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Undersampling �-space data is an e�cient way to speed up the magnetic resonance imaging (MRI) process. As a newly developed
mathematical framework of signal sampling and recovery, compressed sensing (CS) allows signal acquisition using fewer samples
than what is speci�ed by Nyquist-Shannon sampling theorem whenever the signal is sparse. As a result, CS has great potential in
reducing data acquisition time in MRI. In traditional compressed sensing MRI methods, an image is reconstructed by enforcing
its sparse representation with respect to a basis, usually wavelet transform or total variation. In this paper, we propose an improved
compressed sensing-based reconstruction method using the complex double-density dual-tree discrete wavelet transform. Our
experiments demonstrate that this method can reduce aliasing artifacts and achieve higher peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) index.

1. Introduction

Magnetic resonance imaging (MRI) is one of themajor imag-
ingmodalities in use today. Compared to computed tomogra-
phy (CT), MRI has advantages in imaging so tissues. How-
ever, its relatively long imaging time remains a great challenge
for clinical application, oen limiting its application. Signi�-
cant e�orts have focused on faster data collection as well as
reducing the amount of data required without degrading
image quality. For example, parallel imaging [1–3] exploits
redundancy in k-space by introducing multiple receiver
channels, mitigating the aliasing artifacts caused by a reduced
sampling rate. Recently, compressed sensing based MRI (CS-
MRI) allows high quality reconstruction from undersam-
pled data by enforcing the pseudo-sparsity of images in a
prede�ned basis or dictionary, such as the traditional two-
dimensional (2D) separable wavelet transform or total vari-
ation [4]. However, these basis sets may not provide su�-
cient sparse representation. 
e discrete wavelet transform
(DWT), for example, has three major disadvantages: shi
sensitivity [5], poor directionality [6], and lack of phase
information [7, 8]. For these reasons, traditional DWTs fail to

capture regularities of contours, since they are not able to
sparsely represent one-dimensional singularities of 2D sig-
nals [9]. 
erefore, improvements can be obtained by miti-
gating some of these disadvantages simultaneously.

In this paper, we propose an improved compressed sens-
ing method for MR imaging by utilizing the double-density
dual-tree DWT [10]. 
e use of complex wavelet transforms
for compressed sensingwas �rst proposed in [11].
e authors
in [11] used dual-tree complex wavelet transform (DT-CWT)
as a sparsifying transform, which only has wavelets oriented
in six directions. But as natural images exhibit smooth regions
that are punctuated with edges at several orientations, dual-
tree complex wavelet transformmay fail to sparsely represent
the geometric regularity along the singularities, which require
higher directional selectivity. Other contour-based trans-
forms, such as contourlets [12], have also been investigated.
But they can only sparsely represent the smooth contours but
not the points in images [13, 14]. In this paper, we propose one
possible solution by using a newly developed multiresolution
tool, double-density dual-tree transform, which may provide
su�cient sparse representation for MR images with di�erent
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features. Total variation is also exploited as a penalty in the
reconstruction formulation to suppress noise. Note that in
[11], the authors applied their method to radial trajectories.
In this paper, its variant on Cartesian sampling is used for
comparison, namely, CS DT-CWT. To di�erentiate between
the original compressed sensing basedMRI algorithm [4] and
the improved version, we will denote the original algorithm
in [4] as CS and our proposedmethod as iCS (improved com-
pressed sensing MRI).


e rest of this paper is organized as follows. In Section 2,
we brie�y review principles of MRI and then discuss the de-
sign of our proposed algorithm. In Section 3, we will present
the experimental results of our algorithm in comparison with
some other algorithms. Finally, a brief conclusion will be
drawn.

2. Theory and Method

2.1. Magnetic Resonance Imaging (MRI). MRI signal is gener-
ated by the proton in hydrogen atoms, themain component of
the human body. Each proton in an atomic nucleus possesses
a fundamental spin. Since protons are charged particles, when
a human body is placed in an strong static magnetic �eld �0,
protonswill align themselveswith themagnetic �eld, yielding
a net magnetic moment precessing around �0. 
is net mag-
netic precession is termed Larmor precession. 
e frequency
of Larmor precession is proportional to the applied magnetic
�eld strength as de�ned by

� = ��0, (1)

where � is a constant (42.57MHz/T) [15]. Next, a radiofre-
quency (RF) pulse is applied perpendicular to �0. If the fre-
quency of the applied pulse is equal to the Larmor frequency,
the net magnetic moment will tilt away. Once the RF signal
is removed, the protons realign themselves such that the net
magnetic moment is again aligned around �0. 
e protons
return to equilibrium by emitting RF signal, which is then
captured by a conductive �eld. 
is measurement is recon-
structed to obtain gray-scale MR images.

