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Abstract—Space shift keying (SSK) modulation and its exten-
sion, the generalized SSK (GSSK), present an attractive frame-
work for the emerging large-scale MIMO systems in reducing
hardware costs. In SSK, the maximum likelihood (ML) detector
incurs considerable computational complexities. We propose a
compressed sensing based detector, NCS, by formulating the
SSK-type detection criterion as a convex optimization problem.
The proposed NCS requires only O(ntNrNt) complexity, outper-
forming the O(NrN

nt
t ) complexity in the ML detector, at the

cost of slight fidelity degradation. Simulations are conducted to
substantiate the analytical derivation and the detection accuracy.

Index Terms—Detector, space shift keying, compressed sensing,
MIMO.

I. INTRODUCTION

SPATIAL modulation (SM) [7], which encodes information
in the combination of antenna indices and the conven-

tional phase and amplitude, has attracted research attention in
recent years. The SM facilitates energy efficiency and reduced
hardware costs for multiple-input and multiple-output (MIMO)
systems. As a simplified variation of SM, the space shift
keying (SSK) modulation [5] activates only one antenna at
any time instant and encodes information in antenna indices
only. Although the usage of only antenna indices limits the
information rate in each modulation symbol, such modulation
has been shown to yield superior performance and could be an
attractive option for the emerging large-scale MIMO systems
due to the following advantages: 1) The number of required RF
chains is reduced from the number Nt of transmit antennas to
one, enabling the reduction of Inter-Channel Interference and
hardware expenses. 2) The information is contained entirely
in the indices of activated transmitting antennas, resulting in
the dramatic reduction of detection complexity. 3) Only one
antenna needs to be activated, which significantly reduces the
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requirement of Inter-Antenna Synchronization. More details
about SSK modulation can be found in [9], [10].

Survey and Challenges: A disadvantage of SSK is the
relatively small-sized modulation alphabet and therefore the
reduced attainable symbol rates compared to conventional
modulations. Generalized SSK (GSSK) [6] is a variant of
SSK, in which there are nt, instead of only one in SSK,
concurrently activated transmit antennas at a symbol instant.
Hamming code-aided SSK (HSSK) [1] proposed a design with
a varying number of activated transmit antennas. GSSK can
effectively enhance the transmission rate while HSSK offers
better transmission rate, performance, and power tradeoff.
In spite of the relatively lightweight computational overhead
for detection in SSK-type modulations, GSSK and HSSK
require higher detection complexity for higher transmission
rate, incurring the prohibitive detection complexity O(NrN

nt
t )

and O(
∑nU

t
i=1 NrN

i
t ) respectively, where nU

t denotes the max-
imum allowable number of activated antennas. The detection
complexity tremendously increases particularly in the high-
rate large MIMO systems with large Nt and nt. On-Off SSK
(OOSSK) [8], which aims to provide optimal average bit
error probability (ABEP), further aggravates the computational
burden because of using different power levels in the signaling.

Contributions: We present a normalized compressed sens-
ing based detection, NCS. We formulate the SSK-type de-
modulation criterion as a convex program via NCS. In ad-
dition, compared to the optimal maximum likelihood (ML)
detection that exploits the conventional �2-norm metric, NCS
resorts to the �1-norm metric and provides significant de-
tection speedup by leveraging the inherent sparsity of SSK-
type signaling. In particular, while ML detection demands
O(NrN

nt
t ) complexity for GSSK, our proposed NCS achieves

lower complexity O(ntNrNt) at the cost of a certain level of
detection accuracy degradation. Furthermore, despite numer-
ous advantages over conventional MIMO systems, large-scale
MIMO systems along its progress encounter major difficulties
in the prohibitively high detection overhead. Our proposed
NCS’s detection offers the potentials to facilitate the large-
scale MIMO systems (more details can be found in Sec. IV).

