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2Centre for Particle Physics and Phenomenology, Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium
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ABSTRACT

Radio interferometry probes astrophysical signals through incomplete and noisy Fourier mea-

surements. The theory of compressed sensing demonstrates that such measurements may

actually suffice for accurate reconstruction of sparse or compressible signals. We propose new

generic imaging techniques based on convex optimization for global minimization problems

defined in this context. The versatility of the framework notably allows introduction of specific

prior information on the signals, which offers the possibility of significant improvements of

reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio

astronomy. We illustrate the potential of the approach by studying reconstruction performances

on simulations of two different kinds of signals observed with very generic interferometric

configurations. The first kind is an intensity field of compact astrophysical objects. The sec-

ond kind is the imprint of cosmic strings in the temperature field of the cosmic microwave

background radiation, of particular interest for cosmology.

Key words: techniques: image processing – techniques: interferometric – cosmic microwave

background.

1 IN T RO D U C T I O N

Radio interferometry is a powerful technique for aperture synthe-

sis in astronomy, dating back to more than sixty years ago (Ryle

& Vonberg 1946; Blythe 1957; Ryle, Hewish & Shakeshaft 1959;

Ryle & Hewish 1960; Thompson, Moran & Swenson 2004). In a

few words, thanks to interferometric techniques, radio telescope

arrays synthesize the aperture of a unique telescope of the same

size as the maximum projected distance between two telescopes on

the plane perpendicular to the pointing direction of the instrument.

This allows observations with otherwise inaccessible angular res-

olutions and sensitivities in radio astronomy. The small portion of

the celestial sphere accessible to the instrument around the point-

ing direction tracked during observation defines the original real

planar signal or image I to be recovered. The fundamental Nyquist–

Shannon theorem requires a signal to be sampled at a frequency of

twice its bandwidth to be exactly known. The signal I may therefore

be expressed as a vector x ∈ R
N containing the required number N

of sampled values. Radio-interferometric data are acquired in the

Fourier plane. The number m of spatial frequencies probed may

be much smaller than the number N of discrete frequencies of the

original band-limited signal, so that the Fourier coverage is incom-

plete. Moreover, the spatial frequencies probed are not uniformly

sampled. The measurements are also obviously affected by noise.

⋆E-mail: yves.wiaux@epfl.ch

An ill-posed inverse problem is thus defined for reconstruction of

the original image.

Beyond the Nyquist–Shannon theorem, the emerging theory of

compressed sensing aims at merging data acquisition and com-

pression (Candès, Romberg & Tao 2006a,b; Candès 2006; Donoho

2006; Baraniuk 2007). It notably relies on the idea that a large vari-

ety of signals in Nature are sparse or compressible. By definition, a

signal is sparse in some basis if its expansion contains only a small

number of non-zero coefficients. More generally, it is compressible

if its expansion only contains a small number of significant coef-

ficients, i.e. if a large number of its coefficients bear a negligible

value. Compressed sensing theory demonstrates that a much smaller

number of linear measurements are required for accurate knowl-

edge of such signals than is required for Nyquist–Shannon sam-

pling. The sensing matrix must simply satisfy a so-called restricted

isometry property (RIP). In particular, a small number of random

measurements in a sensing basis incoherent with the sparsity or

compressibility basis will ensure this property with overwhelming

probability, for example random Fourier measurements of a signal

sparse in real or wavelet space. Consequently, if compressed sens-

ing had been developed before the advent of radio interferometry,

one could probably not have thought of a much better design of

measurements for sparse and compressible signals in an imaging

perspective.

In this work, we present results showing that the theory of com-

pressed sensing offers powerful image reconstruction techniques

for radio-interferometric data. These techniques are based on global
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1734 Y. Wiaux et al.

minimization problems, which are solved by convex optimization

algorithms. We also emphasize on the versatility of the scheme rel-

ative to the inclusion of specific prior information on the signal in

the minimization problems. This versatility allows the definition of

image reconstruction techniques which are significantly more pow-

erful than standard deconvolution algorithm called CLEAN used in

the context of radio astronomy.

In Section 2, we pose the inverse problem for image reconstruc-

tion from radio-interferometric data and discuss the standard image

reconstruction techniques used in radio astronomy. In Section 3, we

concisely describe the central results of the theory of compressed

sensing regarding the definition of a sensing basis and the accu-

rate reconstruction of sparse or compressible signals. In Section 4,

we firstly comment on the exact compliance of radio interferomet-

ric measurements with compressed sensing. We then study the re-

construction performances of various compressed sensing imaging

techniques relative to CLEAN on simulations of two kinds of sig-

nals of interest for astrophysics and cosmology. We finally conclude

in Section 5.

Note that a first application of compressed sensing in astron-

omy (Bobin, Starck & Ottensamer 2008) was very recently pro-

posed for non-destructive data compression on board the future

Herschel space observatory.1 The versatility of the compressed sens-

ing framework to account for specific prior information on signals

was already pointed out in that context. Moreover, the generic po-

tential of compressed sensing for interferometry was pointed in

the signal processing community since the time when the theory

emerged (Candès et al. 2006b; Donoho 2006; Mary & Michel 2007;

Levanda & Leshem 2008). It was also very recently acknowledged

in radio astronomy (Cornwell 2008). The present work none the

less represents the first application of compressed sensing for the

definition of new imaging techniques in radio interferometry. A

huge amount of work may be envisaged along these lines, notably

for the transfer of the proposed techniques to optical and infrared

interferometry. The extension of these techniques from the plane to

the sphere will also be essential, notably with regard to forthcom-

ing radio interferometers with wide fields of view on the celestial

sphere (Cornwell, Golap & Bhatnagar 2008; McEwen & Scaife

2008), such as the future Square Kilometer Array (SKA)2 (Carilli

& Rawlings 2004).

2 RADIO INTERFERO METRY

In this section, we recall the van Cittert–Zernike theorem on the

basis of which we formulate the inverse problem posed for image

reconstruction from radio-interferometric data. We also describe

and discuss the standard image reconstruction techniques used in

radio astronomy, namely a local matching pursuit (MP) algorithm

called CLEAN and a global optimization algorithm called the max-

imum entropy method (MEM).

2.1 van Cittert–Zernike theorem

In a tracking configuration, all radio telescopes of an interferometric

array point in the same direction. The field of view observed on the

celestial sphere S2 is limited by a so-called illumination function

A(ω), depending on the angular position ω ∈ S2. The size of its

angular support is essentially inversely proportional to the size of

1 http://herschel.esac.esa.int/
2 http://www.skatelescope.org/

the dishes of the telescopes (Thompson et al. 2004). At each instant

of observation, each telescope pair identified by an index b mea-

sures a complex visibility yb ∈ C. This visibility is defined as the

correlation between incoming electric fields E at the positions of

the two telescopes in the three-dimensional space, �b1, �b2 ∈ R
3,

yb =
〈
E(�b1, t)E

∗(�b2, t)
〉

�t
. (1)

In this relation, t denotes the time variable and the brackets 〈〉�t

denote an average over a time �t long relative to the period of the

radio wave detected.

