
Compressed sensing based cone-beam computed tomography
reconstruction with a first-order methoda…

Kihwan Choi
Department of Electrical Engineering, Stanford University, Stanford, California 94305

Jing Wang
Department of Radiation Oncology, Stanford University, Stanford, California 94305

Lei Zhu
Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology,
Atlanta, Georgia 30332

Tae-Suk Suh
Research Institute of Biomedical Engineering, The Catholic University of Korea,
Seoul 137–701, South Korea

Stephen Boyd
Department of Electrical Engineering, Stanford University, Stanford, California 94305

Lei Xingb�

Department of Radiation Oncology, Stanford University, Stanford, California 94305

�Received 15 December 2009; revised 10 July 2010; accepted for publication 13 July 2010;

published 31 August 2010�

Purpose: This article considers the problem of reconstructing cone-beam computed tomography

�CBCT� images from a set of undersampled and potentially noisy projection measurements.

Methods: The authors cast the reconstruction as a compressed sensing problem based on �1 norm

minimization constrained by statistically weighted least-squares of CBCT projection data. For

accurate modeling, the noise characteristics of the CBCT projection data are used to determine the

relative importance of each projection measurement. To solve the compressed sensing problem, the

authors employ a method minimizing total-variation norm, satisfying a prespecified level of mea-

surement consistency using a first-order method developed by Nesterov.

Results: The method converges fast to the optimal solution without excessive memory requirement,

thanks to the method of iterative forward and back-projections. The performance of the proposed

algorithm is demonstrated through a series of digital and experimental phantom studies. It is found

a that high quality CBCT image can be reconstructed from undersampled and potentially noisy

projection data by using the proposed method. Both sparse sampling and decreasing x-ray tube

current �i.e., noisy projection data� lead to the reduction of radiation dose in CBCT imaging.

Conclusions: It is demonstrated that compressed sensing outperforms the traditional algorithm

when dealing with sparse, and potentially noisy, CBCT projection views. © 2010 American Asso-

ciation of Physicists in Medicine. �DOI: 10.1118/1.3481510�

Key words: cone-beam computed tomography, compressed sensing, weighted least-squares, Nest-

erov’s first order method

I. INTRODUCTION

There is growing interest in using on-board cone-beam com-

puted tomography �CBCT� in radiation therapy for patient

setup and adaptive replanning.
1–5

While the onboard volu-

metric imaging offers welcome on-treatment patient

anatomy, there is critical concern over the risk associated

with the excessive radiation dose when it is used

repeatedly.
6–9

The risk is invisible, long term, and cumula-

tive; every scan compounds the dose and the risk. The 2006

report of the Biological Effects of Ionizing Radiation pro-

vides a framework for estimating the lifetime attributable

risk of cancer incidence from radiation exposure using the

most current data on the health effects of radiation. In gen-

eral, the risk is significantly modulated by polymorphism of

genes involved in DNA damage and repair �such as the

BRCA1-BRCA2 mutation�. It has been reported
7,8

that the

dose delivered to the patient is more than 3 cGy for central

tissue and about 5 cGy for most of the peripheral tissues

from a kV-CBCT scan with current clinical protocols. When

a patient is imaged daily, this amounts to more than 100 cGy

dose to the region inside the field of view during a treatment

course with a conventional fractionation scheme. The risk is

exacerbated by the frequent use of other modern x-ray imag-

ing modalities such as 4D simulation CT and fluoroscopic

imaging in modern radiation oncology clinics.
10

Given that

the radiological dose is directly and linearly related to risk
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and based on the as low as reasonably achievable principle,

the unwanted kV-CBCT dose must be minimized in order for

the patient to truly benefit from the modern image guidance

technology.
9

In CBCT literature, a variety of filtered back-projection

�FBP� algorithms are popularly used for image reconstruc-

tion from projection data. A FBP-type algorithm, originally

proposed by Feldkamp, Davis, and Kress �FDK�,11
and its

derivatives
12–15

are widely used for CBCT reconstruction.