II. SYSTEM OVERVIEW

Problem Formulation: We consider an uncoded spatial
multiplexing system with Nt transmit antennas and Nr receive
antennas. The baseband signal model is formulated as

y =
√
ρHx + n, (1)

where y ∈ CNr×1, x ∈ RNt×1, H ∈ CNr×Nt , and n ∈ CNr×1,
respectively, represent the received signal, transmitted sig-
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nal, flat-fading channel, and additive white Gaussian noise
(AWGN). The ρ is defined as Es/E[xHx], where E[·] and Es

are the expectation operator and symbol energy, respectively.
In GSSK, x is a zero-one vector, where there are nt ones
(corresponding to activated transmit antennas) and Nt − nt

zeros (corresponding to idle transmit antennas). The nt is fixed
to be 1 in SSK and can be larger than 1 in GSSK. The antennas
at the positions corresponding to the ones transmit signals
with power level

√
Es. Each element in H is independent and

identically complex Gaussian distributed CN (0, 1) with mean
0 and variance 1, i.e., the real and imaginary parts of each ele-
ment in H is independent and identically Gaussian distributed
N (0, 1

2 ) with mean 0 and variance 1
2 . The channel information

is assumed perfectly known at the receiver. The Additive
White Gaussian Noise n has zero-mean and covariance matrix
N0INr , where N0 and INr are the component-wise noise
variance and Nr × Nr identity matrix. We do not assume
particular patterns of the transmitted symbol x; instead, it is
drawn equally probably from the modulation alphabet (or the
constellation set) A = {[x1 x2 · · · xNt ]

T |∑Nt

i=1 xi = nt, xi ∈
{0, 1}} with |A| = 2b, where b = argmin

2b−(Nt
nt
)≥0

{
2b − (

Nt

nt

)}
, for

b bits per transmission. The system model in this work has
been commonly practiced as in [1], [5], [6], [7], [8].

The receiver aims to detect the antenna indices of signaling
ones at the transmitter, which is termed as Nt-hypothesis
detection problem.

Maximum Likelihood (ML) Detection: The ML detector
attempts to solve the Nt-hypothesis problem by the �2-norm
criterion:

x̂ML = argmin
x∈A

||y −
√
EsHx||2�2 . (2)

To obtain the ML solution, the receiver searches over all the
legal patterns in x, i.e., all combinations with nt nonzero
elements, for the minimum distance between y and Hx.

Compressed Sensing (CS): x ∈ Rn is a s-sparse vector of
length n with s < n. Here, “s-sparse” means there exist only
s nonzero elements in x. CS is formulated as y = Φx, where
y ∈ Rm and Φ ∈ Rm×n, with m < n, are called measurement
vector and measurement matrix, respectively. In such formu-
lation, provided that Φ is a matrix satisfying the restricted
isometry property (RIP) and m is greater than c1s log

n
s for

some small constant c1, then x can be reconstructed with high
probability by �1-minimization as follows:

x̂ = argmin
y=Φx

||x||�1 . (3)

Note that RIP identifies the so-called isometry constant δs of
the measurement matrix Φ as the smallest number such that
(1 − δs)||x||22 ≤ ||Φx||22 ≤ (1 + δs)||x||22 holds for s-sparse
vector x. If the sampling matrix Φ is designed properly to
satisfy δc2s < θ for some constant c2, then the perfect recovery
of s-sparse vector can be achieved with very high probability
if m = O( c2sθ2 log n

s ) measurements are used [4].
The CS has a beneficial and tractable property where (3) is

a convex program and can be easily solved by simple algo-
rithms. It has been proven that the matrix whose elements are
randomly sampled from N (0, 1

m ) satisfies the RIP with high
probabilities. The RIP is to ensure that each pair of columns

of Φ is orthogonal to each other with a high probability. In this
sense, the matrix whose elements are sampled from N (0, σ2),
σ2 ≥ 1, is highly likely to satisfy RIP.

The CS can be applied to not only s-sparse vectors but also
compressible vectors. Conceptually, compressible vectors are
vectors, with rapidly decaying sorted magnitudes. As those
small-magnitude nonzero elements can be regarded as noise,
CS can also be applied to noisy vector [2], [3].