We consider a monochromatic signal with a wavelength of emis-

sion λ, and made up of incoherent sources. We also consider a

standard interferometer with an illumination function whose angu-

lar support is small enough so that the field of view may be identified

to a planar patch of the celestial sphere: P ⊂ R
2. The signal and the

illumination function thus, respectively, appear as functions I (�p)

and A(�p) of the angular variable seen as a two-dimensional vector

�p ∈ R
2 with an origin at the pointing direction of the array. The

vector �Bb = �b2 − �b1 ∈ R
3 defining the relative position between

the two telescopes is called the baseline, and its projection on the

plane perpendicular to the pointing direction of the instrument may

be denoted as �B⊥
b ∈ R

2. One also makes the additional assump-

tion that the maximum projection of the baselines in the pointing

direction itself is small (Cornwell et al. 2008). In this context, the

so-called van Cittert–Zernike theorem states that the visibility mea-

sured identifies with the two-dimensional Fourier transform of the

image multiplied by the illumination function AI at the single spatial

frequency

�ub =
�B⊥

b

λ
, (2)

that is

yb = ÂI (�ub) , (3)

with

ÂI (�u) ≡
∫

R2

A (�p) I (�p) e−2iπ �p·�u d2 �p, (4)

for any two-dimensional vector �u ∈ R
2. Interferometric arrays thus

probe signals at a resolution equivalent to that of a single tele-

scope with a size R essentially equivalent to the maximum pro-

jected baseline on the plane perpendicular to the pointing direction:

R ≃ maxb
�B⊥

b . This expresses the essence of aperture synthesis

(Thompson et al. 2004).

2.2 Interferometric inverse problem

In the course of an observation, the projected baselines on the plane

perpendicular to the pointing direction change thanks to the Earth’s

rotation and run over an ellipse in the Fourier plane of the original

image, whose parameters are linked to the parameters of obser-

vation. The total number m/2 of spatial frequencies probed by all

pairs of telescopes of the array during the observation provides some

Fourier coverage characterizing the interferometer. Any interferom-

eter is thus simply identified by a binary mask in Fourier equal to

1 for each spatial frequency probed and 0 otherwise. The visibili-

ties measured may be denoted as a vector of m/2 complex Fourier

coefficients y ∈ C
m/2 = {yb = ÂI (�ub)}1≤b≤m/2, possibly affected

by complex noise values n ∈ C
m/2 = {nb = n(�ub)}1≤b≤m/2 of astro-

physical or instrumental origin. Considering that the signal I and the

illumination function A are real, a symmetry ÂI (−�ub) = ÂI
∗
(�ub)

also holds so that independent measurements may all be localized

c© 2009 The Authors. Journal compilation c© 2009 RAS, MNRAS 395, 1733–1742
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Compressed sensing for radio interferometry 1735

in one half of the Fourier plane. The binary mask in Fourier iden-

tifying the interferometer is defined in this half of the plane and

rendered symmetric around the origin so that it also corresponds to

the Fourier transform of a real function. In this context, the mea-

sured visibilities may equivalently be denoted as a vector of m real

Fourier coefficients y ∈ R
m = {yr}1≤r≤m consisting of the real and

imaginary parts of the complex measures, possibly affected by real

noise values n ∈ R
m = {nr}1≤r≤m.

The original signal I (�p) and the illumination function A(�p) can

be approximated by band-limited functions restricted to the finite

field of view precisely set by the illumination function: �p ∈ P .

In this context, we note that they are identified by their Nyquist–

Shannon sampling on a discrete uniform grid of N = N 1/2 × N 1/2

points �pi ∈ R
2 in real space with 1 ≤ i ≤ N . The sampled signal

may thus be denoted as x ∈ R
N = {xi = I (�pi)}1≤i≤N while the

illumination function is denoted as a ∈ R
N = {ai = A(�pi)}1≤i≤N ,

and the sampled product reads as x̄ ∈ R
N = {x̄i = AI (�pi)}1≤i≤N .

Because of the assumed finite field of view, the functions may

equivalently be described by their complex Fourier coefficients on

a discrete uniform grid of N = N 1/2 × N 1/2 spatial frequencies �ui

with 1 ≤ i ≤ N . This grid is symmetric around the origin and limited

at the maximum frequency defining the band limit. In particular, for

the Fourier coefficients of the product AI one has: ̂̄x ∈ C
N = {̂̄xi =

ÂI (�ui)}1≤i≤N . The functions being real, one again has the symmetry

ÂI (−�ui) = ÂI
∗
(�ui) so that the signal is described by exactly N/2

complex Fourier coefficients in one half of the Fourier plane or

equivalently N real Fourier coefficients consisting of the real and

imaginary parts of these complex coefficients. In the following, we

only use this decomposition with real coefficients in one half of the

Fourier plane.

However, the frequencies �ub probed defined by (2) for 1 ≤ b ≤
m/2 are continuous and do not generally belong to the set of discrete

frequencies �ui for 1 ≤ i ≤ N . Reconstruction schemes in general

perform a preliminary gridding operation on the visibilities yr with

1 ≤ r ≤ m so that the inverse problem may be reformulated in a

pure discrete setting, i.e. between the discrete Fourier and real planes

(Thompson et al. 2004). The essential reason for the gridding resides

in the subsequent use of the standard fast Fourier transform (FFT).3

For the sake of the considerations that follow we assume that the

frequencies probed �ub belong to the discrete grid of points �ui so that

no artefact due to the gridding is introduced. In this discrete setting,

the Fourier coverage is unavoidably incomplete in the sense that the

number of real constraints m is always smaller than the number of

unknowns N : m < N . An ill-posed inverse problem is thus defined

for the reconstruction of the signal x from the measured visibilities

y as

y = �rix + n, (5)

for a given noise n, and with a sensing matrix �ri for radio interfer-

ometry of the form

�ri = MFD. (6)

In this relation, the matrix D ∈ R
N×N = {Dii′ = aiδii′}1≤i,i′≤N is

the diagonal matrix implementing the illumination function, and the

matrix F ∈ R
N×N = {Fii′}1≤i,i′≤N implements the discrete Fourier

transform providing the real Fourier coefficients in one half of the

Fourier plane. The matrix M ∈ R
m×N = {Mri}1≤r≤m;1≤i≤N is the

3 Note that fast algorithms have been developed to compute a Fourier trans-

form on non-equispaced spatial frequencies (Potts, Steidl & Tasche 2008).

This could in principle allow one to avoid an explicit gridding operation.

rectangular binary matrix implementing the mask characterizing

the interferometer in one half of the Fourier plane. It contains only

one non-zero value on each line, at the index of one of the two real

Fourier coefficients corresponding to each of the spatial frequencies

probed.