When FBP or FDK algorithms are applied to undersampled

projection data, the quality of resultant images degrades dra-

matically due to incomplete information in the Fourier do-

main. Several methods are under investigation for tomogra-

phic image reconstruction from sparse samples.
16–20

For

cone-beam geometry, in contrast to its counterpart of

parallel-beam scan, obtaining Fourier-domain samples from

the projection data is less straightforward. This process is

typically done by approximation algorithms, e.g., Fourier re-

binning, which interpolate the projection data and may result

in some distortion.
20–25

Total variation based CBCT recovery

has recently been proposed.
26–32

Heuristic iterative algo-

rithms, such as projection on convex sets
26 �POCS� and ran-

dom search,
29

are developed to find solutions and the results

are very encouraging. In the statistics and signal processing,

�1-regularization for compressed sensing �CS� is a well-

established approach for signal recovery. Computationally,

while the standard second-order methods work well, it is

necessary to solve a large system of linear equations in order

to compute the Newton steps.
33–35

A great number of first-

order methods are available to tackle the problem of com-

pressed sensing.
36–38

In this work, we apply this technique to

solve the problem of CBCT image reconstruction from a set

of highly undersampled and noisy CBCT projection mea-

surements. We show that high quality CBCT images are at-

tainable under the condition of sparse and even noisy projec-

tion data.

The contribution of this work spans several knowledge

areas. First, our compressed sensing problem formulation,

i.e., total-variation �TV� norm minimization with a quadratic

inequality constraint, mitigates the manual parameter selec-

tion in previous approaches by enabling the physical inter-

pretation of data. Second, we investigate a first-order method

for solving the large-scale imaging problem to reduce the

computational burden. Compared to conventional second-

order iterative methods, our implementation avoids excessive

usage of computer memory by iterative forward and back-

projections. Additionally, our method outperforms the other

memory-saving methods, such as POCS, in that it leads to an

order of magnitude faster convergence. In Sec. II, we first

introduce the cost function for image reconstruction of

CBCT with consideration of the noise properties of the pro-

jection data. We then describe our compressed sensing model

and the first-order method for solving the problem. In Sec.

III, the proposed algorithm is evaluated by using a 3D

Shepp–Logan digital phantom and an anthropomorphic head

phantom. The discussion is followed in Sec. IV. We conclude

in Sec. V.

II. METHODS AND MATERIALS

II.A. CBCT sinogram noise model

In this subsection, we introduce a widely investigated

x-ray noise model
39–42

which is not new but makes our work

self-explanatory. The line integral of attenuation coefficients

is given by

yi = ln
Ni0

Ni

, �1�

where Ni0 and Ni is the incident photon number and the

detected photon number at detector bin i, respectively. In a

real x-ray CBCT system, the measured signal is total energy

deposit on the flat-panel detector, from which we calculate

detected photon number Ni. In the following, we refer to the

value of yi as the sinogram datum at the detector bin i. Noise

in x-ray CT projection data after logarithm transform follows

approximately Gaussian distribution and the variance of the

noise can be determined by an exponential formula
39–42

�i
2 =

exp�ȳi�
Ni0

, �2�

where ȳi and �i
2 are defined as the mean and the variance of

noisy sinogram datum yi, respectively. This noise model con-

siders the signal-to-noise ratio �SNR� of the line integrals.

The measurement associated with a larger SNR will contrib-

ute more to the solution, as we describe in Sec. II B.

II.B. Compressed sensing with statistically weighted
CBCT projection data

Based on the noise properties of the projection data, a cost

function in the image domain can be constructed.