III. PROPOSED METHOD
The GSSK is considered below to better illustrate the

flexibility of our proposed NCS detection. Note that our
proposed detection is termed as NCS because a Normalization
procedure needs to be performed before CS recovery. The
algorithmic procedures of NCS is listed in Fig. 1.

Algorithm: I=NCS(y, H, nt)
Input: y: the received signal (measurement vector)

H: the channel information
nt: the number of activated transmit antennas

Output: I: the set of column indices used at transmitter
1 for t = 1 to Nt

2 Let H′
−,t be normalized t-th column H−,t of H

3 H′ := [H′
−,1 · · ·H′

−,Nt
]

4 x̂ := CSRecovery(y,H′, nt)
5 I := set of positions of the first nt largest entries in x̂

Fig. 1. NCS detection algorithm.

In essence, NCS performs CS recovery to accomplish SSK
detection. There is a natural parameter mapping between SSK
detection and CS, i.e., Nt, Nr, and nt in SSK detection are
mapped to n, m, and s in CS, respectively.

The rationale behind the NCS design is that, in contrast to
ML’s �2 criterion where the information of known activated
antennas is not fully exploited, the NCS algorithm takes the
number of activated antennas into account explicitly to gain
a significant decoding speedup. In particular, we formulate
SSK detection as a CS-related �1 optimization problem. As
CS offers a systematic way to recover x by exploiting the
property of nt being much less than Nt, x can be considered
sparse and this observation relates the SSK decoding to the
CS recovery perfectly. Since CS offers an efficient way (e.g.,
greedy algorithm), instead of the exhaustive search-like �2-
norm based algorithm in ML detection, to recover x, the
detection time can be dramatically reduced.

Although applying existing CS recovery algorithms directly
may solve the detection problem, it has unsatisfactory detec-
tion accuracy. Therefore, NCS is proposed to better solve for
Nt-hypothesis detection problem. Specifically, in contrast to
conventional CS that the sensing and recovery share the same
measurement matrix, NCS allows different matrices in these
two phases. As H is determined by the channel condition and
uncontrollable, H′ is obtained by simply normalizing each
column vector H−,i, 1 ≤ i ≤ Nt, of H individually (steps
1∼3). The purpose of normalization is that the noise will
not be over-amplified by the column vector with inadequately
large elements. After this normalization pre-processing, CS
recovery algorithm is conducted with H′ to derive x̂ (the
estimated x, step 4). Here, the function, CSRecovery(·), can be
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any off-the-shelf CS recovery algorithms (OMP [12] is used
in our numerical simulations1). As the receiver has the prior
knowledge of the energy of the activated transmit antennas in
GSSK, only the first nt largest elements in magnitude in x̂ are
set as 1 and the remaining are set as 0 (step 5). The set I of
positions of those 1’s are considered as the set of indices of
activated transmit antennas.

Two rationales in NCS are elaborated as follows. The first is
the appropriateness of applying CS to Nt-hypothesis detection
problem in which H is a complex matrix. It is recalled that
from Sec. II, the measurement matrix in CS is real-valued.
Nevertheless, as x is real-valued, which is the case of GSSK in
our consideration, the imaginary parts of complex elements of
H can be considered as additional dimensions in the received
signal y. Consider y = Hx for explanation simplicity. The
received signal y can also be rewritten as:

⎡
⎢⎣

Hr
1,1 + jHi

1,1 . . . Hr
1,1 + jHi

1,Nt

...
. . .

...
Hr

1,1 + jHi
Nr,1 . . . Hr

1,1 + jHi
Nr,Nt

⎤
⎥⎦

⎡
⎢⎣

x1

...
xNt

⎤
⎥⎦

=

⎡
⎢⎣

yr
1
...

yr
Nr

⎤
⎥⎦+ j

⎡
⎢⎣

yi
1
...

yi
Nr

⎤
⎥⎦ = Hrx + jHix, (4)

with Hr
s,t and Hi

s,t denoting real and imaginary parts of
the t-th column of the element at the (s, t) position of H,
respectively, and with yt = yr

t + jyi
t, 1 ≤ t ≤ Nr, where yr

t

and yi
t denote the real and imaginary parts of yt, respectively.