To produce a 3D image, a gradient magnetic �eld, G�,
is added to �0 so that the Larmor frequency changes linearly
in the axial direction, z. Hence, an axial slice can be selected
by choosing a speci�c Larmor frequency of that slice. Addi-
tionally, two gradient magnetic �elds, G� and G�, are applied
causing the resonant frequencies of the protons to vary
according to their positions in the x-y plane. As a result, the
signal is encoded in three dimensions. If the signal is fully
sampled at the Nyquist rate, a 2D inverse Fourier transform
is then used to transform the encoded image to the spatial
domain. Consider the following:

� = �−1�, (2)

where � is the measurements from scanner, which is also
called k-space data, � is the Fourier transform matrix, and �
is the desiredMR image. But in the real world, downsampling
may be needed for some applications, such as to �t the scans
into one-breath hold or to enable real time-imaging.
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Figure 1: Two levels of 2D complex double-density dual-treewavelet
transform.

2.2. Features of Complex Double-Density Dual-Tree Wavelet.

e 1D double-density discrete wavelet transform (DD-
DWT) is based on one scaling function (i.e., low pass) and
two di�erent wavelets (i.e., high pass) where one wavelet is a
half-sample shi of the other. 
e 2D transform applies the
1D transform alternately to the rows and column, giving nine
subbands, where one is a low pass subband and the remaining
eight subbands become eight wavelet �lters. 
us, the 2D
complex double-density dual-tree discrete wavelet transform
(CDDDT-DWT) is implemented by using four 2DDD-DWT
in parallel with di�erent �lter banks for rows and columns
separately [10]. Figure 1 shows the process of two levels of the
transform. L� and H� are the �lter banks of the �rst level
decomposition, which represent one scaling �lter and eight
wavelet �lters. L and	 are the �lter banks for the second and
remaining levels of decomposition. 
erefore, four low pass
subbands (L11–L14) and 32 high pass subbands (H11–H14)
are produced aer one level of the transform. As a result, 32
wavelets are created by the sum and di�erence on each pair
of subbands.

Figure 2 shows the impulse responses of these transforms.

e �gures are obtained by setting all the wavelet coe�cients
to zero, for the exception of one wavelet coe�cient in each of
the high pass subbands of one level. We then take the inverse
wavelet transform [16–18]. 
erefore, if the transform has
more directional wavelets, then fewer coe�cients are needed
to represent a given geometric object. Figure 2(a) shows the
typical wavelets associated with the 2D wavelet transform.
Obviously, 2D wavelet transform can resolve only three
spatial-domain feature orientations: vertical, horizontal, and
diagonal. In addition, the third wavelet does not have a domi-
nant orientation, which is the main cause of artifact (checker
board pattern). 
erefore, traditional 2D separable wavelet
fails to sparsely represent geometric structures, such as edges
[19].
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Figure 2: Impulse responses of (a) 2D DWT, (b) 2D DT-CWT, and (c) 2D CDDDT-DWT, as illustrated at level of 4 of the transforms.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Improved directionality of complex double-density dual-tree wavelet transform: (a) original test image; reconstructed image using
only the lowest level coe�cients of (b) DWT; (c) DT-CWT; (d) CDDDT-DWT; (e)–(h) results of the same experiment with noisy image
(zoomed-in at the right corner). Gray level is normalized between [0, 1] for all images and 4-level transform is used for all experiments.

In Figure 2(b), six orientations (±15∘, ±45∘, ±75∘) are
obtained by 2D DT-CWT. By contrast, complex double-
density dual-tree wavelet transform has 32 wavelets oriented
in 16 di�erent angles (see Figure 2(c)).
e 16 wavelets shown
in the �rst (second) row can be interpreted as the real (imagi-
nary) parts of the set of 16 complex wavelets and the third row
are the magnitudes of the 16 complex wavelets. As we can see,
the orientations are richer and �ner. Additionally, all of the
wavelets are free of checker board pattern. As a result, we can
get more accurate representation for the geometric regions.