We restrict our considerations to independent Gaussian noise

with variance σ 2
r = σ 2(yr). From a statistical point of view, the

likelihood L associated with a candidate reconstruction x∗ of the

signal x is defined as the probability of the data y given the model x∗

or equivalently the probability of the noise residual n∗ = y −�rix
∗.

Under the Gaussian noise assumption it reads as

L
(
y|x∗) ∝ exp

[
−1

2
χ 2

(
x∗; �ri , y

)]
, (7)

with the corresponding negative logarithm

χ 2
(
x∗; �ri , y

)
=

m∑

r=1

(
n∗

r

)2

σ 2
r

, (8)

following a chi-square distribution with m degrees of freedom. The

χ 2 defines a noise level estimator. The level of residual noise n∗

should be reduced by finding x∗ minimizing this χ 2, which corre-

sponds to maximize the likelihood L. Typically, the measurement

constraint on the reconstruction may be defined as a bound

χ 2
(
x∗; �ri , y

)
≤ ǫ2, (9)

with ǫ2 corresponding to some (100α)th percentile of the chi-square

distribution, i.e. p(χ 2 ≤ ǫ2) = α for some α ≤ 1. For a solution with

a χ 2 = ǫ2, there is a probability α that pure noise gives a residual

smaller than or equal to the observed residual n∗, and a probability

1 − α that noise gives a larger residual. Too small an α would thus

induce possible noise over-fitting, that is inclusion of part of the

noise in the reconstruction. These considerations might of course

be generalized to other kinds of noise distributions.

The inverse problem being ill-posed, many signals may formally

satisfy measurement constraints such as (9). In general, the problem

may only find a unique solution x∗, as close as possible to the true

signal x, through a regularization scheme which should encompass

enough prior information on the original signal. All possible image

reconstruction algorithms will essentially be distinguished through

the kind of regularization considered.

2.3 Standard imaging techniques

The general inverse problem (5) is to be considered if one wishes to

undo the multiplication by the illumination function and to recover

the original signal x on the given field of view. In practice, the

reconstruction is usually considered for the original image I already

multiplied by the illumination function A, whose sampled values

are x̄ = Dx ∈ R
N = {x̄i = aixi}1≤i≤N . In this setting, the inverse

problem reads as

y = �̄ri x̄ + n, (10)

with a sensing matrix �̄ri strictly implementing a convolution:

�̄ri = MF. (11)

First, the most standard and otherwise already very effective

image reconstruction algorithm from visibility measurements is

called CLEAN. It approaches the image reconstruction in terms of

the corresponding deconvolution problem in real space (Högbom

1974; Schwarz 1978; Thompson et al. 2004). In standard vocab-

ulary, the inverse transform of the Fourier measurements with all

non-observed visibilities set to zero is called the dirty image. Its

c© 2009 The Authors. Journal compilation c© 2009 RAS, MNRAS 395, 1733–1742
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1736 Y. Wiaux et al.

sampled values x̄(d) ∈ R
N = {x̄(d)

i }1≤i≤N are simply obtained by ap-

plication of the adjoint sensing matrix to the observed visibilities:

x̄(d) = �̄†
ri
y. The inverse transform of the binary mask identify-

ing the interferometer is called the dirty beam. Its sampled values

d ∈ R
N = {di}1≤i≤N follow from the application of the adjoint

sensing matrix to a vector of unit values 1m ∈ R
m : d = �̄†

ri
1m.

The inverse transform of the noise n with all non-observed visi-

bilities set to zero defines an alternative expression of the noise

in real space. Again its sampled values n(d) ∈ R
N = {n(d)

i }1≤i≤N

are simply obtained by application of the adjoint sensing matrix to

the noise realization: n(d) = �̄†
ri
n. The inverse problem (10) can

thus be rephrased by expressing the dirty image as the convolution

of the original image with the dirty beam, plus the noise:

x̄(d) = d ⋆ x̄ + n(d). (12)

CLEAN is a non-linear deconvolution method relying on this rela-

tion and working by local iterative beam removal. At each iteration,

the point in real space is identified where a residual image, ini-

tialized to the dirty image, takes its maximum absolute value. The

beam is removed at that point with the correct amplitude to produce

the residual image for the next iteration. Simultaneously the maxi-

mum absolute value observed renormalized by the central value of

the beam is added at the same point in the approximation image,

initialized to a null image. This procedure assumes that the original

signal is a sum of Dirac spikes. A sparsity or compressibility prior

on the original signal in real space is implicitly introduced so that

its energy is concentrated at specific locations. On the contrary, the

Gaussian noise should be distributed everywhere on the image and

should not significantly affect the selection of points in the itera-

tions. This underlying sparsity hypothesis serves as a regularization

of the inverse problem.

A loop gain factor γ is generally introduced in the procedure

which defines the fraction of the beam considered at each iteration.

Values γ around a few tenths are usually used which allow for a

more cautious consideration of the sidelobes of the dirty beam. The

overall procedure is greatly enhanced by this simple improvement,

albeit at high computational cost. In a statistical sense, the stopping

criterion for the iteration procedure should be set in terms of relation

(9). However, the procedure is known to be slow and the algorithm

is often stopped after an arbitrary number of iterations.

Various weighting schemes can be applied to the binary mask in

Fourier. Natural weighting simply corresponds to replace the unit

values by the inverse variance of the noise affecting the correspond-

ing visibility measurement. This corresponds to a standard matched

filtering operation allowing the maximization of the signal-to-noise

ratio (SNR) of the dirty image before deconvolution. So-called uni-

form and robust weightings can notably be used to correct for the

non-uniformity of the Fourier coverage associated with the mea-

sured visibilities and to reduce the sidelobes of the dirty beam in

real space. Multiscale versions of this method were also developed

(Cornwell 2008).

CLEAN and multiscale versions may actually be formulated in

terms of the well-known MP procedure (Mallat & Zhang 1993;

Mallat 1998). The corresponding MP algorithm simply uses a cir-

culant dictionary for which the projection on atoms corresponds to

the convolution with the dirty beam. The loop gain factor may also

be trivially introduced in this context.

Secondly, another approach to the reconstruction of images from

visibility measurements is MEM. In contrast to CLEAN, MEM

solves a global optimization problem in which the inverse problem

(10) is regularized by the introduction of an entropic prior on the

signal (Ables 1974; Cornwell & Evans 1985; Gull & Daniell 1999;

Gull & Skilling 1999). For positive signals, the relative entropy

function between a sampled signal x̄ ∈ R
N = {x̄i}1≤i≤N and a

model z ∈ R
N = {zi}1≤i≤N takes the simple form

S (x̄, z) = −
N∑

i

x̄i ln
x̄i

zi

. (13)

This function is always negative and takes its maximum null value

when x̄ = z. In the absence of a precise knowledge of the signal

x̄, z is set to a vector of constant values. In such a case, maximizing

the entropy prior promotes smoothness of the reconstructed image.

