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Abstract

While the conventional wisdom is that the interior problem does not have a unique solution, by
analytic continuation we recently showed that the interior problem can be uniquely and stably solved
if we have a known sub-region inside a region-of-interest (ROI). However, such a known sub-region
does not always readily available, and it is even impossible to find in some cases. Based on the
compressed sensing theory, here we prove that if an object under reconstruction is essentially
piecewise constant, a local ROI can be exactly and stably reconstructed via the total variation
minimization. Because many objects in CT applications can be approximately modeled as piecewise
constant, our approach is practically useful and suggests a new research direction of interior
tomography. To illustrate the merits of our finding, we develop an iterative interior reconstruction
algorithm that minimizes the total variation of a reconstructed image, and evaluate the performance
in numerical simulation.
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I. Introduction

One conventional wisdom is that the interior problem (exact reconstruction of an interior ROI
only from data associated with lines through the ROI) does not have a unique solution (Natterer,
2001). Nevertheless, it is highly desirable to perform interior reconstruction for radiation dose
reduction and other important reasons. Hence, over past years a number of image reconstruction
algorithms were developed that use an increasingly less amount of raw data (Parker, 1982; Noo
et al., 2004; Defrise et al., 2006). Specifically, motivated by the major needs in cardiac CT,
CT guided procedures, nano-CT and so on (Wang et al., 2007), by analytic continuation we
recently proved that the interior problem can be exactly and stably solved if a sub-region in an
ROI within a field-of–view (FOV) is known (Ye et al., 2007b; Ye et al., 2007a; Ye et al.,
2008; Yu et al., 2008). Similar results were also independently reported by others (Kudo et

al., 2008; Courdurier et al., 2008). Although the CT numbers of certain sub-regions such as
air in a trachea and blood in an aorta can be indeed assumed, how to obtain precise knowledge
of a sub-region generally can be difficult in some cases such as in studies on rare fossils or
certain biomedical structures. Therefore, it would be very valuable to develop more powerful
interior tomography techniques (Wang and Yu, 2008).

Another conventional wisdom is that data acquisition should be based on the Nyquist sampling
theory, which states that to reconstruct a band-limited signal or image, the sampling rate must
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at least double the highest frequency of nonzero magnitude. Very interestingly, an alternative
theory of compressed sensing (CS) has recently emerged which shows that high-quality signals
and images can be reconstructed from far fewer data/measurements than what is usually
considered necessary according to the Nyquist sampling theory (Donoho, 2006; Candes et

al., 2006). The main idea of CS is that most signals are sparse in an appropriate orthonormal
system, that is, a majority of their coefficients are close or equal to zero, when represented in
some domain. Typically, CS starts with taking a limited amount of samples in a much less
correlated basis, and the signal is exactly recovered with an overwhelming probability from
the limited data via the ℓ1 norm minimization. Since samples are limited, the task of recovering
the image would involve solving an underdetermined matrix equation, that is, there is a huge
amount of candidate images that can all fit the limited measurements effectively. Thus, some
additional constraint is needed to select the “best” candidate. While the classical solution to
such problems is to minimize the ℓ2 norm, Donoho and Tao’s groups showed that finding the
candidate with the minimum ℓ1 norm, also equivalent to the total variation (TV) minimization
in some cases (Rudin et al., 1992), is a most reasonable choice, and can be expressed as a linear
program and solved efficiently using existing methods (Donoho, 2006; Candes et al., 2006).

Inspired by the CS theory, in this paper we show the feasibility of exact interior tomography
in the CS framework. In the next section, we perform a theoretical analysis. In the third section,
we develop a CS-based interior tomography algorithm and report numerical simulation results.
Finally, we discuss relevant issues.

II. Theoretical Analysis

It is well known that the CS theory depends on the principle of transform sparsity. For an object
of interest such as a digital image, we can arrange it as a vector, and in numerous cases there
exists an orthonormal basis to make the object sparse in terms of significant transform
coefficients. In CS-based image reconstruction, frequently used sparsifying transforms are
discrete gradient transforms and wavelet transforms. The discrete gradient sparsifying
transform was recently utilized in CT reconstruction (Chen et al., 2008). This is because the
x-ray attenuation coefficient often varies mildly within organs, and large image variations are
usually confined to the borders of tissue structures. A sparse gradient image may also be a good
image model in industrial or security applications.