��x� = �y − Px�T�−1�y − Px� , �3�

where y is the vector of sinogram data and x is the vector of

attenuation coefficients to be reconstructed. The operator P

represents the system or projection matrix. The �i , j�th entry

P�i , j� is the length of the intersection of projection ray i with

voxel j. The symbol T denotes the transpose operator, and

thus, PT is the back-projection matrix. The matrix � is a

diagonal matrix with ith element of �i
2, i.e., an estimate of

the variance of noise of line integral at detector bin i which

can be calculated from the measured projection data accord-

ing to Eq. �2�. The element of the diagonal matrix, which
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characterizes the contribution of each measurement, plays

the role of weighting in the weighted least square �WLS�
cost function.

For the standard least-squares formulation, we introduce

A=�−1/2P and b=�−1/2ŷ, rewrite Eq. �3� as

��x� = �Ax − b�
�2

2 . �4�

Introducing the tolerance level of measurement inconsis-

tency �, we can formulate the image reconstruction problem

as a quadratically constrained problem

minimize f�x�

subject to �Ax − b��2
� � , �5�

where f is an �1-norm related regularization function de-

pending on prior assumption about the image x. The qua-

dratic constraint here can be interpreted as the Euclidian dis-

tance between the detection and estimation is not greater

than �. The Euclidian distance � quantifies the tolerable un-

certainty level about the noisy projection measurements. This

concept will be discussed in Sec. IV.

Among many possible candidates for CS penalty

function,
43–45

we select 3D TV of the reconstructed image,

i.e., f�x�= �x�TV, defined by

�x�TV ª �
i,j,k

� � x�i, j,k���2
,

to form the objective function, where �x�i , j ,k��R3 is the

difference vector at each position �i , j ,k� of the object image

defined by

�x�i, j,k� = �
�D1x��i, j,k�

�D2x��i, j,k�

�D3x��i, j,k�
� .

Operators D1, D2, and D3 are the directional differences as

�D1x��i, j,k� = x�i + 1, j,k� − x�i, j,k� ,

�D2x��i, j,k� = x�i, j + 1,k� − x�i, j,k� ,

�D3x��i, j,k� = x�i, j,k + 1� − x�i, j,k�

in x-, y-, and z-axis, respectively. Therefore, our CBCT re-

construction problem is

minimize �x�TV

subject to �Ax − b��2
� � , �6�

where we minimize the total variation of reconstructed im-

age in the sublevel set with measurement inconsistency tol-

erance �. We will discuss the advantage of the TV minimi-

zation with a quadratic constraint in Sec. IV.

II.C. A first-order method for compressed sensing

Problems of the form Eq. �6� can be solved using a variety

of algorithms, including interior point methods,
34,46

projected

gradient methods,
47

homotopy methods,
48

Bregman iterative

regularization algorithms,
37,49

and a first-order method based

on Nesterov’s algorithm.
38,50

We describe here a first-order

method developed by Nesterov, which provides an accurate

and efficient solution to large-scale compressed sensing re-

construction problems using a smoothing technique
38,50,51

We first rewrite the TV norm

�x�TV = max
u�Qd

�
i,j,k

	u�i, j,k�,�x�i, j,k�
 , �7�

where u= �u1 ,u2 ,u3� is in the dual feasible set Qd if and only

if u1
2�i , j ,k�+u2

2�i , j ,k�+u3
2�i , j ,k��1 for each voxel at posi-

tion �i , j ,k�. With this formulation, Eq. �6� can be recast as

the following saddle point problem as:

min
x�Qp

max
u�Qd

�
i,j,k

	u�i, j,k�,�x�i, j,k�
 , �8�

where Qp denotes the primal feasible set satisfying the data

inconsistency cost constraint, i.e., Qp= �x : �Ax−b��2
���, for

the given tolerance level �.

