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Abstract

Compressed sensing (CS) has the potential to reduce magnetic resonance (MR) data acquisition

time. In order for CS-based imaging schemes to be effective, the signal of interest should be

sparse or compressible in a known representation, and the measurement scheme should have good

mathematical properties with respect to this representation. While MRimages are often

compressible, the second requirement is often only weakly satisfied with respect to commonly

used Fourier encoding schemes. This paper investigates the use of random encoding for CS-MRI,

in an effort to emulate the “universal” encoding schemes suggested by the theoretical CS

literature. This random encoding is achieved experimentally with tailored spatially-selective radio-

frequency (RF) pulses. Both simulation and experimental studies were conducted to investigate

the imaging properties of this new scheme with respect to Fourier schemes. Results indicate that

random encoding has the potential to outperform conventional encoding in certain scenarios.

However, our study also indicates that random encoding fails to satisfy theoretical sufficient

conditions for stable and accurate CS reconstruction in many scenarios of interest. Therefore, there

is still no general theoretical performance guarantee for CS-MRI, with or without random

encoding, and CS-based methods should be developed and validated carefully in the context of

specific applications.

Index Terms

Compressed sensing; magnetic resonance imaging (MRI); radio-frequency encoding

I. Introduction

Compressed sensing/compressive sampling (CS) theory [1]–[7] has generated significant

interest in the signal processing community because of its potential to enable signal

reconstruction from much fewer data samples than suggested by conventional sampling

theory. Since magnetic resonance (MR) images are often highly compressible, several
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magnetic resonance imaging (MRI) reconstruction schemes inspired by CS theory have been

reported in the literature (see, e.g., [8]–[20]). The data acquisition model for CS is given by

(1)

where ρ is a length-N signal vector of interest, d is a length-M data vector, E is an M × N

encoding matrix with M ≪ N, and η is a length-M noise vector. There are two key

assumptions underlying the CS reconstruction procedure: (1) the signal vector ρ is sparse or

compressible in a given linear transform domain, and (2) the observation matrix satisfies

certain mathematical conditions with respect to this transformation.

Let Ψ be a sparsifying transform matrix such that

(2)

is sparse (i.e., the vector c has few nonzero entries) or compressible (i.e., c has few

significant entries). The basic CS reconstruction ρ̂CS is obtained by solving

(3)

where the ℓ1-norm and ℓ2-norm are defined as and ,

respectively. The parameter ε controls the allowed level of data discrepancy, and is usually

chosen based on an estimate of the noise variance.

The accuracy of CS reconstruction using (3) can be guaranteed if E and Ψ satisfy certain

mathematical conditions. For example, consider the case where Ψ is a square, invertible

matrix, and define Φ = EΨ−1. In this case, the performance of CS reconstruction can be

guaranteed if Φ satisfies appropriate restricted isometry properties (RIPs) [4], [5], [21], [22],

incoherence properties [23]–[25], or null-space properties (NSPs) [26]–[28]. While NSPs

provide necessary and sufficient conditions for accurate CS in the absence of noise, this

paper will focus on RIPs, which can provide some of the strongest existing performance

guarantees for stable and accurate reconstruction in the presence of noise [5], [29], [30]. To

define the RIP, first let αs and βs denote the largest and smallest coefficients, respectively,

such that

(4)

is true for all vectors x with at most s nonzero entries. A simple generalization of the results

in [21] yields that the best possible1 restricted isometry constant of order s is given by

(5)

The performance guarantees for CS reconstruction with (3) improve as δs gets smaller. For

example, Candès [21] shows that if  and in the absence of noise, the

solution to (3) with ε = 0 perfectly recovers any sparse vector with fewer than s nonzeros. In

the more general setting with noise and a compressible c, a trivial modification of the results

1The restricted isometry constant as defined in [21] is the smallest number δs such that (4) holds with αs = 1 − δs and βs = 1 + δs for

all vectors x with at most s nonzero entries. This definition of δs is not invariant with respect to rescaling of Φ, despite the fact that the
solution to (3) would remain exactly the same (other than scaling) under this problem transformation. Equation (5) represents the

minimal value of δs over the set of all possible rescalings of Φ.
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in [21] shows that if  and if the noise obeys , then the CS reconstruction

ĉcs satisfies

(6)

where cs is the optimal s-term approximation of c [21], ξ = (1/2)(αs/βs), and C0 and C1 are

dependent on δ2s. Recent improvements on this result have been made that provide similar

guarantees for stable and accurate reconstruction, but are valid under the weaker conditions

that δs < 0.307 [30] or δ2s < 0.4734 [29].