The MEM problem is the unconstrained optimization problem

defined as the minimization of a functional corresponding to the

sum of the relative entropy S and the χ 2:

min
x̄′∈RN

[
1

2
χ 2

(
x̄ ′; �̄ri , y

)
− τS

(
x̄ ′, z

)]
, (14)

for some suitably chosen regularization parameter τ > 0. In general,

the minimization thus requires a trade-off between χ 2 minimization,

and relative entropy maximization.

Note that the definition (13) may easily be generalized for non-

positive signals. A multiscale version of MEM was also defined. It

considers that the original image may have an efficient representa-

tion in terms of its decomposition in a wavelet basis. The entropy

is then defined directly on the wavelet coefficients of the signal

(Maisinger, Hobson & Lasenby 1999).

For completeness we finally quote the WIPE reconstruction pro-

cedure which also solves a global minimization problem, but in

which the inverse problem (10) is regularized by the introduction of

a smoothness prior on the part of the signal whose Fourier support

corresponds to the non-probed spatial frequencies. This corresponds

to minimize the χ 2 after assigning a null value to all initially non-

observed visibilities (Lannes, Anterrieu & Bouyoucef 1994, 1996).

In conclusion, CLEAN is a local iterative deconvolution tech-

nique, while MEM and WIPE are reconstruction techniques based

on global minimization problems. All three approaches are flexi-

ble enough to consider various bases (Dirac, wavelet, etc.) where a

majority of natural signals can have a sparse or compressible repre-

sentation. CLEAN also implicitly assumes the sparsity of the signal

in the reconstruction procedure. But none of these methods explic-

itly imposes the sparsity or compressibility prior on the reconstruc-

tion. This precise gap is notably bridged by the imaging techniques

defined in the framework of the compressed sensing theory.

3 C OMPRESSED SENSING

In this section we define the general framework of the theory

of compressed sensing and quote its essential impact beyond the

Nyquist–Shannon sampling theorem. We then describe the RIP that

the sensing basis needs to satisfy so that sparse and compressible

signals may be accurately recovered through a global optimization

problem. We finally discuss the idea that incoherence of the sens-

ing and sparsity or compressibility bases as well as randomness of

the measurements are the key properties to ensure this restricted

isometry.

3.1 Beyond Nyquist–Shannon

In the framework of compressed sensing the signals probed are

firstly assumed to be sparse or compressible in some basis. Techni-

cally, we consider a real signal identified by its Nyquist–Shannon

sampling as x ∈ R
N = {xi}1≤i≤N . A real basis � ∈ R

N×T =
{�iw}1≤i≤N ;1≤w≤T is defined, which may be either orthogonal,

c© 2009 The Authors. Journal compilation c© 2009 RAS, MNRAS 395, 1733–1742
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Compressed sensing for radio interferometry 1737

with T = N , or redundant, with T > N (Rauhut, Schnass &

Vandergheynst 2008). The decomposition α ∈ R
T = {αw}1≤w≤T

of the signal defined by

x = �α (15)

is sparse or compressible in the sense that it only contains a small

number K ≪ N of non-zero or significant coefficients, respec-

tively. The signal is then assumed to be probed by m real linear

measurements y ∈ R
m = {yr}1≤r≤m in some real sensing basis

� ∈ R
m×N = {�ri}1≤r≤m;1≤i≤N and possibly affected by indepen-

dent and identically distributed noise n ∈ R
m = {nr}1≤r≤m:

y = �α + n with � = �� ∈ R
m×T . (16)

This number m of constraints is typically assumed to be smaller

than the dimension N of the vector defining the signal, so that the

inverse problem (16) is ill-posed.

In this context, the theory of compressed sensing defines the ex-

plicit RIP that the matrix � should satisfy in order to allow an

accurate recovery of sparse or compressible signals (Candès et al.

2006a,b; Candès 2006). In that regard, the theory offers multiple

ways to design suitable sensing matrices � from properties of inco-

herence with � and randomness of the measurements. It shows in

particular that a small number of measurements is required relative

to a naive Nyquist–Shannon sampling: m ≪ N . The framework

also defines a global minimization problem for the signal recovery

called Basis Pursuit (BP). This problem regularizes the originally

ill-posed inverse problem by an explicit sparsity or compressibil-

ity prior on the signal. The corresponding solution may be obtained

through convex optimization. Alternative global minimization prob-

lems may also be designed.

3.2 Restricted isometry and Basis Pursuit

Let us primarily recall that the ℓp norm of a real vector u ∈ C
Q =

{ul}1≤l≤Q is defined for any p ∈ R+ as ||u||p ≡ (
∑Q

l=1 |ul |p)1/p ,

where | ul | stands for the absolute value of the component ul. The

well-known ℓ2 norm is to the square-root of the sum of the absolute

values squared of the vector components.

By definition the matrix � satisfies a RIP of order K if there

exists a constant δK < 1 such that

(1 − δK ) ||αK ||22 ≤ ||�αK ||22 ≤ (1 − δK ) ||αK ||22, (17)

for all vectors αK containing at maximum K non-zero coefficients.

The ℓ1 norm of the vector α ∈ R
T = {αw}1≤w≤T is simply defined

as the sum of the absolute values of the vector components:

||α||1 ≡
T∑

w=1

|αw|. (18)

From a Bayesian point of view, this ℓ1 norm may be seen as the

negative logarithm of a Laplacian prior distribution on each inde-

pendent component of α. For comparison, the square of the ℓ2 norm

may be seen as the negative logarithm of a Gaussian prior distribu-

tion. It is well-known that a Laplacian distribution is highly peaked

and bears heavy tails, relative to a Gaussian distribution. This cor-

responds to say that the signal is defined by only a small number of

significant coefficients, much smaller than a Gaussian signal would

be. In other words, the representation α of the signal x in the spar-

sity or compressibility basis � is indeed sparse or compressible if

it follows such a prior. Finding the α
′

that best corresponds to this

prior requires to maximize its Laplacian probability distribution,

or equivalently to minimize the ℓ1 norm. Note that this conclusion

also follows from a pure geometrical argument in R
T (Candès et al.

2006b; Baraniuk 2007).

A constrained optimization problem explicitly regularized by a ℓ1

sparsity prior can be defined. This so-called Basis Pursuit denoise

(BPǫ) problem is the minimization of the ℓ1 norm of α′ under a

constraint on the ℓ2 norm of the residual noise:

min
α′∈RT

||α′||1 subject to ||y − �α′||2 ≤ ǫ. (19)

Let us recall that the noise was assumed to be identically distributed.

Consequently, considering Gaussian noise, the ℓ2 norm term in the

BPǫ problem is identical to the condition (9), for ǫ2 corresponding

to some suitable percentile of the χ 2 distribution with m degrees

of freedom governing the noise level estimator. This BPǫ problem

is solved by application of non-linear and iterative convex opti-

mization algorithms (Combettes & Pesquet 2008; van den Berg

& Friedlander 2008). In the absence of noise, the BPǫ problem is

simply called BP. If the solution of the BPǫ problem is denoted α∗

then the corresponding synthesis-based signal reconstruction reads,

from (15), as x∗ = �α∗.