Now, let us analyze the possible exactness of interior tomography in the CS framework subject
to the TV minimization. Without loss of generality, let us consider a 2D smooth image f(r ⃗) =
f(x, y) = f(ρ, θ), ρ ∈ [0,1], θ ∈ [0,2π) on the compact support unit disk Ω. Its Radon transform
can be written as R(s, φ), s ∈ [−1,1], φ ∈ [0, π). Suppose that we are only interested in its
interior part f(ρ, θ) with ρ < ρ0, and we only know the corresponding local Radon transforms
R(s, φ), |s| < ρ0, which is also referred to as local parallel-beam projections. Based on the classic
analysis (Natterer, 2001), in general there is no unique solution if we only know these local
data. For any reconstructed image from the local data set, it can be viewed as an exact
reconstruction from a complete dataset R(s, φ), s ∈ [−1,1], φ ∈ [0, π) and a global dataset R̃
(s, φ), ρ0 < |s|≤1,φ ∈[0,π). Although R̃(s, φ) = 0 for |s|<ρ0, it can still produce a non-zero 2D
local image g(ρ,θ), ρ ∈ [0, ρ0), θ ∈ [0,2π) inside the ROI, which is the reason for the non-
uniqueness (Natterer, 2001).

Lemma 2.1

For any Radon transform R̃(s, φ), ρ0 < |s|≤1,φ ∈ [0,π), the corresponding reconstructed image
g(ρ,θ) with ρ < ρ0 is smooth and bounded if R̃(s,φ) is continuous and bounded.

Proof—To prove Lemma 2.1, let us use the classical filtered backprojection (FBP) algorithm.
In the filtration step, the filtered data can be written as:
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(1)

where h(s) represents the ramp filtering kernel. Given the property that h(s) is analytic
everywhere except at s = 0, R̃f(s,φ) will be smooth and bounded for |s| < ρ0 because there is no
singular operation in the integral. Actually, R̃f(s,φ) is an analytic function of s for |s| < ρ0. In
the backprojection step, the backprojection image g(ρ,θ) can be written as:

(2)

Eq. (2) shows that the reconstruction g(ρ,θ) only involves the data R̃f(s,φ) with |s|≤ρ. That is,
the reconstruction of g(ρ,θ) with ρ < ρ0 only involves the data R̃f(s,φ) with |s|≤ ρ0. Hence, g
(ρ,θ) with ρ < ρ0 is a smooth and bounded function.

Lemma 2.2

For the reconstructed image g(ρ,θ) with |ρ|< ρ0, both  and  are smooth and
bounded.

Proof—Perform a derivation operation on both side of Eq. (2), we have

(3)

and

(4)

Using the analytic property of R̃f(s,φ) with the variable s for |s|< ρ0 mentioned in the proof of
Lemma 2.1, we complete this proof.

Since Natterer has proved that g(ρ,θ) is a non-zero function, it is impossible that both

 and  are zeros inside the ROI. The same results can be extended to higher order
derivatives of g(ρ,θ).

Theoretically speaking, the ℓ1 norm of the image f(ρ,θ) inside the ROI can be expressed as:

(5)

where μ(ρ,θ) represents a sparifying transform. For the commonly used gradient transform in
the medical imaging field, we have
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(6)

which is the gradient magnitude or absolute value of the maximum directional derivation at
(ρ,θ). If there is no other statement in this paper, we always assume that μ(ρ,θ) defined by Eq.
(6) and (5) represents the total variation. When there exists an artifact image g(ρ,θ) due to the
data truncation, the total variation will be:

(7)

where μ̃(ρ,θ) represents the sparifying transform of a reconstructed image including an artifact
image g(ρ,θ) and λ is a coefficient. If we can prove that f̃tv can be minimized at λ = 0 for the
given f(ρ,θ) and g(ρ,θ), the exactness of interior tomography in the CS framework should hold
in this particular case.

Theorem 2.1

In the CS framework, it is impossible to reconstruct exactly an interior ROI of a general 2D
smooth function by minimizing the total variation Eq. (7).