For an arbitrary pair of matrices E and Ψ, it is often computationally infeasible to calculate

practically-useful guarantees on the quality and robustness of the CS reconstruction with (3).

As a result, joint optimization of E and Ψ for optimal performance in the context of specific

reconstruction scenarios is an even more challenging problem. Therefore, a common

practice has been to construct CS matrices based on randomization, since certain

randomized data acquisition schemes have a high probability of possessing good CS

properties [4], [5], [31], [32]. Notably for Fourier-encoded MRI, if Ψ is an identity matrix

and M and N are large, then CS reconstruction is guaranteed to be robust with high

probability if E is a randomly undersampled discrete Fourier transform operator [5], [31].

However, Fourier encoding is not necessarily well suited to CS reconstruction with arbitrary

Ψ. For example, Lustig et al. [8] have demonstrated that using slice-selective excitation as

an additional encoding mechanism can improve CS reconstruction in 3D imaging with

compressibility in a wavelet basis. As a result, the use of other non-Fourier encoding

schemes for CS-MRI could also potentially yield benefits.

In this work, we investigate the use of random encoding for CS-MRI. This choice is

motivated by the insight from the CS literature that if the entries of E are chosen

independently from a Gaussian distribution and M and N are large, then there is a high

probability that the RIP will be satisfied for any unitary matrix Ψ [4]. In addition, random

Gaussian E matrices have been shown to be nearly optimal with respect to other encoding

schemes for CS, and can be obtained without significant computational effort. This leads

Candès and Tao to describe Gaussian measurements as a “universal encoding strategy” [3].

Many useful transforms for compressing medical images are unitary, including the identity

transform, various wavelet transforms, the discrete cosine transform, and the discrete

Fourier transform. Recent results also suggest that Gaussian measurements can often lead to

good CS reconstructions even when Ψ is not unitary [33]. An objective of this paper is to

evaluate the utility of random encoding for practical MR imaging problems.

A preliminary account of this work was first presented in [34], and related work on CS-MRI

with random and other non-Fourier encoding has subsequently been performed by other

authors [35]–[39]. While this paper focuses on the MRI modality, the results could provide

insight into the utility of similar randomized encoding schemes with CS reconstruction in

the context of other imaging modalities, including coded-aperture computed tomography

[40], radio interferometry [37], and coded-aperture optical imaging [41], [42].

II. CS-MRI With Random Encoding

The proposed random encoding scheme is achieved using tailored spatially-selective radio-

frequency (RF) excitation pulses. Non-Fourier encoding schemes using selective excitation

have been investigated previously (see [43]–[46] and their references), though outside of the

context of CS-MRI. In contrast to these previous works, we use selective excitation to
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implement an encoding scheme similar to the “universal” encoding suggested by the CS

literature [3].

Consider the general MR data acquisition model

(7)

where ρ(r) is the desired image function, d(km) and ηm represent the acquired data and

noise, respectively, at the mth k-space location km, and wm(r) represents the effects of RF

excitation for the mth sample.2 In conventional Fourier encoding, the RF excitation profile

is designed in such a way that wm(r) is a constant. In this work, we allow wm(r) to vary with

m and r to achieve the desired random encoding effect.

To connect with the CS formulation in (1), we first approximate (7) using a discrete image

model. In particular, we represent ρ(r) as the sum of N voxels

(8)

In this equation, ϕ(r) is the voxel basis function (typical choices include Dirac delta and box

functions, and we use Dirac delta functions for the remainder of this paper), and  are

voxel coefficients that comprise the vector ρ. Under this parameterization, (7) can be written

as (1), with E defined as

(9)

In the following two subsections, we describe two schemes for designing E to achieve

random encoding.