Compressed sensing shows that if the matrix � satisfies a RIP

of order 2K with some suitable constant δ2K <
√

2 − 1 (Candès

2008), then the solution x∗ of the BPǫ problem provides an accurate

reconstruction of a signal x that is sparse or compressible with

K significant coefficients. The reconstruction may be said to be

optimal in that exactly sparse signals are recovered exactly through

BP in the absence of noise: x∗ = x. Moreover, strong stability results

exist for compressible signals in the presence of noise. In that case,

the ℓ2 norm of the difference between the representation α of the

signal in the sparsity or compressibility basis and its reconstruction

α∗ is bounded by the sum of two terms. The first term is due to

the noise and is proportional to ǫ. The second term is due to the

non-exact sparsity of a compressible signal and is proportional to

the ℓ1 norm of the difference between α and the approximation αK

defined by retaining only its K largest components and sending all

other values to zero. In this context, one has

||α − α∗||2 ≤ C1,Kǫ + C2,K

||α − αK ||1√
K

, (20)

for two known constants C1,K and C2,K depending on δ2K . For

instance, when δ2K = 0.2, we have C1,K = 8.5 and C2,K = 4.2

(Candès et al. 2006b; Candès 2008). In an orthonormal basis �,

this relation represents an explicit bound on the ℓ2 norm of the

difference between the signal x itself and its reconstruction x∗ as

||x − x∗||2 = ||α − α∗||2. Moreover, xK = �αK then represents the

best sparse approximation of x with K terms, in the sense that ||x −
xK ||2 is minimum.

The constrained BPǫ problem may also be rephrased in terms of

an unconstrained minimization problem for a functional defined as

the sum of the ℓ1 norm of α′ and the ℓ2 norm of the residual noise:

min
α′∈RT

[
1

2
||y − �α′||22 + τ ||α′||1

]
, (21)

for some suitably chosen regularization parameter τ > 0. For each

value of ǫ, there exists a value τ such that the solutions of the

constrained and unconstrained ℓ1 sparsity problems are identical

(van den Berg & Friedlander 2008). From a Bayesian point of

view, this minimization is then equivalent to maximum a posteriori

(MAP) estimation for a signal with Laplacian prior distribution in

the sparsity or compressibility basis, in the presence of Gaussian

noise.

Finally, alternative minimization problems may be defined for the

recovery. First, a ℓp norm with 0 < p ≤ 1 may for example be substi-

tuted for the ℓ1 norm in the definition of the minimization problem.
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From a Bayesian point of view, the ℓp norm to the power p may be

seen as the negative logarithm of a prior distribution identified as

a generalized Gaussian distribution (GGD). Such distributions are

even more highly peaked and bear heavier tails than a Laplacian dis-

tribution and thus promote stronger compressibility of the signals.

Theoretical results hold for such ℓp norm minimization problems

when a RIP is satisfied (Foucart & Lai 2008). Such problems are

non-convex but can be solved iteratively by convex optimization al-

gorithms performing re-weighted ℓ1 norm minimization (Chartrand

& Yin 2007; Candès, Wakin & Boyd 2008; Davies & Gribonval

2008; Foucart & Lai 2008). Secondly, a TV norm may also be

substituted for the ℓ1 norm in the definition of the minimization

problem for signals with sparse or compressible gradients. The TV

norm of a signal is simply defined as the ℓ1 norm of the magnitude

of its gradient (Rudin, Osher & Fatemi 1992). A theoretical result

of exact reconstruction holds for such TV norm minimization prob-

lems in the case of Fourier measurements of signals with exactly

sparse gradients in the absence of noise (Candès et al. 2006a). But

no proof of stability relative to noise and non-exact sparsity exists

at the moment. Such minimization is also accessible through an

iterative scheme from convex optimization algorithms (Candès &

Romberg 2005).

This flexibility in the definition of the optimization problem is

a first important manifestation of the versatility of the compressed

sensing theory, and of the convex optimization scheme. It opens the

door to the definition a whole variety of powerful image reconstruc-

tion techniques that may take advantage of some available specific

prior information on the signal under scrutiny beyond its generic

sparsity or compressibility.

3.3 Incoherence and randomness

The issue of the design of the sensing matrix � ensuring the RIP

for � = �� is of course fundamental. One can actually show that

incoherence of � with the sparsity or compressibility basis � and

randomness of the measurements will ensure that the RIP is sat-

isfied with overwhelming probability, provided that the number of

measurements is large enough relative to the sparsity K considered

(Candès et al. 2006b; Candès 2006). In this context, the variety of

approaches to design suitable sensing matrices is a second form of

the versatility of the compressed sensing framework.

As a first example, the measurements may be drawn from a

Gaussian matrix � with purely random real entries, in which case

the RIP is satisfied if

K ≤ Cm

ln(N/m)
, (22)

for some constant C. The most recent result provides a value C ≃
0.5, hence showing that the required redundancy of measurements

m/K is very small (Donoho & Tanner 2009).

As a second example of interest for radio interferometry, the

measurements may arise from a uniform random selection of Fourier

frequencies. In this case, the precise condition for the RIP depends

on the degree of incoherence between the Fourier basis and the

sparsity or compressibility basis. If the unit-normed basis vectors

corresponding to the lines of F and the columns of � are denoted

{fe}1≤e≤N and {ψe′ }1≤e′≤T , the mutual coherence μ of the bases

may be defined as their maximum scalar product:

μ =
√

N max
e,e′

|〈fe|ψe′ 〉|. (23)

The RIP is then satisfied if

K ≤ C ′m

μ2 ln4 N
, (24)

for some constant C′. As the incoherence is maximum between

the Fourier and real spaces with μ = 1, the lowest number of

measurements would be required for a signal that is sparse in real

space. Note that a factor ln N instead of ln 4 N in condition (24)

was not proven but conjectured, suggesting that a lower number of

measurements would still ensure the RIP. In that regard, empirical

results (Lustig, Donoho & Pauly 2007) suggest that ratios m/K

between 3 and 5 already ensure a reconstruction quality through

BPǫ that is equivalent to the quality ensured by (20).

Let us also emphasize that the TV norm minimization is often

used from Fourier measurements of signals with sparse or com-

pressible gradients. As already stated no stability result such as (20)

was proven for the reconstruction provided by this minimization

scheme. Empirical results suggest however that TV norm mini-

mization provides the same quality of reconstruction as BPǫ for the

same typical ratios m/K between 3 and 5 (Candès & Romberg 2005;

Lustig et al. 2007).