Following Nesterov’s approach, we smooth the regular-

ization function as

f� = max
u�Qd

�
i,j,k

	u�i, j,k�,�x�i, j,k�
 −
�

2
�u�

�2

2 , �9�

where we can set � sufficiently small as to f� f . Then, we

have

�f��x��i, j,k� = �
�D1u�,1��i, j,k�

�D2u�,2��i, j,k�

�D3u�,3��i, j,k�
� , �10�

where

u�,a�i, j,k� =��−1�Dax��i, j,k� , if � � x�i, j,k���2
� � ,

� � x�i, j,k��
�2

−1�Dax��i, j,k� , otherwise,
�
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for a� �1,2 ,3�.
Our compressed sensing reconstruction method can be

summarized as

given tolerance ��0, parameter �

initialize kª0, x0=FDK�y�
while stop criterion is invalid
kªk+1

gkª�f��xk�

yk ª arg min
x�QP

L�

2
�x − xk��2

2 + 	gk,�x − xk�


zk ª arg min
x�QP

L�

�P

PP�x� + �
i=1

k

	i	gi,�x − xi�


xkª
kzk+ �1−
k�yk, m�N j

end

We update yk and zk using the Karush–Kuhn–Tucker con-

ditions as follows:
38,46

yk = �I −
�

� + L�

ATA�� �y

L�

ATb + xk −
1

L�

� f��xk�� , �11�

zk = �I −
�

� + L�

ATA�� �z

L�

ATb + x0 −
1

L�
�
i�k

�f��xi�� ,

�12�

where the Lagrange multipliers �y and �z equal to

�y = max�0,�−1�b − Aqy��2
− L�� ,

�z = max�0,�−1�b − Aqz��2
− L�� ,

with

qy = x0 −
1

L�

� 	if��xk� ,

qz = x0 −
1

L�
�
i�k

�	if��xi� .

For more details on parameter selections, see the NESTA

tech report.
38

Here we use CBCT projection function call rather than the

matrix-vector product. Storing the projection matrix requires

excessive memory space which can be problematic for large-

scale CBCT imaging problems. With efficient CBCT forward

and back-projection functions, we can solve problems with

much larger numbers of variables �voxels to be determined�
and measurements �CBCT projection data� as compared to

conventional approaches. For example, when calculating

ATAx, we cast the product to PT�−1Px. The matrix-vector

product Px can be equivalently calculated by CBCT projec-

tion function call with parameter x. Also, �−1y is the el-

ementwise product of two vectors ��1
−2 ,�2

−2 , . . .� and y rather

than matrix-vector product. Similarly, PTy is calculated by

CBCT back-projection function call with parameter y. Simi-

lar approaches to avoid excessive memory requirement can

be found in previous works.
26,52,53

II.D. Evaluation

We first used a 3D Shepp–Logan phantom to evaluate the

proposed method. The size of 3 phantom is 256�256

�256, where the size of one voxel is assumed 1�1

�1 mm3. The distance between the cone-beam source and

detection panel is 1500 mm and the distance between the

object image and detection panned is 500 mm. The size of

detection panel is 512�512 mm2 and the size of a projec-

tion image is 256�256 pixels. The code is written in MAT-

LAB �version 7.8� running on a Linux workstation with a 2.33

GHz Intel Xeon CPU and 4 GB memory.

Without any loss of generality, we can fix the weighting

matrix � with exponential values of the actual line integrals

which determines the principal directions of the ellipsoidal

quadratic constraint. Here we assume a constant incident

photon number Ni0=N0 across every bin i in the digital phan-

tom study. The quadratic constraints can be commonly fac-

torized by N0. By adjusting the infidelity tolerance level �,

the volume of the ellipsoid is set corresponding to each in-

cident photon number.

For the purpose of performance evaluation, we compare

the convergence speed of the proposed method to that of

POCS. The POCS algorithm implemented in this work relies

on the projections onto the hyperplanes with a constant step

size for the quadratic constraints and the steepest decent gra-

dient with back-tracking line search to decrease the TV

norm. For more details on the implementation of POCS al-

gorithm, we refer the readers to Ref. 26. As a criterion for

performance comparison, we incorporate an unconstrained

least absolute shrinkage and selection operator �LASSO� ex-

pressed as

fLASSO�x� = �x�TV + ��Ax − b��2
, �13�

where � is the shrinkage parameter to control the biobjec-

tives.