Proof—First, let us consider a special circular symmetric case. Without loss of generality, we
assume that R̃(s,φ) = R̃(−s,φ) = R̃(s). Thus, the corresponding reconstructed image g(ρ,θ) will
be independent of the variable θ, that is, g(ρ,θ) = g(ρ). Because g(ρ,θ) is bounded and smooth
(Lemma 2.1), we can always construct a circular symmetric local reconstruction f(ρ) = g(ρ) +

C > 0 for ρ < ρ0 with a constant C. Note that  for ρ < ρ0, the TV of f(ρ) inside the
ROI can be computed as:

(8)

and

(9)

Clearly, f̃tv reaches the minimal at λ = −1 instead of λ = 0 in this special case, which completes
the proof.

Many biomedical images can be approximately modeled as being piecewise constants; for
example in (Wang et al., 2004). Now, let us establish the exactness of interior tomography of
a symmetric piecewise constant image f(ρ). In this case, we have
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(10)

where tm > 0 indicates a location of discontinuity, qm characterizes the corresponding jump
defined as

(11)

and δ(•) represents Dirac delta function defined as:

(12)

Lemma 2.3

For two bounded functions g1(ρ) and g2(ρ) with 0 < ρ < ρ0, there will be:

(13)

where qm and tm are the same as in Eq. (10).

Proof—Since g1(ρ) and g2(ρ) are bounded, there will be  and

. Denoting the left side of Eq. (13) as “LS”, we have

(14)

On the other hand, we have
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(15)

Combining (14) and (15), we have

(16)

which implies that LS = |qm| tm.

Theorem 2.2

In the CS framework, an interior ROI of a circular symmetric piecewise constant function f
(ρ) can be exactly determined by minimizing the total variation defined in Eq. (7).

Proof—For a symmetric and piecewise constant function f(ρ), the TV formula Eq. (5) becomes

(17)

Denoting the set of finite discontinuous points of f(ρ) at tm as ID, and the interval [0, ρ0] as I,
we express the TV expansion Eq. (7) as

(18)

where

(19)

and

(20)

Eq. (20) can be simplified as

Yu and Wang Page 6

Phys Med Biol. Author manuscript; available in PMC 2010 May 4.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(21)

where Lemma 2.3 has been used. Clearly, Eq. (18) reaches the minimal at λ = 0, which implies
that exact reconstruction can be performed in terms of TV minimization only from purely local
data.

Next, let us consider a general piecewise constant function f(ρ,θ) defined on the compact
supported unit disk Ω. Without loss of generality, we assume that Ω can be divided into finite
sub-regions Ωn, n = 1,2,…, N, where each sub-region Ωn has a nonzero area measure, on which
f(ρ,θ) is a constant. As a result, these sub-regions also define finitely many boundaries in terms
of arc-segments, each of which is of a non-zero length and differentiable almost everywhere
excluding at most finitely many points. We assume that an interior ROI Ω0 (defined by ρ <
ρ0) covers M boundaries and these line segments are denoted as L1, L2,…Lm…,LM. While the
length of Lm is denoted as tm > 0, the difference between the two neighboring sub-regions is
denoted as qm, which is defined in the same fashion as in Eq. (11). An example is given in
Figure 1, where the compact support Ω includes 6 sub-regions and the ROI Ω0 covers 8 arc-
segments as boundaries. For a given point r ⃗ = (ρ,θ) on an arc-segment Lm, we set up a local
coordinate system with the unit direction u⃗ being the tangent direction of Lm on r ⃗ and unit the
direction v⃗ being the normal direction of Lm on r ⃗ (see Figure 2). By the assumption of piecewise
constant, f(r ⃗) has the maximal directional derivation along the direction v⃗. What is more, the
absolute value of the maximal directional derivative μ in a small neighborhood of r ⃗ can be
written as

(22)

On the other hand, we have a global polar system with the unit vectors being ρ ⃗ and θ ⃗. If we
denote the angle between ρ⃗ and v⃗ as γ, the gradient of f(r ⃗) along v⃗ in a small neighborhood of
r ⃗ can be written as qmδ(v)(cos γρ⃗+sin γθ ⃗). When the image f(r ⃗) is overlapped with a smooth
and bounded function g(r ⃗) as we mentioned above in Lemmas 2.1 and 2.2., the absolute value
of maximal directional derivative along the direction v⃗ for the composited function should be:

(23)

Lemma 2.4

For two bounded functions g1(r ⃗) and g2(r ⃗), there will be:

(24)

Proof—Denoting the left side of Eq. (24) as “LS”, we have
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(25)

where we have used the facts that λ, g1(r ⃗) and g2(r ⃗) are bounded. On the other hand,

(26)

Combining Eqs. (25) and (26), we must have LS = |qm|.