4 A PPLI CATI ONS

In this section, we firstly comment on the exact compliance of radio

interferometric measurements with compressed sensing. We then

consider simulations of two kinds of signals for reconstruction from

visibility measurements: an intensity field of compact astrophysical

objects and a signal induced by cosmic strings in the temperature

field of the cosmic microwave background (CMB) radiation. Rely-

ing on the versatility of the convex optimization scheme, enhanced

minimization problems are defined in the compressed sensing per-

spective through the introduction of specific prior information on

the signals. The reconstruction performance is studied in compar-

ison both with the standard BPǫ reconstructions in the absence of

specific priors and with the CLEAN reconstruction.

4.1 Interferometric measurements and compressed sensing

In the context of compressed sensing, the sensing matrix needs to

satisfy the RIP. If Fourier measurements are considered, this re-

quirement may be reached through a uniform random selection of

a low number of Fourier frequencies. In the context of radio in-

terferometry, realistic visibility distributions are deterministic, i.e.

non-random, superpositions of elliptical distributions in the Fourier

plane of the image to reconstruct. However, the structure of the

Fourier sampling is extremely dependent on the specific configu-

ration of the radio telescope array under consideration. Visibilities

from various interferometers may be combined, as well as visibili-

ties from the same interferometer with different pointing directions

in the mosaicking technique (Thompson et al. 2004). From this

point of view, the realistic visibility distributions themselves are

rather flexible. Moreover, the standard uniform weighting of the

visibilities may be used to provide uniformity of the effective mea-

surement density in the Fourier plane. Correctly studied realistic

distributions might thus not be so far from complying exactly with

the compressed sensing requirements. Finally, it was recently sug-

gested that specific deterministic distributions of a low number of

linear measurements might in fact allow accurate signal reconstruc-

tion in the context of compressed sensing (Matei & Meyer 2008).

None the less, modifications of radio interferometric measure-

ments might be conceived in order to comply exactly with standard
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compressed sensing results. To this end, one might want to intro-

duce randomness in the visibility distribution. Formally, random

repositioning of the telescopes during observation or random in-

tegration times for the definition of individual visibilities could

provide important advances in that direction. Also note that com-

pressed sensing does not require that measurements be identified to

Fourier coefficients of the signal. The versatility of the framework

relative to the design of suitable sensing matrices might actually

be used to define generalized radio interferometric measurements,

beyond standard visibilities, ensuring that the RIP is explicitly sat-

isfied. In this perspective, direct modifications of the acquisition

process through a scheme similar to spread spectrum techniques

(Naini et al. 2009) or coded aperture techniques (Marcia & Willett

2008) could also provide important advances.

In the following applications, we simply consider standard vis-

ibility measurements. We assume generic interferometric configu-

rations characterized by uniform random selections of visibilities.

4.2 Experimental set up

We consider two kinds of astrophysical signals I that are sparse in

some basis, and for which specific prior information is available.

For each kind of signal, 30 simulations are considered. Observations

of both kinds of signals are simulated for five hypothetical radio

interferometers unaffected by instrumental noise, assuming that the

conditions under which relation (3) holds are satisfied. The field

of view observed on the celestial sphere by the interferometers is

limited by a Gaussian illumination function A with a full-width

at half maximum (FWHM) of 40 arcmin of angular opening. The

original signals considered are defined as sampled images with

N = 256 × 256 pixel on a total field of view of 1.8 × 1.8 arcsec2.

The first kind of signal consists of a compact object intensity

field in which the astrophysical objects are represented as a super-

position of elongated Gaussians of various scales in some arbitrary

intensity units. The important specific prior information in this case

is the positivity of the signal. The second kind of signal is of partic-

ular interest for cosmology. It consists of temperature steps in µK

induced by topological defects such as cosmic strings in the zero-

mean perturbations of the CMB. The string network of interest can

be mapped as the magnitude of the gradient of the string signal

itself. The essential specific prior information in this case resides

in the fact that the statistical distribution of a string signal may be

well modelled in wavelet space. One simulation of a compact object

intensity field and the magnitude of the gradient of one simulation

of a string signal are represented in Fig. 1, after multiplication by

the illumination function.

As discussed already, we assume uniform random selections of

visibilities. The five interferometers considered identified by an in-

dex c with 1 ≤ c ≤ 5 only differ by their Fourier coverage. This

coverage is defined by the m/2 randomly distributed frequencies

probed in one half of the Fourier plane, corresponding to m real

Fourier coefficients as m/N = 5c/100. For each configuration, the

general inverse problem is the one posed in (5) with the sensing ma-

trix � = �ri defined in (6) if one wishes to undo the multiplication

by the illumination function and to recover the original signal x.

The inverse problem (10) applies with the sensing matrix � = �̄ri

defined in (11) if one wishes to recover x̄.

For each reconstruction, we compare the performance of the BP

approaches enhanced by the inclusion of specific prior signal in-

formation in the minimization problem, with both the standard BPǫ

or BP performance, and the CLEAN performance. As the signals

considered are sparse or compressible in some basis, we do not

Figure 1. Top panels: compact object intensity field in some arbitrary intensity units. The original signal multiplied by the illumination function x̄ is reported

(left-hand side), as well as the dirty image x̄(d) (centre left) and the BP+ reconstruction of x̄ (centre right), for the interferometric configuration c = 2. The

graph of the mean SNR with 1σ error bars over 30 simulations is also reported for the CLEAN, BP and BP+ reconstructions of x̄ as a function of the Fourier

coverage identifying the interferometric configurations (extreme right). Bottom panels: string signal in the CMB in µK. The magnitude of the gradient of the

original signal x remultiplied by the illumination function is reported (left-hand side), as well as the dirty image x̄(d) (centre left) and the SBPǫ reconstruction

of x remultiplied by the illumination function (centre right), for the interferometric configuration c = 2. The graph of the mean SNR with 1σ error bars over 30

simulations is also reported for the CLEAN reconstruction, and for the BPǫ and SBPǫ reconstructions remultiplied by the illumination function, as a function

of the Fourier coverage identifying the interferometric configurations (extreme right).
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consider any MEM or WIPE reconstruction, which disregard the

sparsity information. The performance of the algorithms compared

is evaluated through the SNR of the reconstruction for the compact

object intensity field, and through the SNR of the magnitude of the

gradient of the reconstruction for the string signal. The SNR of a

reconstructed signal s relative to an original signal s is technically

defined as

SNR(s,s) = −20 log10

σ (s−s)

σ (s)
, (25)

where σ (s−s) and σ (s) stand for the sampled standard deviations of

the residual signal s − s and of the original signal s, respectively. It

is consequently measured in decibels (dB).

As far as the computation complexity of the algorithms is con-

cerned, note that both CLEAN and the various BP algorithms con-

sidered share the same scaling with N at each iteration. This scaling

is driven by the complexity of the FFT, that is O(N log N ). The

number of iterations required by each algorithm is therefore critical

in a comparison of computation times.