A. Ideal Random Encoding

Ideally, we would like to have excitation profiles such that the matrix entries in (9) are

drawn independently from a Gaussian distribution. One way to achieve this would be to

have wm(r) be approximately constant within each voxel to minimize intravoxel signal

dephasing, and choose the value of wm(r) at the center of each voxel randomly from a

complex Gaussian distribution. Mathematically, this excitation profile can be described, in

the 2D imaging case, as

(10)

where ∏(·) is a rectangular window function with unit width, and each γqpm is a realization

of a complex Gaussian random variable. In (10), we have assumed without loss of generality

that the image voxel positions  lie on a Q × P Cartesian grid, normalized so that the

distance between adjacent voxels is 1. With excitation profiles generated according to (10)

2In principle, wm(r) could also be used to absorb the effects of using a receive coil with spatially nonuniform sensitivity, and this
would be important to do when doing parallel imaging with an array of receiver coils (e.g., as in [47]). To simplify the notation and
discussion, we assume for this paper that only a single receiver coil is used for data acquisition and that any nonuniformity in the

receive B1 field is treated as a part of the image function ρ(r).

Haldar et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 February 02.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



and if ϕ(r) is chosen to be a Dirac delta function, the matrix E will have the desired

Gaussian distribution for any km.

However, there are a couple of practical limitations to implementing this scheme with a

distinct excitation profile for each measurement sample. First, making wm(x, y) distinct for

each m would mean that only a single sample is obtained for each excitation, thereby

wasting the free precession period that is used for data acquisition in conventional Fourier

schemes. Second, high-resolution multidimensional excitation profiles are difficult to

achieve using current excitation hardware, due to practical constraints on pulse length. We

next describe a practical alternative to this ideal random encoding scheme.

B. Practical Implementation

To make random encoding more practical, we consider a modification based on the

conventional spin-warp imaging sequence shown in Fig. 1(a). In spin-warp imaging, each

excitation is followed by phase encoding, and a full frequency-encoded line passing through

the center of k-space is read out after the signal is refocused by a 180° pulse. In this manner,

Cartesian coverage of k-space is obtained, with the total number of excitations given by the

total number of phase encodings.

Our proposed modification of conventional spin-warp imaging replaces phase encoding by

random 1D spatially-selective excitation, and is shown in Fig. 1(b). In particular, assuming

that x is the phase encoding dimension and y is the frequency encoding dimension, we use

(11)

where γqm are Gaussian distributed as before, and wm(x, y) is the same for all samples from

the same excitation.

The RF pulses used to achieve the 1D excitation profiles from (11) are designed using the

small tip-angle approximation [48], such that the excitation RF pulse waveform can be

generated by taking the Fourier transform of the desired 1D excitation profile. An example

RF pulse and the corresponding excitation profile are shown in Fig. 1(c) and (d).

This form of random encoding requires the use of RF pulses for both spatial encoding and

slice selection. Given the limitations of current multidimensional excitation technology, this

necessitates the use of multiple pulses in practice. This limitation is common to other 2D

non-Fourier encoding schemes that use spatially-selective excitation (e.g., [43], [46]),

though can be overcome if the RF encoding is applied only along the third dimension of a

3D experiment (e.g., [8], [45]). In addition, the use of varying excitation angles can

complicate steady-state behavior [49]. This issue is also present for other similar non-

Fourier encoding techniques, and is generally overcome by using small flip angles and

relatively long repetition times [50]. Use of random encoding outside of this regime can

mean that data acquisition is nonlinear and no longer accurately modeled by (7). The use of

nonlinear random encoding does not fall within the scope of conventional CS or this paper;

however, preliminary empirical investigations of nonlinear random encoding can be found

in [39], in which ℓ1 regularization ℓ1 is used in the context of a parametric nonlinear signal

model.
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III. Evaluation And Discussion

Experiments and simulations were performed to investigate the properties of random

encoding for CS-MRI. In all cases, we compared three different data acquisition schemes

with a fixed number M of data samples.

• Random Encoding. The proposed practical random encoding scheme with 1D

spatially-selective RF excitations, as described in Section II-B.

• Fourier Encoding 1 (FE1). This scheme uses the standard spin-warp sequence from

Fig. 1(a). The phase encoding locations are evenly-spaced at the Nyquist rate, and

cover the low-frequency portion of k-space.

• Fourier Encoding 2 (FE2). Similar to FE1, FE2 makes use of the standard spin-

warp sequence. However, the phase-encoding locations are chosen randomly from

the Nyquist grid according to a discretized Gaussian distribution centered at low-

frequency k-space. This type of variable-density random sampling scheme

performs empirically better than sampling k-space uniformly at random, and is

consistent with both the prior knowledge that the typical images seen in MRI have

energy concentrated at low-frequencies and the existing CS-MRI literature [8],

[51].