Theorem 2.3

In the CS framework, an interior ROI of a general compactly supported function f(r ⃗) can be
exactly determined by minimizing the total variation defined by Eq.(7) if f(r ⃗) can be
decomposed into finitely many constant sub-regions.

Proof—For an ROI Ω0 of a general piecewise constant function f(r ⃗), the TV formula Eq. (5)
becomes

(27)

To compute , we consider a curved strip ΩLm
 the central axis Lm and width 2ε (see

Figure 3). Using the result of Eq. (22), we have
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(28)

and

(29)

where the finite many undifferentiable points do not affect the integral result. After the
introduction of g(r ⃗) as discussed in Lemmas 2.1 and 2.2, the TV expression Eq. (7) becomes

(30)

where

(31)

and

(32)

Using the same strategy for computing  and Lemma 2.4, we immediately obtain that

(33)

Clearly, Eq. (30) reaches the minimal at λ = 0, which implies Theorem 2.3.

Two comments are in order on the above theorems. First, the above results are independent of
scanning geometries and coordinate systems although we have assumed the parallel-beam
geometry and polar coordinate system. Second, if we change the parameter λ to a smooth and
bounded function λ(ρ,θ), the same results can be proved.

III. Algorithm Development

To verify the theoretical results in Section II, we developed a numerical interior tomography
algorithm in the CS framework. The algorithm consists of two major steps. In the first step,
the ordered-subset simultaneous algebraic reconstruction technique (OS-SART) (Wang and
Jiang, 2004) was used to reconstruct a digital image fm,n = f(mΔ, nΔ) based on all the truncated
local projections, where Δ represents the sampling interval, m and n are integers. In the second
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step, we minimize the ℓ1 norm for a given sparsifying transform of the discrete image fm,n using
the standard steepest descent method. These two steps were iteratively performed in an
alternating manner. Specifically, the algorithm can be summarized in the following pseudo-
code:

1. α:= 0.005, αs: 0.997, PTV: 5;

2. k: 0, , PART:= 20 ;

3. Repeat the main loop (OS-SART Reconstruction and Minimizing TV)

4. k:= k + 1; 

5. For part = 1 to PART do

6. Update  by OS-SART using the projections in the part subset;

7. For ptv = 1 to PTV do

8. Computing the steepest decent direction dm n;

9.

10.

11. α = α × αs;

12. End for (ptv)

13. End for (part)

14. Until the stopping criteria are satisfied.

Because the OS-SART technique was discussed in our previous paper (Wang and Jiang,
2004), here we only explain the second step in the above pseudo-code. Line 1 initializes the
control parameters α, αs and PTV for the minimization of TV, where α represents the maximal
step for the steepest descent, αs the decreasing scale of α after each computation, and PTV the
local loop time. Line 2 initializes the reconstructed image, the main loop count k and the number
of subsets PART for OS-SART. Lines 5-13 perform the OS-SART reconstruction. Line 6

updates  using the OS-SART technique, where only the projections in one subset are used.
Lines 7-12 define the local loop to minimize the ℓ1 norm. Line 8 computes the steepest decent
direction dm,n, of fTV. For the discrete gradient transform, the magnitude of the gradient can be
approximately expressed as:

(34)

Correspondingly, the total variation can be defined as . Then, we have the
steepest descent direction defined by

(35)
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For another sparsifying transform, we can deduce the corresponding dm,n, easily. Line 9
computes the normalized factor β which is the ratio between the maximum absolute values of

 and dm,n. Lines 10 and 11 update  and α, respectively. Line 14 decides if the main loop
should be stopped or not. The stopping criteria may include the iteration time, convergence
speed, total variation, image quality, etc.

