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ABSTRACT 

The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition 

rate and the number of parallel ultrasound detecting channels. Reconstructing PACT image with a less number of 

measurements can effectively accelerate the data acquisition and reduce the system cost. Recently emerged 

Compressed Sensing (CS) theory enables us to reconstruct a compressible image with a small number of projections. 

This paper adopts the CS theory for reconstruction in PACT. The idea is implemented as a non-linear conjugate 

gradient descent algorithm and tested with phantom and in vivo experiments. 
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1. INTRODUCTION 

The field of photoacoustic tomography (PAT) has been expanding rapidly in the past few years 1. By 

combining strong optical absorption contrast and high ultrasonic resolution in a single modality, PAT can achieve 

much better spatial resolution at depths beyond the optical ballistic regime (~1 mm in the skin) than the traditional 

optical modalities 2, 3. In PAT, biological tissues are usually irradiated by a pulsed laser. Absorbed energy is 

converted into heat, which is further converted to a pressure rise via thermoelastic expansion. The initial pressure 

rise then propagates as ultrasonic waves, which are detected by ultrasound sensors, and the received ultrasonic 

signals are used to form an image. When the excitation laser is replaced by microwave or RF sources, the technique 

is called thermoacoustic tomography (TAT) 4, 5. Both PAT and TAT have been used successfully in a variety of 

applications, including high-quality in vivo vascular structural imaging, hemodynamic functional imaging 6, 7, 

visualization of breast tumors 8, 9, and molecular imaging of biomarkers with exogenous contrast agents 10-12.  

PAT has been implemented in various forms, and each form has its own advantages and applications 1. In 

this paper, we focus on photoacoustic computed tomography (PACT, or simply PAT), in which an array of 

unfocused ultrasonic transducers is placed outside the object, and an inverse algorithm is used to reconstruct the 

image. Closed form reconstruction formulas have been reported in both the frequency and time domains for 

spherical, planar, and cylindrical detecting geometries 13-20. However, a fundamental assumption of all these 

algorithms is that the spatial sampling of the detecting aperture is sufficient; otherwise, undersampling artifacts, such 

streaking artifacts or grating lobes, appear. 

Reliable image reconstruction with sparse sampling of the detecting aperture is desirable. In practical PAT 

systems, it is recommended 1, 21 to set the discrete spatial sampling period to be two to five times smaller than the 

sensing aperture of the detector. For a scanning PAT system, it may require hundreds or even thousands of scanning 

steps to acquire an image, depending on the sizes of both the detector and the detecting aperture. Such scanning 

usually takes several minutes to complete. To reach real-time imaging, PAT is implemented with an array of 

ultrasonic transducers, where all or groups of the array elements can detect photoacoustic signals simultaneously. 

However, the data acquisition speed is still limited by the number of parallel data acquisition (DAQ) channels, and 

employing a large number of DAQ channels greatly increases the system cost. For example, for a fast 512-element 
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ring array PAT system with a 64 channel data acquisition module 22, it takes 8 laser shots to collect data from all 512 

elements. For direct 3-D reconstruction PAT applications 23, 24, the data from a 2-D ultrasonic array is usually an 

extremely sparse sampling of the detecting aperture. Moreover, channel crosstalk is also related to the space 

between neighboring elements (kerf), and an extensive spatial sampling may increase the crosstalk. 

Imaging an object in PAT can be understood as sensing the object in a certain domain. For example, with 

the ‘Fourier-shell identity’ 25, PAT can be seen as detecting the spatial frequencies of the object (sensing in the 

Fourier domain). Sparse spatial sampling of the detecting aperture implies that only partial spatial frequency 

components can be detected. Traditional backprojection (BP) reconstruction methods 16 simply assume those 

unobserved frequencies to be zeros. According to Parseval’s theorem, the BP method reconstructs the image of 

“minimal energy” under the observation constraints. An improved reconstruction algorithm should be able to 

“guess” these unobserved frequency components. However, interpolation in the Fourier domain is a critical issue, 

and usually creates artifacts in reconstructed images 26. The recently developed compressed sensing (CS) theory 27
 

enables us to recover these unobserved components under certain conditions. The theory has been successfully 

applied in MRI 28, where MRI images were able to be reconstructed from significantly undersampled K-space 

measurements. Paper 29 first introduced the CS theory into the field of PAT, and the idea was tested with phantoms 

from a circular scanning PAT system. In this paper, we improve the speed of the reconstruction algorithm by 

adopting a non-linear conjugate gradient descent method. Also, we demonstrate the algorithm with both phantom 

and animal data, using various detecting geometries. 

2. METHODS 

 The CS theory was rigorously formulated to reconstruct images from incomplete datasets. To make this 

possible, the CS theory relies on two principles: sparsity, which pertains to the object of interest, and incoherence, 

which pertains to the sensing modality. A non-linear reconstruction is used to enforce both sparsity of the image 

representation and consistency with the acquired data. Unlike ultrasound imaging and all other coherent imaging 

technologies, PAT is devoid of speckle artifacts and sensitive to boundaries because of its optical absorption contrast 
30. Therefore, computing the Finite Difference (FD) of PAT images in the spatial domain sometimes directly results 

in a sparse representation. When imaging complex absorbing structures such as the blood vessels in the mouse brain 

cortex, however, PAT images may not be sparse in the spatial domain. In these cases, we need to project the images 

onto an appropriate basis set, such as the wavelet basis. Readers are referred to paper 29 about the discussion on the 

incoherent condition.  