Let y = yr + yi, where yr and yi are the real and imaginary
parts of y, respectively. We know that both real and imaginary
parts of samples from CN (0, σ2) follow N (0, σ2

2 ). Recall that
CS only requires the matrix elements in H to follow Gaussian
distribution with limited variance, as stated in Sec. II. The
received signal can be divided into two parts, yr = Hrx and
yi = Hix, each of which satisfies the CS formulation, and Hr

and Hi with N (0, 1
2 ) can also satisfy RIP, as stated in Sec. II.

Thus, equivalently the dimension of y can be considered to be
increased with the interpretation that the half of y is generated
by the Hr and the other half is generated by Hi.

The second point to be clarified is the usage of different
matrices in sensing and recovery in NCS. As

√
Es in (1) is

constant, we omit it and consider

y = Hx + n (5)

for explanation simplicity. In other words, the received signal
y is generated via (5), which can be re-casted as:

y = H′Cx + n, (6)

where H′ is of dimension Nr × Nt and C ∈ RNt×Nt is a
diagonal matrix whose diagonal elements Ci,i are the �2-norm
of H−,i, where H−,i denotes the i-th column of H. Let x′ =
Cx. The Eq. (6) can be rewritten as

y = H′x′ + n, (7)

1OMP tries to find non-zero elements of x in the noisy CS formulation
y = Φx + e, where e is noise, by correlation between columns of Φ and y,
i.e., ΦT y = ΦTΦx+e. When ΦTΦ is nearly orthonormal, larger coefficients
of ΦT y are exactly corresponding to non-zero coefficients of x. Without
normalization, non-diagonal entries of ΦTΦ are possibly larger than diagonal
ones and OMP will not function normally.
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Fig. 2. The comparisons among ML, MMSE, MF, and NCS with varying
Nr . SSKt, MMSEt, MFt, and CSt denote the ML, MMSE, MF, and NCS
with Nr = t. The common settings include Nt = 256, nt = 1, each element
of H following CN (0, 1), and each element of n following CN (0, 1).

where x′ is of dimension Nt × 1. Observe that as C is a
diagonal matrix, the sets of positions of zeros and nonzeros in
x and x′ remain unchanged. The difference between x and x′ is
the magnitudes of those nonzero elements. Therefore, though
the received signal y is generated according to (5), the position
set obtained by performing x̂ := CSRecovery(y,H′, nt) (step
4), equivalently to performing

x̂ := argmin
y=H′x

||x||�1 , (8)

is equivalent to the one obtained by performing

x̂ := argmin
y=Hx

||x||�1 . (9)

Hence, after the normalization and different matrices used
in CS sensing and recovery, conventional CS algorithms are
applicable to the Nt-hypothesis detection problem. Moreover,
the normalization enables the extra advantage of avoiding
unnecessary noise amplification, as stated above.

IV. PERFORMANCE EVALUATION

Here we present the symbol error rate (SER) performance
of the considered detection algorithms. The ML detections for
SSK and GSSK are implemented for comparisons. We also
implement MMSE and MF (Matching Filter) [11] methods
for comparison. We chose OMP [12] as an implementa-
tion of CSRecovery(·) due to its implementation simplicity
and performance efficiency while simplex method is another
option to be applied to CS. Note that the computational
load varies greatly with the CS recovery method used in
the implementation. The CS complexity mentioned in this
paper only applies for OMP. More sophisticated CS recovery
methods are available to reduce the computation overhead or
improve the detection accuracy.