In Figure 3, we illustrate this bene�t with two example
images. 
e �rst image group only contains a curve pur-
posely designed to demonstrate the improved directionality
property of CDDDT-DWT.
e second image group contains
impulse (or salt and pepper) noise. We reconstruct the test
images using the �rst stage of transform coe�cients. As we
can see fromFigures 3(b) and 3(f), there are blocking artifacts

inDWTreconstructions since it can only accurately represent
vertical and horizontal lines. Because DT-CWT has more
directional wavelets, the reconstructed curve looks smoother
and artifacts are reduced. But six orientations (Figure 2(b))
are not su�cient to accurately represent this curve as it
contains all directions. 
e reconstructions from CDDDT-
DWT are much closer to the original ones. 
is is because it
has more wavelets which are strongly oriented at 16 di�erent
angles. One may also conclude that 16 orientations are suf-
�cient to represent any geometric object with high precision.
Compared to the curve, the points are better reconstructed by
all the three transforms. As stated in the introduction section,
wavelet transforms are good at capturing point singularities
[20]. From this example, we can see that CDDDT-DWT can
sparsely represent both contours and points, indicating its
superiority for these tasks.
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INPUTS:�: undersampled k-space data��: system matrix associated with the measurementsΦ: complex double-density dual-tree wavelet operator�1, �2: tuning constants
OPTIONAL PARAMETERS:
Tol: stopping criteria by gradient magnitude (default 10−4)
Iter: stopping criteria by number of iterations (default 100)�, : line search parameters (defaults � = 0.01,  = 0.6)

OUTPUTS:�: the numerical approximation to (6)
% Initialization� = 0; �0; �� = ∇�(�0); Δ�0 = −��
% Iterations
while (�����	����2 > Tol){
% Backtracking line-search� = 5; while (�(�	 + �Δ�	) > �(�	) + �� ⋅ ����(�∗	Δ�	) and k < Iter){� = �}�	+1 = �	 + �Δ�	�	+1 = ∇�(�	+1)�	 = �	+1 − �	
�	+1 = max{0,min{ ��	+1�	Δ��	 �	 ,

�����	+1����2Δ��	 �	 }}
Δ�	+1 = −�	+1 + �	+1Δ�	� = �+1}

Algorithm 1

2.3. Reconstruction AlgorithmUsing Compressed Sensing. 
e
problem of undersampling k-space data actually leads to an
underdetermined system of linear equations. One way to
improve performance is to incorporate a prior knowledge
into the reconstruction process which is based on the idea of
sparsity in compressed sensing (CS) [21–23]. 
e essence of
CS is that a signal, which in our case is the image �, can be
completely reconstructed with a high probability with far less
samples than required by conventional Nyquist-Shannon
sampling theorem, if the image has a sparse/compressible
representation in a transform domain Φ, such that most
entries of the vector Φ� are zero or close to zero.


e entire process consists of three steps [24]: encoding,
sensing, and decoding. In the �rst step, the object image � of
size � is encoded into a smaller vector� = ��� of a size� (� <�) by the system matrix. �� denotes the Fourier matrix asso-
ciated with some undersampled trajectory while � is the cor-
responding undersample k-space data. Directly solving the
underdetermined linear system will yield numerous solu-
tions. As we assume the image is approximately sparse in
CDDDT-DWT, that is, � = Φ�, has few elements with
relatively large magnitudes, a solution is possible. 
en the
second step is obtaining the undersampled k-space data �
from the imaging system. Incorporating the sparsity prior
knowledge into the process of image reconstruction, the third
step is to recover � (and thus �) by solving the following
constrained optimization problem:

argmin� ‖Φ�‖1 subject to
������� − �����2 <  , (3)