A. Experiments

The three different encoding schemes were implemented on a 14.1 T magnet system

(Oxford Instruments, Abingdon, U.K.) interfaced with a Unity console (Varian, Palo Alto,

CA). The flip angle for FE1 and FE2 encoding and the root mean square flip angle for

random encoding was 50°, with an RF pulse duration of 2.5 ms. The field of view was 3 cm

× 3 cm, the slice thickness was 4 mm, the sequence timing parameters were TE/TR = 26/500

ms, and the bandwidth of the random encoding pulses was approximately 200 kHz. Data

was collected for reconstruction on a 256 × 256 voxel grid using two different test objects: a

compartmental phantom and a section of kiwi fruit. The estimated SNR3 for full 256 × 256

Fourier encoded data was approximately 4 for the compartmental phantom image [shown in

Fig. 1(e)], and approximately 6 for the kiwi fruit image [shown in Fig. 2(a)].

Due to nonideal experimental conditions (e.g., B0 and B1 inhomogeneity at this field

strength), the experimentally achieved excitation profiles used for random encoding did not

match exactly with the designed profiles. As such, the excitation profile of each pulse was

calibrated using prescans. Specifically, a fully-Fourier encoded image ρcal(x, y) was

acquired for each of the spatially-selective excitation pulses [one such image is shown in

Fig. 1(g) and (h)]. From these images, the γqm parameters for each excitation profile [cf.

(11)] were derived by solving the least squares problem

(12)

where ρref(x, y)is an image acquired using traditional excitation pulses. This calibration

procedure is somewhat coarse, since we ignore any potential excitation inhomogeneity along

the frequency-encoding direction, though this choice leads to improved noise robustness

compared to voxel-by-voxel estimation. In addition, while acquiring data for this calibration

3Noise variances were empirically estimated from background regions of fully-sampled Fourier-encoded reference images that were
free of visible artifacts, while signal levels were computed using the average value of the reference images in signal-containing
regions of interest. The estimated SNR was calculated as the ratio between the signal level and the noise standard deviation.
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procedure is time consuming, the procedure could be simplified through direct mapping of

the B1 transmit field and more accurate modeling of the excitation physics.

CS reconstructions were performed by solving

(13)

where ε was chosen according to an estimate of the expected data error due to noise (i.e.,ε2

= Mσ2, where σ2 is the estimated noise variance and M is the number of measurements),

and TV(ρ) is the total variation (TV) [52] cost functional that penalizes ℓ1 the norm of the

magnitude of the image gradient. Penalizing the image gradient is very common for CS

reconstruction of MR images (e.g., [8], [10], [15], [16]), since medical images are often

approximately piecewise smooth, though it should be noted that the magnitude of the image

gradient is a nonlinear transformation of the image and cannot be represented by a matrix Ψ.

Reconstructions were obtained using a version of Nesterov’s algorithm as described in [53],

with minor modifications to handle complex images. The specific implementation of the

algorithm described in [53] directly solves (13) for the special case when E is a submatrix of

a unitary transform. While the encoding matrix has this property with Cartesian Fourier

encoding, it does not have this property for random encoding. As a result, we use Nesterov’s

algorithm to solve the Lagrangian form of (13) when reconstructing data acquired with

random encoding [53]

(14)

where λ is a Lagrange multiplier that is adjusted to satisfy the Karush–Kuhn–Tucker

conditions for (13). In most practical cases of interest (i.e., when ‖d‖ℓ2 > ε), λ should be

chosen such that , which will ensure that the solution to (14) is equivalent to

the solution of (13) [53]. Selection of λ to satisfy this condition is straightforward, since the

data-fidelity of the solution to (14) is monotonically decreasing with increasing λ. Note that

the E matrix associated with random encoding has very similar structure to the encoding

matrix used in SENSE parallel imaging reconstruction [47], except that RF excitation

profiles are used in place of receiver coil sensitivity profiles. As a result, multiplication with

E and its conjugate transpose can be performed efficiently using fast Fourier transforms

[47], and these techniques were used to accelerate computations in the present context.