Detection Complexity: By observing our algorithm in Fig.
1, it can be seen that steps 1∼3 require O(NrNt) operations.
As shown in [12], our choice of the implementation of
CSRecovery(·), OMP, needs O(ntNrNt) operations. The step
5 requires O(Nt) operations because of searching the first nt

largest elements in a vector of length Nt. Overall, the detection
complexity of NCS is O(ntNrNt). More specifically, NCS
needs approximately nt(NtNr+Nrnt+Nrn

2
t+n3

t+n2
t ) scalar

addition and multiplication operations. To further verify the
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Fig. 3. The comparisons among ML, MMSE, MF, and NCS from the GSSK
point of view. GSSK2, MMSE2, MF2, and CS2 denote the settings of ML,
MMSE, MF, and NCS with Nr = 16, Nt = 256, nt = 2. GSSK3, MMSE3,
MF3, and CS3 denote the settings of ML, MMSE, MF, and NCS with Nr =
24, Nt = 64, nt = 3. The common setting is that each element of H follows
CN (0, 1), and each element of n follows CN (0, 1).
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Fig. 4. The comparisons among different NCS’s from the GSSK point of
view. CS2-16 is with the setting of Nr = 16, Nt = 256, nt = 2. CS2-20 is
with the setting of Nr = 20, Nt = 256, nt = 2. CS3-24 is with the setting
of Nr = 24, Nt = 64, nt = 3. CS3-30 is with the setting of Nr = 30,
Nt = 64, nt = 3

detection speedup of our proposed NCS, a simple experiment
with real site tests is conducted. On a laptop with INTEL
i3 2.1 GHz CPU and 4GB RAM, performing ML detection
on GSSK with Nt = 64, Nr = 24, and nt = 4, requires
approximately 1 second per detection while performing NCS
on the same setting requires only 0.002 seconds

Numerical Results: Figure 2 shows the comparisons among
ML, MMSE [11], MF [11], and NCS with varying Nr. It can
be observed that more receive antennas (larger Nr) enable the
narrower gap between ML and NCS. This can be attributed to
the fact that a threshold number of measurements, as shown
in Sec. II, are needed to accomplish the required accurate
recovery.

The results of GSSK are depicted in Fig. 3. It is observed
that the error floor occurs in the proposed NCS detection. This
is due to the nature of compressed sensing, which serves as the
fundamental mechanism of NCS. The theory of compressed
sensing states that in the formulation of y = Ax+e, where A is
an Gaussian measurement matrix of dimension m×n, x is the
original signal of dimension n with s nonzero elements, e is
the Gaussian noise, and y is the measurement of dimension m,
x can be accurately recovered from y provided m ≥ cs log(ns )
for some constant c. In compressed sensing, the quality of

recovery result is primarily dominated by the number m of
measurements and can be improved once the number m of
measurements is increased. It turns out that in GSSK detection,
the error floor in NCS can be improved once Nr is increased.
The observation of Fig. 4 also confirms such assertion.

Discussion: As ML is highly complicated in large-scale
high-rate MIMO systems, our proposed NCS detection algo-
rithm has great potential in such MIMO systems. In particular,
in a GSSK modulated MIMO system with Nr = 256,
Nt = 2048, and nt = 16, the attainable symbol rate is
approximately �log (204816

)� ≈ 131 bits2. Nonetheless, ML
detection leads to the running time explosion due to its
required 256 · 204816 operations. Since approximately merely
256 · 2048 · 16 = 8388608 operations are sufficient in NCS,
the proposed NCS serves as a lightweight and promising
alternative for GSSK demodulation. In particular, in the above
case, NCS can successfully detect the antenna indices as long
as the Es/N0 is more than 6dB.

V. CONCLUSION

The proposed NCS algorithm exploits the sparsity in SSK
signaling and uses �1-norm metric as opposed to the �2-norm
metric in conventional detector. Our proposed NCS provides
the advantage of a convex formulation to the SSK-type
demodulations. The complexity analyses and simulations
show that NCS offers significant detection speedup over the
optimal ML detection at slight performance degradations.
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