where  is a parameter controlling the data consistency. It
has been mathematically proven that if the image has only �
entries with relatively large magnitudes, the order of � log(�)
measurements is su�cient to accurately reconstruct � via
the ℓ1 norm minimization procedure with high probability.
As we have noticed from Figure 3, noise may be also recon-
structed by complex double-density dual-tree wavelet.
ere-
fore, in our proposed algorithm,we include the total variation
(TV) as a penalty because it was shown that it is e�cient in
suppressing the noise in the reconstructed image [24]. 
e
constrained problem in (3) can also be converted into an
unconstrained problem, giving rise to our proposed iCS
model:

arg min� �1‖Φ�‖1 + �2‖�‖TV + ������� − �����22, (4)

where two regularization factors �1 and �2 are introduced
to leverage the cost function’s emphasis on the transform ℓ1
penalty, TV penalty, and the data �delity term. 
e selection
of regularization factor has been an interesting area of
research in the �eld of regularized iterative methods [25, 26].
A large �2 tends to suppress image gradient and make the
reconstructed image look smooth, losing point-like features.
In our study, we chose the optimized regularization param-
eters �1 and �2 for all methods for a fair comparison. 
e
discussion will be given in next section. 
e TV term of an
image in this work is de�ned as follows:

‖�‖TV = ∫ |∇�| #�. (5)
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Figure 4: Datasets in this study.

Figure 5: Sampling pattern at 0.2 sampling rate. Undersampling is done along the phase direction.

In a discrete version, (5) becomes

‖�‖TV = ∑
�,

√(��+1, − ��,)2 + (��,+1 − ��,)2. (6)

To speed up the implementation, we exploit a fast imple-
mentation of CDDDT-DWT [27]. Since (4) poses an uncon-
strained convex optimization problem, we propose solving it
using a nonlinear conjugate gradient descent algorithm that
is similar to [4]. It has been shown in [28] that the iterative
algorithm in our study has better performance than the algo-
rithm in [4]. �(�) is the cost function as de�ned in (4). 
e
iterative algorithm starts with a zero-�lling Fourier recon-
struction.


e conjugate gradient requires the computation of∇�(�)
which is

∇� (�) = �1∇‖Φ�‖1 + �2∇‖�‖TV + 2�∗� (��� − �) . (7)

As the ℓ1 norm and total variation term (5) is the sum of
absolute values, the absolute values, however, are not smooth
functions, and as a result (7) is not well de�ned. In [4],

Lustig et al. approximated the absolute value with a smooth

function, |�| ≈ √�∗� + 6, where 6 is a positive smoothing

param-eter. 
en the gradient becomes #|�| ≈ �/√�∗� + 6.
We adopt this idea in our implementation. In particular,

a smoothing factor 6 = 10−15 is used. 
e algorithm of the
proposed iCS method is shown in Algorithm 1.

3. Numerical and Experimental Results

In this section, we report our experiments to evaluate and
validate the proposed algorithm.
ere are �ve sets of experi-
ments. In the �rst two experiments, numerical phantoms and
simulated k-space data were used to study the performance
of our algorithm.
e third and fourth experiments used real
data collected from real scanners. In the �h experiment, we
manually add noise to the k-space data of the fourth data
set. 
e �rst phantom that we consider is the discrete Shepp-
Logan, which contains geometrical structure and directional-
oriented curves. 
e second phantom is purposely designed
to be nonsparse under total variation domain and contains
features di�cult to reproduce with partial Fourier sampling
[29]. In such way, we can clearly see how the CDDDT-DWT
a�ects the image quality. 
e third dataset was performed on
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Figure 6: Analysis to �nd the optimum regularization parameters (for Coronal Brain data at sampling rate 0.25). (a) �2 when �1 = 0.002 for
iCS method; (b) �1 when �2 = 0.001 for iCS method.

Table 1: Optimal parameter selections at 0.25 sampling rate for coronal brain data and 0.2 for other data.

Dataset
CS [4] CS DT-CWT iCS�1 �2 �1 �2 �1 �2

Shepp-Logan 0.0014 0.0024 0.001 0.0026 0.0012 0.0024

Phantom 0.001 0.0016 0.001 0.0018 0.0016 0.0016

Axial brain 0.0014 0.001 0.0012 0.0012 0.0016 0.0008

Coronal brain 0.0014 0.0006 0.0014 0.0012 0.0024 0.001

Coronal brain with noise 0.0014 0.001 0.0012 0.0018 0.0018 0.0012

a 1.5T GE Signa Excite scanner. 
is T2-weighted dataset of
the brain was acquired axially using a FSE sequence [30].
e
�nal dataset was a coronal section of a brain obtained from
a T1-weighted brain scan [31]. To have a clear di�erentiation
between these datasets, we name these four datasets as Shepp-
Logan, phantom, axial brain, and coronal brain, respectively,
as shown in Figure 4. All images are of size 256 × 256.