Our algorithm was numerically implemented in MatLab on a PC (4.0 Gigabyte memory, 3.16G
Hz CPU). While the basic structure was constructed in MatLab, all the computationally
intensive parts were coded in C, which was linked via a MEX interface. A maximal iteration
time was set to stop the main loop. Because many biomedical images can be approximately
modeled as piecewise constants, we employed the commonly used discrete gradient transform
in the numerical simulation and animal experiment. To avoid the singularity when computing
dm,n, using Eq. (35), we added a small constant to Eq.(34) when computing the gradient μm,n.
That is,

(36)

In our numerical simulation, we assumed a circular scanning locus of radius 57.0 cm and a
fan-beam imaging geometry. We also assumed an equi-spatial virtual detector array of length
12.0 cm. The detector was centered at the system origin and made always perpendicular to the
direction from the system origin to the x-ray source. The detector array included 360 elements,
each of which is of aperture 0.033 cm. This scanning configuration covered a circular FOV of
radius 5.967 cm. For a complete scanning turn, we equi-angularly collected 1300 projections.
The reconstructed object was a 2D modified Shepp-logan phantom. This phantom is piecewise
constant and includes a set of smooth ellipses whose parameters are listed in Table 1, where
a,b, represent the x, y semi-axes, (x0, y0) the center of the ellipse, ω denotes the rotation angle,
f the relative attenuation coefficient. The units for a b, and (x0, y0) are cm. The reconstructed
images were in a 256×256 matrix covering an FOV of radius 10 cm. The 60 iterations took 60
minutes. For comparison, we also reconstructed an image using a local FBP method with
smooth extrapolation from the truncated projections into missing data. Some typical
reconstructed images were shown in Figure 4. The typical profiles were in Figure 5. As seen
from Figures 4 and 5, the reconstructed images from the proposed algorithm are in a high
precision inside the ROI.

To demonstrate the real-world application of the proposed algorithm, we performed a CT scan
of a living sheep, which was approved by Virginia Tech IACUC committee. The chest of a
sheep was scanned in fan-beam geometry on a SIEMENS 64-Slice CT scanner (100kVp,
150mAs). The x-ray source trajectory of radius 57.0 cm was used. There were 1160 projections
uniformly collected over a 360° range, and 672 detectors were equi-angularly distributed per
projection. Thus, the FOV of radius 25.05 cm was formed. First, an entire 29.06 cm by 29.06
cm cross-section was reconstructed into 1024 ×1024 pixels using the popular FBP method
from a complete dataset of projections. Second, a trachea was selected in reference to the
reconstructed image. Around the trachea, a circular ROI of radius 120 pixels was specified.
Then, only the projection data through the ROI were kept to simulate an interior scan. Third,
the ROI was reconstructed by the local FBP with smooth data extrapolation and our proposed
algorithms, respectively. The results were in Figures 6. Comparing the images in Figure 6, we
observe that the proposed algorithm not only keeps image accuracy but also suppresses image
noise.
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IV. Discussions and Conclusion

There are still some differences between the phantom and reconstructed images (see Fig. 5
(b)). These artifacts in the CS-based reconstruction may be due to the following two sources.
First, from the viewpoint of signal processing, the sampling process involved in the digitations
can be interpreted as a truncation function in the frequency domain. The reconstructed images
will not satisfy the piecewise constant condition due to the high-frequency truncation. Second,
the reconstruction results will converge to the real values only after an infinite number of
iterations. These two problems are also our opportunities to refine CS-based methods in the
future. Since our paper is the first of its kind in terms of exact interior tomography, our
numerical implementation of the iterative reconstruction algorithm is relatively preliminary.
Neither the codes nor the control parameters have been optimized, needless to say the stopping
criteria. Thus, we plan to perform optimizations over these issues in follow-up papers.
Theoretically speaking, the gradient magnitude of a piecewise constant function will be infinite
on the boundaries of different sub-regions. Using the Lambda tomography technique (Yu and
Wang, 2006), we can identify these boundaries and handle them differently. Very likely, this
type of special processing will give us superior reconstruction performance.