Reconstructions from the experiment with the low-SNR compartmental phantom and the

higher-SNR kiwi fruit are shown in Figs. 3 and 4, respectively. With FE1, the CS

reconstruction looks very similar to what would be obtained from conventional zero-padded

reconstruction of low-frequency data, with accurate contrast information for low-resolution

features, but also with significant blurring and distortion of the object geometry. With FE2,

contrast is less accurate than with FE1, though the high-resolution image features are

reconstructed better with FE2 than with FE1 with sufficient data. Results using random

encoding indicate that it is possible to use this new scheme for CS-MRI, and that random

encoding yields reconstructions with different characteristics than what are obtained with

more traditional Fourier-based schemes. The figures suggest that random RF excitation can

encode both high- and low-resolution image structures reasonably well, leading to a more-

balanced trade-off between contrast and resolution. Notably, some of the high-resolution

image geometry is visible using random encoding with only 16 excitations (e.g., the

geometry of the circular compartments in Fig. 3 and some of the fine edge structures in Fig.

4), while these features are significantly distorted with the other two schemes.
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Similar to FE1 and FE2, reconstructions with random encoding become more accurate with

increasing data. However, different from reconstructions with highly-undersampled FE1 and

FE2 acquisitions (which can demonstrate significant geometry and/or large-scale contrast

errors), the artifacts resulting from very limited random encoding data are more similar to

the artifacts that might be observed from image compression (i.e., the loss of contrast for

smaller image features). In addition, we should note that random encoding reconstructions

also contain some artifacts that are not found in FE1 or FE2 reconstructions, and which

could be attributed to noise, non-Gaussian excitation profiles, and/or errors in the calibration

of the excitation profiles.

B. High-SNR Simulations

1) Compartmental Phantom—Simulations were also performed to illustrate

performance when noise perturbations and calibration errors are minimal. The first set of

simulations used a high-SNR image of the compartmental phantom as a gold standard, used

nominal Gaussian excitation profiles, and incorporated simulated noise that was

significantly weaker than that observed with the experimental data [the SNR was 80 with

respect to the image from full 256 × 256 Fourier encoded data, which is shown in Fig. 2(b)].

Figs. 5 and 6 show representative results from these simulations. The improved SNR and

nominal excitation profiles have led to improved reconstruction quality for all schemes,

though random encoding now demonstrates a more distinct advantage relative to the others.

The relative errors are shown in Table I, where relative error is defined as

(15)

and serves as a measure of similarity between the reconstructed image ρ̂cs and the gold-

standard image ρ. For these simulations, random encoding outperformed both FE1 and FE2

in relative error at all investigated undersampling levels. As with the experimental results, it

was observed that the distribution of errors with random encoding CS-MRI reconstructions

was more evenly distributed between low- and high-resolution features than with FE1 or

FE2.

Fig. 7 shows results from additional random encoding simulations (relative errors for these

are also shown in Table I), where the excitation profiles were chosen to either be the

empirically measured excitation profiles from the real experiment (“real profiles”) or ideal

2D profiles (“2D profiles”) as in (10). As in the previous simulations, the SNR with respect

to fully-encoded Fourier data was 80, and one frequency encoding line was acquired per

excitation. The results with the real profiles are very similar to the results with the nominal

profiles, and illustrate that it is not necessary to have perfectly white Gaussian γqm

excitation profile parameters to have good reconstruction results. The results using 2D

profiles in Fig. 7 demonstrate significantly improved performance relative to 1D random

encoding, and indicate that even better results could be achieved if high-resolution

multidimensional RF excitation techniques become more practical.

The quality of reconstructed images using random encoding can also be affected by errors in

the encoding matrix E due to miscalibration of the RF excitation profiles. Theoretical

analysis of (3) when E contains errors has been presented recently by Herman and Strohmer

[54]. These results indicate that stable and accurate CS reconstructions can still be

guaranteed with a noisy E, under the assumptions that the true measurement matrix satisfies

an appropriate RIP condition and that the magnitude of the perturbation is not too large. In

particular, the theoretical analysis and numerical simulations in [54] suggest that the stability

of ρ̂cs should scale linearly with the amount of perturbation to the system matrix. Simulation
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studies were performed to examine the effects of RF profile miscalibration. High-SNR data

was simulated using standard 1D random encoding with nominal Gaussian RF profiles, and

the RF profile parameters γqm used for reconstruction were perturbed by Gaussian noise.

Results of these simulations are shown in Fig. 8. These results suggest a linear relationship

between reconstruction error and calibration error, as might be expected based on the

theoretical analysis [54].

