

Express, 18(15):15318–15331, 2010.



BIBLIOGRAPHY 81

[70] T. Kreis. Digital Recording and Numerical Reconstruction of Wave

Fields. Wiley-VCH Verlag, 2005.

[71] T. Kreis. Frequency analysis of digital holography. Opt. Eng. (Belling-

ham), 41:771–778, 2002.

[72] T. Kreis. Frequency analysis of digital holography with reconstruction

by convolution. Opt. Eng. (Bellingham), 41:1829–1839, 2002.

[73] C.S. Guo, L. Zhang, Z.Y. Rong, and H.T. Wang. Effect of the fill factor

of ccd pixels on digital holograms: comment on the paper. Opt. Eng.

(Bellingham), 42:2768–2772, 2003.

[74] J. Maylock, B.M. Hennelly, J.B. Mc Donald, Y. Frauel, A. Castro, B. Ja-

vidi, and T.J. Naughton. Reduction of speckle in digital holography by

discrete fourier filtering. J. Opt. Soc. Am. A, 24, 2007.

[75] J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto. Reduction of

speckle noise in digital holography by using digital image processing.

Optik, 116:44–48, 2005.

[76] S. Mirza, R. Kumar, and C. Shakher. Study of various preprocessing

schemes and wavelet filters for speckle noise reduction in digital speckle

pattern interferometric fringes. Opt. Eng., 44(4):045603, 2005.

[77] M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino,

and B. Javidi. Numerical multiplexing and demultiplexing of digi-

tal holographic information for remote reconstruction in amplitude and

phase. Opt. Lett., 33(22):2629–2631, 2008.

[78] M. Paturzo, P. Memmolo, A. Tulino, A. Finizio, and P. Ferraro. Investi-

gation of angular multiplexing and de-multiplexing of digital holograms

recorded in microscope configuration. Opt. Express, 17(11):8709–8718,

2009.

[79] B. Saleh and M. Teich. Fundamentals of Photonics. Wiley-Interscience,

1991.

[80] F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky. Focus plane

detection criteria in digital holography microscopy by amplitude analy-

sis. Opt. Express, 14(13):5895–5908, 2006.



82 BIBLIOGRAPHY

[81] W. Li, N.C. Loomis, Q. Hu, and C.S. Davis. Focus detection from

digital in-line holograms based on spectral l1 norms. J. Opt. Soc. Am.

A, 24:3054–3062, 2007.

[82] T.G. Kim and Y.S. Kim. Extraction of a distance parameter in opti-

cal scanning holography using axis transformation. J. Opt. Soc. Korea,

14:104–108, 2010.

[83] M.L. Tachiki, M. Itoh, and T. Yatagai. Simultaneous depth determina-

tion of multiple objects by focus analysis in digital holography. Appl.

Opt., 47, 2008.

[84] M. Liebling and M. Unser. Autofocus for digital fresnel holograms by

use of a fresnelet-sparsity criterion. J. Opt. Soc. Am. A, 21:2424–2430,

2004.

[85] F.C. Groen, I.T. Young, and G. Ligthart. A comparison of different focus

functions for use in autofocus algorithms. Cytometry, 6:81–91, 1985.

[86] P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Ja-

vidi. Automatic focusing in digital holography and its application to

stretched holograms. Opt. Lett., 36(10):1945–1947, 2011.

[87] H. Tamura, S. Mori, and T. Yamawaki. Textural features corresponding

to visual perception. IEEE Trans. Syst. Man Cyber., 8:460–473, 1978.

[88] Y.L. Qi. A relevance feedback retrieval method based on tamura tex-

ture. Second International Symposium on Knowledge Acquisition and

Modeling (IEEE, 2009), 3:174–177, 2009.

[89] B. Kemper and G. von Bally. Digital holographic microscopy for live

cell applications and technical inspection. Appl. Opt., 47(4):A52–A60,

2008.

[90] C. Jackson, R.F. Murphy, and J. Kovacevic. Intelligent acquisition and

learning of fluorescence microscope data models. IEEE Trans. Image

Process., 18, 2009.

[91] R.A. Hoebe, C.H. Van Oven, T.W.J. Gadella, P.B. Dhonukshe,

C.J.F. Van Noorden, and E.M.M. Manders. Controlled light-exposure

microscopy reduces photobleaching and phototoxicity in fluorescence

live-cell imaging. Nat. Biotechnol., 25:249, 2007.



[92] P Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Ja-

vidi. Compression of digital holograms via adaptive sparse representa-

tion. Opt. Lett., 35:3883–3885, 2010.

[93] H.M. Smith. Principles of Holography. John Wiley and Sons, 1975.

[94] M. Lustig, D. Donoho, and J.M. Pauly. Sparse mri: The application

of compressed sensing for rapid mr imaging. Magn. Reson. Med.,

58:1182–1195, 2007.

[95] D. Takhar, J. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham,

K. Kelly, and R. Baraniuk. A new compressive imaging architecture

based on optical-domain compression. Proc. SPIE, 6065, 2006.

[96] L. Zhu, Y. Zhu, H Mao, and M. Gu. A new method for sparse signal de-

noising based on compressed sensing. Second International Symposium

on Knowledge Acquisition and Modeling, pages 35–38, 2009.

[97] T. Kreis. Handbook of Holographic Interferometry: Optical and Digital

Methods. Wiley-VCH, 2005.

[98] M.R. Chatterjee and S. Chen. Digital Holography and Three-

Dimensional Display: Principles and Applications, ed. Poon. T.

Springer, 2006.

[99] S. Fukushima, T. Kurokawa, and M. Ohno. Real-time hologram

construction and reconstruction using a highresolution spatial light-

modulator. Appl. Phys. Lett., 58(8):787–789, 1991.

[100] P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio. Controlling depth

of focus in 3d image reconstructions by flexible and adaptive deforma-

tion of digital holograms. Opt. Lett., 34(18):2787–2789, 2009.

[101] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge UP,

2004.



84 BIBLIOGRAPHY