An anthropomorphic phantom experiment was also car-

ried out. The experimental CBCT projection data were ac-

quired by using an Acuity simulator �Varian Medical Sys-

tems, Palo Alto, CA�. The number of projections for a full

360° rotation is 680 and the total time for the acquisition

about 1 min. The dimension of each acquired projection im-

age is 397�298 mm2, containing 1024�768 pixels.

We use two protocols for the performance comparison.

For the low-dose CBCT protocol, the x-ray tube current was

set at 10 mA and the duration of the x-ray pulse at each

projection view was 10 ms during the projection data acqui-

sition. For the high-dose CBCT protocol, the tube current

was set at 80 mA and the duration of the x-ray pulse was set

at 10 ms. The tube voltage was set to 125 kVp for both

protocols. The projection data were acquired in full-fan

mode with a bowtie filter. The distance of source-to-axis is

100 cm and source-to-detector distance of 150 cm. The size

of reconstructed image is 700�700�16 voxels, where the

voxel size is 0.320�0.320�0.320 mm3.
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III. RESULTS

III.A. Digital phantom study

We first reconstruct 3D Shepp–Logan phantom from 32

projection views along a circular orbit uniformly distributed

in �0,2�. In this case, the number of beamlet measurements

is only 1/8 of the number of voxels to be determined. Com-

pressed sensing based on statistically weighted least square

�CS-WLS� reconstruction results are compared to the tradi-

tional reconstruction using FDK algorithm.
11

Several repre-

sentative slices of the original phantom and reconstructed

images are shown in Fig. 1. To further illustrate the edge

information, Fig. 2 shows 1D profiles of the original phan-

tom and reconstructed images in x, y, and z directions. It is

seen that CS-WLS recovers the object image with high fidel-

ity from the highly sparse and noiseless projection data.

However, the same is not true for FDK algorithm.

The convergence speed of the proposed method and the

existing POCS method is shown in Fig. 3 in term of the

number of iterations. For 500 iterations, the proposed

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Representative axial/frontal/sagittal slices of the digital phantom, CS-WLS reconstruction, and FDK reconstruction. For CS-WLS and FDK-based

reconstructions, 32 noiseless projection views are used. �a� Original phantom �axial�; �b� CS-WLS �axial�; �c� FDK algorithm �axial�; �d� original phantom

�frontal�; �e� CS-WLS �frontal�; �f� FDK algorithm �frontal�; �g� original phantom �sagittal�; �h� CS-WLS �sagittal�; and �i� FDK algorithm �sagittal�. Display

window: �0,0.1� mm−1.
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method and POCS took about 25 643 and 25 196 s, respec-

tively. To evaluate the vicinity to the optimal solution, we

estimate the normalized difference between fLASSO�x�k�� the

LASSO regression value at each iteration and fLASSO
� LASSO

regression value for the digital phantom for each iteration.

Using the noise model introduced in Sec. II, the noise

simulation results for the digital phantom are shown in Figs.

4 and 5. We assume the incident photon number is constant,

i.e., Ni0=N0, for all bin i, and the N0 takes 103, 104, 105, and

106, respectively, to simulate clinical CBCT radiation

intensity.
39,42

As expected from the noiseless results, FDK

results from 32 noisy projection views show very poor im-

ages �Fig. 4� and failed to hold the piecewise constant prop-

erty of the digital phantom as seen in the 1D profiles in Fig.

5. On the other hand, compressed sensing shows the robust-

ness even for the high level of noise with N0=104. It is useful

to mention that the clinical noise level is generally �105,

indicating the validity of the proposed method in a practical

situation. We acknowledge here that the effects of the bowtie

filter and the compound Poisson sampling due to the polyen-

ergetic spectrum were omitted in the simulation studies.

Table I lists the contrast-to-noise ratio �CNR� of soft tis-

sue and inner objects for different incident photon numbers.