Undersampling k-space is simulated with random phase
encoding in Cartesian sampling. 
e sampling density
decreases according to a power of distance from the origin. It
should be pointed out that the proposed method also works
with non-Cartesian sampling pattern, such as spiral and
radial trajectories, although these are not shown. Reconstruc-
tions were performed at di�erent sampling rates: 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, and 0.4. A sampling pattern with sampling rate
0.2 is shown in Figure 5 where white bar means that the data
is sampled and black means otherwise (i.e., not sampled).


e reconstructed data was quantitatively evaluated in
terms of peak signal-to-noise rate (PSNR) and structural
similarity (SSIM) index [32]. PSNR measures the di�erence
between the reconstructed image �̂ and original image �,
which is de�ned by

PSNR = 20 log10 ( MAX√MSE
) , (8)

whereMSE = (1/�)∑��=0 (�� − �̂�)2 andMAX is themaximum
possible pixel value of the image.


e structural similarity (SSIM) index is highly e�ective
for measuring the structural similarity between two images.

Suppose B and � are local image patches taken from the same
location of two images that are being compared. 
e local
SSIM index measures three similarities of the image patches:
the similarity of luminances �(B, �), the similarity of contrastsC(B, �), and similarity of structures D(B, �). Local SSIM is
de�ned as

E (B, �) = � (B, �) ⋅ C (B, �) ⋅ D (B, �)
= ( 2G�G� + H1G2� + G2� + H1)( 2J�J� + H2J2� + J2� + H2)(2J�� + H3J�J� + H3) ,

(9)

where G� and G� are local means, J� and J� are local standard
deviations, and J�� is cross-correlation aer removing their
means. H1, H2, and H3 are stabilizers. 
e higher the value of
SSIM, the higher image quality is delivered.

In this paper, three methods will be compared under
identical conditions.
ese threemethods have three di�erent
sparsity transforms Φ in (4). 
e �rst method uses the
discrete wavelet transform (shown as CS) [4]; the second
method uses dual-tree complex wavelet transform (shown
as CS DT-CWT) [33]; the proposed method uses complex
double-density dual-tree wavelet transform (CDDDT-DWT,
denoted by iCS for the rest of the paper). A 4-level of
Daubechies-4 wavelet transform was used for CS method.
Reconstruction was done under the same conditions such
as iterative algorithm and sampling pattern as the accu-
racy depends on the selection of optimum regularization
parameters. We have used the last dataset, Coronal Brain,
as an example to show the methodology of determining
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Original Shepp-Logan image and experimental results. (a) Original Shepp-Logan image. Reconstruction at sampling rate 0.2 by (b)
CS; (c) CS DT-CWT; (d) iCS technique; (e), (f), (g), and (h) are detail views of region outlined by arrow in (a), (b), (c), and (d), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Original phantom image and experimental results. (a) Original phantom image. Reconstruction at sampling rate 0.2 by (b) CS; (c)
CS DT-CWT; (d) iCS technique; (e), (f), (g), and (h) are detail views of region outlined by arrow in (a), (b), (c), and (d), respectively. Gray
level is normalized in [0, 1].
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Figure 9: Plots of PSNR and SSIM versus di�erent sampling rates. (a) PSNR of Shepp-Logan. (b) SSIM of Shepp-Logan. (c) PSNR of phantom
dataset. (d) SSIM of phantom dataset.

the optimal parameters. For each algorithm, we alternately
plotted the PSNR against one parameter keeping the other
�xed. We started by setting �1 = 0.002. Figure 6(a) shows
that the highest PSNR is obtained when �2 is 0.001. 
en we
set �2 = 0.001 and searched the optimal value for �1 that
gives the highest PSNR, as shown in Figure 6(b). 
us, we
used this recurring process to determine the optimum values
of �1 and �2. Similar search was conducted for the other two
compared methods and all datasets. 
e optimal values of
these parameters are shown in Table 1.