4.3 Compact object intensity field

Each simulation of the compact object intensity field consists of

100 Gaussians with random positions and orientations, random am-

plitudes in the range [0, 1] in the chosen intensity units, and random

but small scales identified by standard deviations along each ba-

sis direction in the range [1, 4] in number of pixels. Given their

structure, such signals are probably optimally modelled by sparse

approximations in some wavelet basis. But as the maximum possi-

ble incoherence with Fourier space is reached from real space, we

chose the sparsity or compressibility basis to be the Dirac basis,

i.e. � = IN1/2×N1/2 . For further simplification of the problem, we

consider the inverse problem (10) with the sensing matrix �̄ri , for

reconstruction of the original signal x̄ multiplied by the illumination

function.

As no noise is considered, a BP problem is considered in a stan-

dard compressed sensing approach. However, the prior knowledge

of the positivity of the signal also allows one to pose an enhanced

BP+ problem as

min
x̄′∈RN

||x̄ ′||1 subject to y = �̄ri x̄
′ and x̄ ′ ≥ 0. (26)

Note that no theoretical recovery result was yet provided for such

a problem in the described framework of compressed sensing. But

the performance of this approach for the problem considered is as-

sessed on the basis of the simulations. The positivity prior is easily

incorporated into a convex optimization solver based on proximal

operator theory (Moreau 1962). The Douglas–Rachford splitting

method (Combettes & Pesquet 2008) guarantees that such an addi-

tional convex constraint is inserted naturally in an efficient iterative

procedure finding the global minimum of the BP+ problem. For

simplicity, the stopping criterion of the iterative process is here set

in terms of the number of iterations: 104.

The BP+ reconstruction of the original signal x̄ reported in Fig. 1

is also represented in the figure for the configuration c = 2. For

comparison, the dirty image x̄(d) used in CLEAN and obtained by

simple application of the adjoint sensing matrix �̄†
ri

to the observed

visibilities is also represented. The mean SNR and corresponding

one standard deviation (1σ ) error bars over the 30 simulations are

reported in Fig. 1 for the CLEAN reconstruction of x̄ with γ =
0.1, and for the BP and BP+ reconstructions of x̄, as a function of

the Fourier coverage identifying the interferometric configurations.

All obviously compare very favourably relative to the SNR of x̄(d),

not reported on the graph. One must acknowledge the fact that BP

and CLEAN provide relatively similar qualities of reconstruction.

However, the BP reconstruction is actually achieved much more

rapidly than the CLEAN reconstruction, both in terms of number of

iterations and computation time. This highlights the fact that the BP

approach may in general be computationally much less expensive.

The BP+ reconstruction exhibits a significantly better SNR than the

BP and CLEAN reconstructions. The main outcome of this analysis

thus resides in the fact that the inclusion of the positivity prior on

the signal significantly improves reconstruction. For completeness,

let us mention that it was suggested decades ago that CLEAN can

be understood as some approximation of what we called the BP+

approach (Marsh & Richardson 1987).

Note that the sparsity or compressibility basis is orthonormal and

the error ||x̄ − x̄∗||2 in the BP reconstruction x̄∗ of x̄ is theoretically

bounded by (20) with ǫ = 0. Assuming saturation of this bound,

the SNR of the BP reconstruction allows the estimation of the

maximum sparsity K of the best sparse approximation x̄K of x̄.

Preliminary analysis from the mean SNR of reconstructions over

the simulations considered suggests that ratios m/K ≃ 5 hold for

each of the values of m associated with the five interferometric

configurations probed. This result appears to be in full coherence

with the accepted empirical ratios quoted above (Lustig et al. 2007).

4.4 String signal in the CMB

The CMB signal as a whole is a realization of a statistical process. In

our setting, the zero-mean temperature perturbations considered in

μ K may be modelled as a linear superposition of the non-Gaussian

string signal x made up of steps and of a Gaussian component g

seen as noise. The power spectrum of this astrophysical noise is

set by the concordance cosmological model. We only include here

the so-called primary CMB anisotropies (Hammond et al. 2008).

The typical number, width and spatial distribution of long strings

or string loops in a given field of view are also all governed by

the concordance cosmological model. Our 30 simulations of the

CMB signal are built as a superposition of a unique realistic string

signal simulation borrowed from Fraisse et al. (2008) with 30 sim-

ulations of the Gaussian correlated noise. The string tension ρ, a

dimensionless number related to the mass per unit length of string,

is up to some extent a free parameter of the model. This tension

sets the overall amplitude of the signal and needs to be evaluated

from observations. For the sake of the present analysis, we only

study the string signal for one realistic value ρ = 3.2 × 10−8, which

technically fixes the SNR of the observed string signal buried in the

astrophysical noise. This value is assessed prior to any signal re-

construction, by fitting the power spectrum of the data to the sum of

the power spectra of the signal and noise on the frequencies probed

(Hammond et al. 2008). This estimation may be considered as very

precise at the tension of interest and is not to be considered as a

significant source of error in the subsequent reconstruction.

In this context, preliminary analysis of 16 independent realistic

simulations of a string signal, also from Fraisse et al. (2008), allows

one to show that the random process from which the string signal

arises is well modelled by GGD’s in wavelet space (Hammond et al.

2008). We consider a redundant steerable wavelet basis �s with six

scales j (1 ≤ j ≤ 6) including low pass and high pass axisymmetric

filters, and four intermediate scales defining steerable wavelets with

six basis orientations q (1 ≤ q ≤ 6) (Simoncelli & Freeman 1995).

By statistical isotropy, the GGD priors π j for a wavelet coefficient
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α′
w only depend on the scale:

πj (αw) ∝ exp

[
−

∣∣∣∣
αw

ρuj

∣∣∣∣
vj

]
, (27)

where w is to be thought of as a multi-index identifying a co-

efficient at given scale j, position i, and orientation q. Assuming

independence of the wavelet coefficients, the total prior probability

distribution of the signal is simply the product of the probability

distributions for each value of w, which reads as

π (α) ∝ exp −||α||s, (28)

for a ‘s’ norm

||α||s ≡
∑

w

∣∣∣∣
αw

ρuj

∣∣∣∣
vj

. (29)

The exponent parameters vj are called GGD shape parameters and

can be considered as a measure of the compressibility of the under-

lying distribution. Values close to 0 yield very peaked probability

distributions with heavy tails relative to Gaussian distributions, i.e.

very compressible distributions. The list of these values at all scales

reads as {v1 = 0.43, v2 = 0.39, v3 = 0.47, v4 = 0.58, v5 = 0.76,

v6 = 1.86}. The signal is thus understood as being well modelled by

a very compressible expansion in its wavelet representation and we

choose the corresponding redundant basis as the sparsity or com-

pressibility basis for the inverse problem: � = �s . The list values

of the GGD scale parameters uj identifying the variances of the dis-

tributions at all scales reads as {u1 = 8.9 × 10−3, u2 = 2.8 × 10−3,

u3 = 2.2 × 10−2, u4 = 0.15, u5 = 0.95, u6 = 57}. In full generality,

we consider the general inverse problem (5) with the sensing matrix

�ri , for reconstruction of the original signal x non-multiplied by the

illumination function.