It can be observed that the CNR increase with the incident

photon number in both reconstruction algorithms. The CNR

of the image reconstructed using compressed sensing re-

mains high with N0�104.

III.B. Experimental phantom study

Figures 6 and 7 show a representative slice of the recon-

structed head phantom images based on the projection data

of Acuity measurements. The reconstructed images based on

the low-dose and high-dose protocol using FDK and CS al-

gorithms are shown in Figs. 6 and 7, respectively. As can be

seen from the figures, the CS technique efficiently suppresses

noise in the low-dose protocol resulting in images with

sharper edges compared to the FDK reconstruction. Figure 8

compares a region of interest �ROI� in the images recon-

structed using CS-WLS and the conventional FDK algo-

rithms. The CS-WLS result clearly preserves the edge even
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FIG. 2. 1D profiles of the digital phantom, CS-WLS reconstruction, and

FDK-based reconstruction. For CS-WLS and FDK reconstructions, 32

noiseless projection views are used. �a� Horizontal profiles of the axial

slices; �b� vertical profiles of the axial slices; and �c� longitudinal profiles

along with the lines in the sagittal slices in Fig. 1.

0 50 100 150 200 250 300 350 400 450 500
10

6

10
7

10
8

10
9

10
10

Iteration

d
is

t

POCS

Nesterov

FIG. 3. Convergence comparison between POCS and Nesterov in the first

500 iterations. For fair comparison, POCS algorithm uses a back-tracking

line search rather than constant step size. The compared criterion f is the

unconstrained LASSO regression value and f� is the LASSO value with the

digital phantom.
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when reconstructed from undersampled and noisy projection

data. Figure 9 shows the central 1D profiles of the slices in x

and y directions. The results are very close to that obtained

using high-dose protocol. Compressed sensing thus provides

a useful method to reduce effectively the imaging dose with

minimal compromise in the resultant image quality. The

CNRs for the anthropomorphic phantom study are listed in

Table II.

IV. DISCUSSION

The classical Shannon–Nyquist sampling theorem speci-

fies that to avoid losing information when capturing a signal,

one must sample at least two times faster than the signal

bandwidth. In many applications, including digital image and

video cameras, the Nyquist rate is so high that too many

samples result, making samples compressible for efficient

storage or transmission. In other applications, such as medi-

cal imaging systems and high-speed analog-to-digital con-

verters, increasing the sampling rate is either impractical or

too expensive. Recently, an alternative theory of compressive

sampling or compressed sensing has emerged, which shows

that super-resolved signals and images can be reconstructed

from far fewer data/measurements than what is usually con-

sidered necessary.
43–45

Briefly, compressed sensing is a technique for acquiring

and reconstructing a signal that is known to be sparse or

compressible. A mathematical manifestation of a sparse sig-

nal is that it contains many coefficients close to or equal to

zero, when represented in some appropriate transform do-

main, such as Fourier domain, total-variation norm, and

wavelet domain. Effective utilization of this type of prior

knowledge of the system can potentially reduce the required

number of measurement samples determined by the

Shannon–Nyquist theorem. Most CT images represented by

the x-ray attenuation coefficients are sparse, and thus, CT

imaging recovery is a good application of compressed sens-

ing. The x-ray attenuation coefficient often remains �almost�
constant within organs and sharp variations are usually con-