We begin with the phantom experiments. Figure 7(a) is
an image reconstructed from the fully sampled data. Figures
7(b), 7(c), and 7(d) are reconstructions byCSmethod,CSDT-
CWT, and our proposedmethod iCS, respectively.
e weak-
ness of the traditional separable wavelet transform in rep-
resenting two-dimensional singularities, for example, curves
and edges, is visualized with the reconstructed Shepp-Logan
images. As we have seen that separable wavelet transform can

resolve only three spatial-domain feature orientations.
ere-
fore, the ellipses are not sparsely represented, causing sub-
stantial artifacts in the reconstructed images (Figure 7(b)).

e artifacts become more serious when the size of ellipse
is reduced. For example, two small ellipses around center (as
indicated by white arrows) are faded away from the CS recon-
struction. To see it clearly, detailed zoom-ins are shown in
Figures 7(e)–7(h). Moreover, the CS reconstruction shows
substantial artifacts in smooth region. By contrast, the pro-
posed method reconstructs the image with higher visual
image quality. From Figures 7(e) to 7(h), we can see that,
with more directional wavelets, the ellipses are better recon-
structed. 
e reconstruction by complex double-density
dual-tree wavelet transform has the best visual image quality.
Additionally, the two small ellipses could be clearly recog-
nized; see Figure 7(h).

Similar results can be obtained from the second phantom
experiment. From Figure 8(b), we can see signi�cant aliasing
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Original axial brain image and experimental results. (a) Original axial brain image. Reconstruction at sampling rate 0.2 by (b) CS;
(c) CS DT-CWT; (d) iCS technique; (e), (f), (g), and (h) are detail views of region outlined by arrow in (a), (b), (c), and (d), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Original coronal brain image and experimental results. (a) Original coronal brain image. Reconstruction at sampling rate 0.25 by
(b) CS; (c) CSDT-CWT; (d) iCS technique; (e), (f), (g), and (h) are detail views of region outlined by arrow in (a), (b), (c), and (d), respectively.
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Figure 12: Plots of PSNR and SSIM for di�erent sampling rates: (a)-(b) axial brain; (c)-(d) coronal brain.

artifacts in the CS reconstruction. 
ese artifacts are caused
by the use of nonideal low pass and high pass �lters in the
traditional separable wavelet transform. Additionally, from
the detailed zoom-in (Figure 8(f)), we can see that CS cannot
reconstruct those closely placed lines separately. By contrast,
CS DT-CWT and iCS can separate these lines. One possible
reason for this phenomenonmay be that the wavelets of DW-
CWT and CDDDT-DWT are �ner than those of DWT see
Figure 1.
erefore, small size objects are better reconstructed
with �ner wavelet �lters. We can see reduced artifacts from
Figures 8(f) to 8(g). 
is is evident that our method leads to
a better reconstruction with higher spatial resolution.

In order to see how the results vary with the sampling
rates, experiments were also performed at sampling rates of
0.1, 0.15, 0.25, 0.3, 0.35, and 0.4. 
e plots of PSNR and SSIM
versus di�erent sampling rates for the phantom simulations
are shown in Figure 9. At sampling rate 0.25, the PSNRs and
SSIMs increase dramatically. 
e PSNR of the Shepp-Logan
image by our proposedmethod is 41.5 dB, and structural sim-
ilarity is well above 0.93.
ere is no visual di�erence between

the reference and reconstructed images using the proposed
method.On the other hand, reducing the sampling rate below
0.2, reconstructed images are obviously blurred and their
quality is not acceptable. One possible reason for the failure
of compressed sensing methods is that the initial image is too
bad at such low sampling rates.