Even in the absence of instrumental noise the measured visibili-

ties thus follow from (16) with a noise term

n = �rig, (30)

representing values of the Fourier transform of the astrophysical

noise g multiplied by the illumination function. Discarding the very

local correlations in the Fourier plane introduced by the illumination

function, one may consider that the measurements are independent

and affected by independent Gaussian noise realizations. The corre-

sponding noise variance σ 2
r on yr with 1 ≤ r ≤ m, is thus identified

from the values of the known power spectrum of g.

A whitening matrix W
cmb

∈ R
m×m = {(W

cmb
)rr ′ =

σ−1
r δrr ′ }1≤r,r ′≤m is introduced on the measured visibilities y, so

that the corresponding visibilities ỹ = W
cmb

y are affected by in-

dependent and identically distributed noise, as required to pose a

BPǫ problem. This operation corresponds to a matched filtering in

the absence of which any hope of good reconstruction is vain. A

BPǫ problem is thus considered after estimation of ρ. However, the

prior statistical knowledge on the signal also allows one to pose an

enhanced Statistical SBPǫ problem. It is defined as the minimiza-

tion of the negative logarithm of the specific prior on the signal,

i.e. the s norm of the vector of its wavelet coefficients, under the

measurement constraint:

min
α′∈RT

||α′||s subjectto ||ỹ − W
cmb

�ri�sα
′||2 ≤ ǫ. (31)

Note that the s norm is similar but still more general than a single

ℓp norm and no theoretical recovery result was yet provided for

such a problem in the framework of compressed sensing. Again,

the performance of this approach for the problem considered is

assessed on the basis of the simulations. Most shape parameters

vj are smaller than 1, which implies that the norm defined is not

convex. We thus reconstruct the signal through the re-weighted ℓ1

norm minimization described above (Candès et al. 2008). In this

regard, we use the SPGL1 toolbox (van den Berg & Friedlander

2008).4 The value of ǫ2 in the BPǫ and SBPǫ problems is taken to

be around the 99th percentile of the χ 2 with m degrees of freedom

governing the noise level estimator. This value also serves as the

stopping criterion for the CLEAN reconstruction.

The magnitude of the gradient of the SBPǫ reconstruction of the

original signal x reported in Fig. 1 is also represented in the figure for

the configuration c = 2, after re-multiplication by the illumination

function which sets the field of view of interest. For comparison, the

magnitude of the gradient of the dirty image x̄(d) used in CLEAN

and obtained by simple application of the adjoint sensing matrix �̄†
ri

to the observed visibilities is also represented.

The mean SNR and corresponding one standard deviation (1σ ) er-

ror bars over the 30 simulations are reported in Fig. 1 for the CLEAN

reconstruction with γ = 0.1, and for the BPǫ and SBPǫ reconstruc-

tions re-multiplied by the illumination function, as a function of

the Fourier coverage identifying the interferometric configurations.

All obviously compare very favourably relative to the SNR of x̄(d),

not reported on the graph. One must still acknowledge the fact that

BPǫ and CLEAN provide relatively similar qualities of reconstruc-

tion. The BPǫ reconstruction is achieved much more rapidly than the

CLEAN reconstruction, highlighting the fact that the BPǫ approach

may in general be computationally much less expensive. The SBPǫ

reconstruction exhibits a significantly better SNR than the BP and

CLEAN reconstructions.

Let us acknowledge the fact that the re-weighted ℓ1 norm mini-

mization of the SBPǫ approach proceeds by successive iterations of

ℓ1 norm minimization. This unavoidably significantly increases the

computation time for reconstruction relative to the single ℓ1 norm

minimization of the BPǫ approach. Relying on the idea that the

coefficients of the low pass filter do not significantly participate to

the identification of the string network itself, our implementation of

SBPǫ does not perform any re-weighting at the scale j = 6, where

v6 = 1 was thus assumed. This restriction allows one to keep SBPǫ

computation times similar to those of CLEAN. Let us note however

that an even better SNR is obtained by correct re-weighting at j = 6,

albeit at the cost of a prohibitive increase in computation time.

The main outcome of the analysis is twofold. First, the presence

of a whitening operation is essential when correlated noise is con-

sidered. Secondly, the inclusion of the prior statistical knowledge

on the signal also significantly improves reconstruction.

5 C O N C L U S I O N

Compressed sensing offers a new framework for image reconstruc-

tion in radio interferometry. In this context, the inverse problem

for image reconstruction from incomplete and noisy Fourier mea-

surements is regularized by the definition of global minimization

problems in which a generic sparsity or compressibility prior is

explicitly imposed. These problems are solved through convex op-

timization. The versatility of this scheme also allows inclusion of

specific prior information on the signal under scrutiny in the min-

imization problems. We studied reconstruction performances on

simulations of an intensity field of compact astrophysical objects

and of a signal induced by cosmic strings in the CMB temperature

field, observed with very generic interferometric configurations.

The BPǫ technique provides similar reconstruction performances as

4 http://www.cs.ubc.ca/labs/scl/spgl1/
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the standard MP algorithm CLEAN. The inclusion of specific prior

information significantly improves the quality of reconstruction.

Further work by the authors along these lines is in preparation. In

particular, a more complete analysis is being performed to estimate

the lowest string tension down to which compressed sensing imag-

ing techniques can reconstruct a string signal in the CMB, in more

realistic noise and Fourier coverage conditions. In this case, given

the compressibility of the magnitude of the gradient of the string

signal itself, TV norm minimization also represents an interesting

alternative to the SBPǫ problem proposed here.
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Birkhäuser, Boston, p. 249

Rauhut H., Schnass K., Vandergheynst P., 2008, IEEE Trans. Inf. Theory,

54, 2210

Rudin L. I., Osher S., Fatemi E., 1992, Physica D, 60, 259

Ryle M., Vonberg D. D., 1946, Nat, 158, 339

Ryle M., Hewish A., Shakeshaft J. R., 1959, IRE Trans. Antennas Propag.,

7, 120

Ryle M., Hewish A., 1960, MNRAS, 120, 220

Schwarz U. J., 1978, A&A, 65, 345

Simoncelli E. P., Freeman W. T., 1995, in Proc. IEEE Int. Conf. Signal

Process. Vol. III. IEEE Signal Process. Soc., p. 444

van den Berg E., Friedlander M. P., 2008, SIAM J. Sci. Comput., 31,

890

Thompson A. R., Moran J. M., Swenson G. W. Jr, 2004, Interferometry

and Synthesis in Radio Astronomy. WILEY-VCH Verlag GmbH & Co.

KGaA, Weinheim

This paper has been typeset from a TEX/LATEX file prepared by the author.

c© 2009 The Authors. Journal compilation c© 2009 RAS, MNRAS 395, 1733–1742

 at H
erio

t-W
att U

n
iv

ersity
 L

ib
rary

 o
n
 Ju

ly
 1

8
, 2

0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/