fined to the borders of internal tissue structure so that images

have sparse gradient-magnitude images.
26

Even though solving a sparsity problem is mathematically

NP-hard, it is shown that a good approximate approach for a

sparse recovery problem can be obtained using a convex op-

timization of an �1 norm.
43–46

A variety of algorithms have

been proposed for solving problems in the form of least-

squares plus �1 norm, including interior point methods,
34,46

projected gradient methods,
47

homotopy methods,
48

and

first-order methods.
37,38,50,51

In CBC imaging literature, a

POCS algorithm has been widely used.
26–32

In the imple-

mented first-order method, we calculate the next step using

the previous step as well as the decent gradient of the current

point. An advantage of this two-step method compared to the

one-step method is that it converges to the optimal solution

much faster with similar memory requirement.
38,50,51

Nester-

ov’s algorithm is a well-known two-step method and the re-

quired number of the iterations to reach �f�x�− f���� is

O�1 /���,50,51
whereas one-step methods based on the steep-

est decent gradient require O�1 /�� iterations in general.
46

A

fast convergence speed is highly desirable in solving large-

scale problems. The cost for the proposed two-step method

in improving the convergence speed is the additional regis-

ters to store the history of some of previous iterations regard-

less of the size of the problem.
38,50,51

It has been proved that

this additional memory requirement can be reduced into just

one more register while holding the same order of conver-

gence speed.
50,51

(a)

(b)

(c)

(e)

(f)

(g)

(h)(d)

FIG. 4. Comparison of representative slices of the digital phantom recon-

structed by FDK and CS-WLS using 32 projection views with different

incident photon numbers. �a� FDK reconstruction with N0=103; �b� CS-

WLS reconstruction with N0=103; �c� FDK reconstruction with N0=104; �d�
CS-WLS reconstruction with N0=104; �e� FDK reconstruction with N0

=105; �f� CS-WLS reconstruction with N0=105; �g� FDK reconstruction

with N0=106; and �h� CS-WLS reconstruction with N0=106. Display win-

dow: �0,0.1� mm−1.
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A few algorithms based on regularized least-squares have

been applied to solving the image reconstruction problem

presented.
39

Such quadratic penalty simply encourages the

equivalence between neighbors without considering discon-

tinuities in the image and may lead to oversmoothing around

sharp edges or boundaries.
46

In the presented compressed

sensing technique, we use a total variation to consider the

potential inequivalence of the neighbors. In general, total

variation can remove much of the noise, while preserving

any possible rapid variation in the original signal.
46

Com-

pressed sensing is known as a tool for robust denois
43,45

and

the study here strongly supports the conclusions drawn from

the previous investigation in noise reduction. In the digital

phantom study, the piecewise constant images were recov-

ered accurately from sparse and noisy projection views with

N0�104. In reality, the incident x-ray intensities with 80 mA

tube current and 10 ms pulse time are in the order of 105

across the field of view
39,42

and the noise simulation results

support the robustness of compressed sensing against noise.

The robust denoising property becomes clearer in the anthro-

pomorphic head phantom study. High quality was achieved

even when the tube current and number of projection views

were reduced by factors of 1/8 and 1/2, respectively. The

result with our low-dose protocol setting shows the efficacy

of the proposed method. It is interesting to point out that the

same amount of dose reduction may be achieved by reducing
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FIG. 5. 1D profiles of the digital phantom, CS-WLS reconstruction, and FDK-based reconstruction with different incident photon numbers. �a� Vertical profiles

with N0=103; �b� vertical profiles with N0=104; �c� vertical profiles with N0=105; and �d� vertical profiles with N0=106.

TABLE I. CNRs of the soft tissue and inner objects in the digital phantom study.

N0 103 104 105 106 Noiseless

FDK 0.60 0.60 0.60 0.60 0.60

CS-WLS 1.34 2.96 3.38 3.41 3.46
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FIG. 6. Comparison of representative slices of the anthropomorphic head phantom reconstructed by FDK and CS-WLS using 10 mA tube-current projection

data. �a� FDK reconstruction using 56 projection views; �b� CS-WLS reconstruction using 56 projection views; �c� FDK reconstruction using 113 projection

views; �d� CS-WLS reconstruction using 113 projection views; �e� FDK reconstruction using 226 projection views; �f� CS-WLS reconstruction using 226

projection views; �g� FDK reconstruction using 339 projection views; �h� CS-WLS reconstruction using 339 projection views; �i� FDK reconstruction using