In this paper, we have established the feasibility of exact interior tomography via the total
variation minimization in the CS framework. Our theoretical analysis has shown that exact
ROI reconstruction is possible for a piecewise constant function. All the analyses in this paper
have assumed that the image can be modeled in an appropriate functional form, which is a kind
of prior information different from that in our previous papers (Ye et al., 2007b; Ye et al.,
2008; Ye et al., 2007a; Yu et al., 2008). In the near future, we plan to introduce more prior
information into the CS framework, such as low resolution image, a partially known image
inside the ROI, the average intensity and standard deviation, etc. More generally, our overall
intuition is that when we have strong knowledge on an interior ROI so that there is explicitly
or implicitly a sparse representation of the true image on the ROI, an exact and stable interior
reconstruction of the ROI should be achieved definitely or with a high probability. The key is
always to define an appropriate sparsifying transform and an associated objective function.
Then, among many solutions to the interior problem, the true one (or its good approximation)
can be identified. For example, an image on the ROI is often compressible using the wavelet
transform. That is, the desired interior reconstruction indeed has a sparse presentation, at least
approximately. In this setting, it would be very interesting to develop a CS approach for interior
tomography without any need for precise knowledge on a subregion in the ROI. We are actively
working on this type of topics.

Furthermore, in the same spirit of the proofs in Section II by defining a different sparisfying
transform μ, our results can be extended to some interesting families of functions. Particularly,
we have the following conjectures 4.1, 4.2 and 4.3.

Conjecture 4.1

Consider a circular symmetric f(ρ) ≥ 0 defined on the support [0,1]. Suppose that [0,1] can be
divided into finitely many sub-intervals on each of which f(ρ) can be expressed as:

(37)

where Ck are constants. In the CS framework, an interior ROI can be exactly determined by
minimizing the ℓ1 norm if we define a sparsifying transform as
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(38)

Conjecture 4.2

Consider a general function f(x, y) ≥ 0 defined on the compact support Ω. Suppose that Ω can
be divided into finitely many sub-regions on each of which f(x, y) can be expressed as:

(39)

where  and  are constants. In the CS framework, an interior ROI can be exactly determined
by minimizing the ℓ1 norm if we define a sparsifying transform as

(40)

Conjecture 4.3

Consider a general function f(x, y) ≥ 0 defined on the compact support Ω. Suppose that Ω can
be divided into finitely many sub-regions on each of which f(x, y) has a constant Gaussian
curvature κ(x, y) defined as:

(41)

In the CS framework, an interior ROI can be exactly determined by minimizing the ℓ1 norm
if we define a sparsifying transform as

(42)

It should be pointed out that Eqs. (38) and (40) are the same thing when K = 0 because they
represent the gradient magnitude. Eqs. (41) and (42) are independent of the coordinate system.
While Conjecture 4.1 can be proved similar to that of Theorem 2.2, Conjectures 4.2 and 4.3
can be proved similar to that of Theorem 2.3. The major difference lies in that the operations
of the higher order derivatives of Dirac delta function must be involved.

In conclusion, we have performed a theoretical analysis for interior tomography in the CS
framework, and showed for the first time that exact knowledge on a sub-region of an ROI is
not necessary for exact and stable interior reconstruction. Our numerical and experimental data
have validated our theoretical analysis and algorithmic implementation, and demonstrated that
our approach may have a great potential in medical, industrial and other applications.

Yu and Wang Page 13

Phys Med Biol. Author manuscript; available in PMC 2010 May 4.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Furthermore, our work suggests a new direction of interior tomography, and more efforts and
results are warranted.
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Figure 1.

Piecewise constant function on a compact support.
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Figure 2.

Fixed point on an arc-segment in the global and local coordinate systems.
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Figure 3.

Illustration for the computation of Eq. (28).
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Figure 4.

Reconstructed images of a modified Shepp-logan phantom after 60 iterations. (a) The original
phantom, (b) the reconstruction using the local FBP (after smooth data extrapolation), and (c)
the reconstruction using the proposed CS-based interior tomography algorithm. The display
window is [0.1, 0.4].
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Figure 5.

Typical profiles along the white lines in Figure 4.
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Figure 6.

Reconstructed images from a sheep chest CT scan after 60 iterations. (a) The image
reconstructed using FBP from complete projections, (b) the reconstruction using local FBP
(after smooth data extrapolation), and (c) the reconstruction using the proposed CS-based
interior tomography algorithm. The display window is [-800HU, 700HU].
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