In the CS theory, the reconstruction of image x  is obtained by solving the following constrained 

optimization problem: 

1 2
min  s.t. 

x
x x y εΨ Φ − < . (1) 

Here Ψ  and Φ  are defined as the sparsifying transform matrix and the forward projection matrix, y  is the 

measured data, and ε  is the parameter that controls the fidelity of the reconstruction to y . The parameter ε  is 

usually set based on the expected noise level. The object function in Eq. (1) is the 1l  norm (defined as 

1 ix x=∑ ). The 1l  norm is used here instead of the 2l  norm (defined as 
2

2 ix x= ∑ ), because the 2l  

norm penalizes large coefficients heavily, and leads to non-sparsity. In the 1l  norm, many small coefficients tend to 

carry a much larger penalty than a few large coefficients, therefore small coefficients are suppressed and solutions 

are often sparse. In Eq. (1), minimizing the 1l  norm of xΨ  promotes sparsity, and the constraint enforces data 

consistency. The algorithm is implemented with a non-linear conjugate gradient descent method 31. On a laptop with 

a dual-core 2-GHz CPU and 3-GB memory, the calculations usually take less than 10 minutes using Matlab 2008a. 
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3. A. Numerical simulation 

We first demonstrate the CS method using a numerical phantom simulation with a circular detecting 

geometry. The simulation can be summarized in four steps: 

1) Generate measurements y  from a phantom x , using the PAT forward operator Φ , by obeying the relation 

y x= Φ . 

2) Add 5% random noise into the generated measurement 'y y e= + . 

3) From the noisy measurement 'y , reconstruct the image with the BP method 
1 'x y−= Φ . 

4) Starting with x  as the initial guess, iteratively solve Eq. (3) with the algorithm presented in the Appendix. 

Figure 1 shows a numerical experiment conducted on a 10 mm× 10 mm phantom with a 256× 256 

resolution. The circular detecting radius is set to be 25 mm. All the detectors are assumed to be point detectors, 

whose detecting angles are assumed to cover the whole FOV. We compare the CS reconstructions with the BP 

reconstructions. Figure 1 (a) shows the original numerical phantom. The BP reconstruction results with 256, 128, 

and 64 tomographic angles are shown in Figs. 1 (b), (c), and (d), respectively. The corresponding results with CS 

reconstruction are shown in Figs. 1 (e), (f), and (g), where the images are reconstructed with the CS method by using 

the FDWT and the FD together as the sparsifying transforms. We can observe that the CS reconstruction is clearly 

superior to the BP reconstruction. This can be shown by extracting a line from the original numerical phantom. The 

interference level has been reduced significantly with the CS reconstruction. Moreover, as predicted by the theory, 

the CS scheme is robust to inaccurate measurements, so the noise level has also been suppressed.  

 

3. RESULTS 
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Figure 1 Numerical simulations. (a) A 10 mm×10 mm blood-vessel containing phantom with 256×256 pixels; (b), (c), and (d) 

Images reconstructed using the BP method with 256, 128 and 64 tomographic angles; (e), (f), and (g) Images reconstructed using 

the CS method with 256, 128 and 64 tomographic angles; (h) Lines extracted from (a-g). 

3. B. Phantom experiments 

Tissue phantoms were imaged by scanning a virtual point detector in a setup similar to that of 32. The PA 

source contained three black human hair crosses glued on top of optical fibers, with an interval between the hair 

crosses of about 10 mm. Laser pulses with a repetition rate of 10 Hz were diverged by a ground glass to achieve a 

relatively uniform illumination. The virtual point detectors evenly scanned the object along a horizontal circle, 

stopping at 240 points, and the signals were averaged over 20 times at each stop. The total data acquisition time was 

8 minutes. Figure 2 shows the reconstruction results with the BP (a, b), the CS (c, d), and the traditional iterative 

reconstruction (IR) 33 (e, f) methods, with 240, 120 and 80 tomographic angles. We reconstructed the image with a 

FOV of 30 mm× 15 mm. As expected, we could reconstruct the phantoms adequately with a small number of 

detecting positions. The data acquisition time in the circular scanning geometry can be improved by fourfold with 

the CS reconstruction method.  

 

Figure 2 Tissue phantom imaging with a virtual point detector. (a), (b) Images reconstructed using the BP method with 240 

and 60 tomographic angles; (c), (d) Images reconstructed using the CS method with 240 and 60 tomographic angles; (e), (f) 

Images reconstructed using the IR method with 240 and 60 tomographic angles 

3. C. In vivo experiments 

In vivo experiment was based on a custom designed 512-element photoacoustic tomography array system 22. 

The 5 MHz piezocomposite transducer array was formed into a complete circular aperture. With a 64-channel data 

acquisition module, the system could provide full tomographic imaging at up to 8 frames/second. We used this 

system to image mouse cortical blood vessels. The images were reconstructed by the BP (a, b), the IR (c) and the CS 

(d) algorithms. As shown in Fig. 3, we could reconstruct the in vivo image adequately with a small number of 

detecting positions.  

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3 In vivo imaging of the mouse cortex with a circular ultrasonic array. (a), (b) Images reconstructed using the BP 

method with 512 and 128 detecting elements; (c) Image reconstructed using the IR method with 128 detecting elements; (d) 

Image reconstructed using the CS method with 128 detecting elements. 

4. CONCLUSIONS 

We have shown how the CS theory can be used for reconstruction in PAT with a limited number of 

measurements. Both simulation and experimental results show that the CS method can effectively reduce the 

undersampling artifacts. By incorporating the CS theory in the PAT reconstruction, we can effectively reduce the 

system cost, or cover a larger FOV with the same number of measurements. Although the CS method is only 

demonstrated here with 2D problems, the generalization to 3D reconstructions is straight forward. 
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