Next we consider the in vivo experiments without noise
added purposely. Figures 10 and 11 show the reconstructed
images where (a), (b), (c), and (d) are original images, CS
reconstructions, CS DT-CWT reconstructions, and our iCS
reconstructions, respectively. Note that although both CS
reconstructions are able to reduce the undersampling arti-
facts signi�cantly, the images obtained by CS contain signi�-
cant blocking artifacts along directional edges. To emphasize
this point, detail views of the reconstructed images are also
displayed in these �gures.
is is because the diagonal wavelet
of traditional wavelet transform does not have a dominant
orientation see Figure 1(a). As a result, it can not represent
the curves e�ciently, leading to considerable artifacts along
edges. Dual-tree complex wavelet transform can resolve six
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Figure 13: Original coronal brain image and experimental results with noisy data. (a) Original coronal brain image. Reconstruction at
sampling rate 0.25 by (b) CS; (c) CS DT-CWT; (d) iCS technique; (e), (f), (g), and (h) are detail views of region outlined by arrow in (a),
(b), (c), and (d), respectively.

Table 2: PSNR and SSIM of coronal brain image with noisy data at
0.25 sampling rate.

Image Reconstruction methods PSNR (dB) SSIM

Coronal brain

CS [4] 24.9 0.61

CS DT-CWT 27.1 0.69

iCS 29.0 0.75

orientations, both of which have a dominant orientation, and
thus the image quality is greatly improved by CSDT-CWT. In
contrast, since complex double-density dual-tree wavelet has
improved directional selectivity and �nerwavelets thanDWT
and DT-CWT, the proposed method preserves more edges
and small structures. 
erefore, the images obtained using
our proposed method are much closer to the original images.
Figure 10(h) and Figure 11(h) indicate that edges are sharper
in the reconstructed image using our proposed method.


e evaluationmatrices (PSNRs and SSIMs) of the recon-
structed images are also plotted against the sampling rates
in Figure 12. Consistent increase of reconstruction accuracy
using the proposed method is observed. Figure 12 also indi-
cates that PSNRs and SSIMs of reconstructions by our pro-
posed method in all cases are higher than those of other
methods. One should also note that the original CS method
can produce an accurate reconstruction given a su�cient
sampling rate. For instance, the results in [4] showed that
CS can produce high quality brain image without artifacts at
sampling rate 0.42 (2.4 acceleration). 
is conclusion is con-
�rmed by our in vivo experiments. Note that the PSNR of CS

method is well above 35 dB and SSIM is as high as 0.9 at
sampling rate 0.4. But at low sampling rates, reconstructed
image is not satisfactory. As a result, traditional wavelet trans-
form fails to provide sparse representation, causing artifacts.
Our proposed complex double-density dual-tree wavelet is
able to capture those geometric features that are not captured
by other transforms, producing a higher quality of image.

e results of this test con�rm that our proposed method
outperforms the original CS method in preserving edges and
suppressing undersampled artifacts.

Finally, we reconstructed the coronal brain image using
imperfect k-space data to test the robustness of the proposed
method. Additive Gaussian white noise � of relative magni-
tude ‖�‖2/‖��ture‖2 = 0.05 was purposely added to the k-
space data. 
e results are shown in Figure 13. 
e optimum
parameter selections are also shown in Table 1. From the
table, we can see that the parameter �2 is bigger when noisy
data is used for reconstruction for all the methods. 
is is
because TV regularization is good at suppressing noise.
Larger �2 can better suppress noise. But if �2 is too large, the
reconstructed image will be oversmooth, losing low contrast
or detailed information.
ePSNRand SSIMare summarized
in Table 2. Although the image quality is reduced, the pro-
posed method can still maintain the best results.

From the various results presented in this section, pro-
posed method delivers higher PSNR and SSIM than other
methods. However, the computation time of CS-based meth-
ods including the proposed algorithm is about 70 seconds.
Development of faster algorithms for solving problem (4) will
be pursued in the future work.
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4. Conclusion

In this paper, an improved compressed sensing MRI method
is proposed. 
e directionality property of complex double-
density dual-tree wavelet transform is investigated. Consid-
ering the edge features and quality, we employ objective
measurements to evaluate the performance of our approach.
Simulation results on phantom and in vivo data demonstrate
that the proposed method can better reconstruct the edges
and reduce undersampled artifacts than traditional CS-MRI
method does. In our implementation, we use the nonlinear
conjugate gradient iterative method to solve the uncon-
strained optimization problem. Further e�ort is needed to
utilize a more advanced iterative method to improve recon-
structed precision and reduce computational time for real
time-imaging. Extension of this work with the nonconvex
optimization is being considered to further improve the
reconstruction.
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