678 projection views; and �j� CS-WLS reconstruction using 678 projection views. Display window: �0,0.045� mm−1.
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FIG. 7. Comparison of representative slices of the anthropomorphic head phantom reconstructed by FDK and CS-WLS using 80 mA tube-current projection

data. �a� FDK reconstruction using 56 projection views; �b� CS-WLS reconstruction using 56 projection views; �c� FDK reconstruction using 113 projection

views; �d� CS-WLS reconstruction using 113 projection views; �e� FDK reconstruction using 226 projection views; �f� CS-WLS reconstruction using 226

projection views; �g� FDK reconstruction using 339 projection views; �h� CS-WLS reconstruction using 339 projection views; �i� FDK reconstruction using

678 projection views; and �j� CS-WLS reconstruction using 678 projection views. Display window: �0,0.045� mm−1.
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the number of projection views by a factor of 1/16 while

maintaining the tube current at 80 mA. In reality, fewer pro-

jection views with high tube current can be an inefficient

strategy in the sense of SNR.

TV-based CBCT reconstructions based on the minimiza-

tion of TV norm with a quadratic constraints have been

reported.
26,27

However, these projection-based algorithms

with a constant step size are incapable of utilizing the statis-

tical weights across the measurement data since it is not

straightforward to incorporate the statistical weights into

each hyperplane projection. In this work, a statistically

weighted quadratic constraint is directly used for calculating

the decent direction according to the relative importance of

the consistency �or fidelity� of the measurements. This for-

mulation makes the determination of the system parameter

easy: The physical meaning of the measurement inconsis-

tency tolerance � can be perceived in terms of the inconsis-

tency level of the normalized sinogram which has a chi-

square distribution. The constrained least-squares can be

interpreted as a sublevel set in the form of a solid ellipsoid.

The volume of the ellipsoid is directly related to the mea-

surement inconsistency tolerance level �. The proposed
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FIG. 8. Comparison of ROIs in Figs. 6 and 7. �a� and �b� show the FDK and CS-WLS reconstructions using 339 projection views with 10 mA tube current,

respectively. �c� and �d� show the FDK and CS-WLS reconstructions using 678 projection views with 80 mA tube current, respectively. Display window:

�0,0.045� mm−1.
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method explores the ellipsoid by minimizing the �1 norm.

Here, we choose � by the noise level of the sinogram data,

which is estimated based on our experiment settings since

the tolerance is associated with the variance of the sinogram.

Despite intense efforts in the developments of iterative

CBCT reconstruction algorithms over the years and all the

potential benefits of these new algorithms, FDK/FBP based

algorithms remain the workhorse in clinical CT scanner

mainly for their computational efficiency.
27

The widespread

adoption of compressed sensing based reconstruction will be

difficult, if not impossible, without a dramatic improvement

in its computational efficiency. The improvement in conver-

gence behavior and memory usage from this work represents

a valuable incremental step in reducing the gap between the

state-of-the-art research and clinical practice. Combined with

technical advancements in computer hardware, such as the

GPU-based computing, it is foreseeable that compressed

sensing based large-scale CBCT reconstruction will enter the

routine clinical applications, at least for some special appli-

cations, in the not too distant future.

V. CONCLUSION

A compressed sensing technique using a first-order

method has been developed for CBCT image reconstruction

with sparse and potentially noisy low-dose projection data.

In this method, the weight for each measurement was chosen

based on sinogram datum variance. By eliminating the inter-

mediate step of mapping CBCT projection data to the Fou-

rier domain, the proposed method allows high quality recon-

struction of object. The performance of the proposed method

is demonstrated by both simulation and experimental phan-

tom studies. It is demonstrated that compressed sensing out-

performs the traditional algorithm when dealing with sparse

CBCT projection views in the presence of relatively high

noise due to low tube current. The results indicate that it is

possible to reduce CBCT radiation dose by more than an

order of magnitude without loss of useful information for

radiotherapy.
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