2) Brain Phantom—High-SNR simulations were also performed with the brain image

shown in Fig. 2(c). The simulations in this case had the same noise level as the high-SNR

compartmental phantom simulations. Representative reconstructions from 96 excitations and

either TV or a wavelet (Daubechies-4) sparsifying transform are shown in Figs. 9 and 10.

Representative relative reconstruction errors for a range of undersampling levels are listed in

Table II.

The brain image has lower compressibility than the compartmental phantom, and is thus

more challenging for CS-MRI and required a larger amount of data for accurate

reconstruction. In addition, the performance advantage (in terms of relative error) of random

encoding relative to FE1 and FE2 was less substantial than it was with the compartmental

phantom simulations. This was particularly true using the wavelet-based constraint, which

was significantly less-effective than the TV constraint for all encoding schemes. However,

the spatial distributions of error for both TV and wavelet sparsity are still consistent with

what was observed previously. In particular, the errors for FE1 encoding are concentrated

around the high-resolution features of the image, while there are significant contrast errors

for low-resolution image features with FE2 encoding. The distribution of errors with random

encoding is intermediate between the FE1 and FE2 cases, with the errors somewhat more

uniformly distributed between low- and high-resolution image features. These

characteristics have been observed consistently in both simulations and experiments, and are

important to note when choosing an encoding scheme for a particular imaging scenario,

since different features will have more or less importance depending on the application.

C. Monte Carlo Simulations

Monte Carlo simulations were also performed to study the reconstruction and noise

properties of random encoding relative to FE1 and FE2. In these simulations,

reconstructions were performed using an image with a sparse gradient (the Shepp–Logan

phantom) and an image with a compressible gradient [the MR brain image shown in Fig.

2(c)]. Simulations were performed 50 times for each combination of six data undersampling

levels (8, 16, 32, 64, 128, and 256 excitations), the three different encoding schemes (FE1,

FE2, and random encoding), and seven different noise levels (SNRs ranging from 1 to 80

with respect to full 256 × 256 Fourier encoding). The random elements of the simulation

(i.e., the sampling locations for FE2 encoding, the excitation profiles for random encoding,

and the noise) were different for each trial. To improve the computational speed for these 12

600 reconstructions, each reconstruction made use of a simplified 1D TV penalty that only

penalized the ℓ1 norm of the difference between adjacent voxel values along the phase-

encoding dimension. Since the frequency encoding dimension was fully sampled, this

modified TV penalty means that the optimal two-dimensional 256 × 256 CS reconstruction

could be performed using 256 independent smaller 1D CS reconstructions, one for each line

of the image. This simplification allows reconstructions to be performed much more rapidly

than if standard TV was used, and additionally means that the matrix E for each subproblem

has the ideal “universal” distribution. To solve these 1D CS problems, we used the CVX

software package by Grant, Boyd, and Ye (http://www.stanford.edu/~boyd/cvx/).
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Results from the Monte Carlo simulations using the brain image and the sparse Shepp–

Logan phantom are shown in Figs. 11 and 12, respectively. Images are generally more

compressible using a 2D transform rather than a 1D transform, leading to slightly lower

performance for these simulations compared to those in the previous subsection. However,

the relative performance characteristics of the different encoding schemes with 1D sparsity

constraints are consistent with the behavior observed with 2D constraints. For both images

in the Monte Carlo simulations, the relative error decreases as the amount of acquired data

increases, and FE1 encoding was generally superior to both FE2 and random encoding in

cases with very limited data or with high levels of noise. FE2 encoding consistently

outperforms FE1 encoding with high-SNR data when the number of measurements is large.

Random encoding can outperform both FE1 and FE2 encoding, though this only occurs with

high-SNR data, and the advantage of random encoding over the Fourier-based schemes

disappears as the number of measurements M becomes comparable to the number of voxels

N. One way of understanding this phenomenon is to consider the case of fully-sampled data

(i.e., M = N) with standard reconstruction, where the reconstructed image is obtained by ρ̂ =
E−1d. In this case, the discrete Fourier transform (DFT) matrix is unitary, which means that

the noise in the data will not be amplified by E−1. In contrast, fully-sampled random

encoding matrices will generally have worse condition numbers than the DFT matrix [55],

resulting in more significant noise amplification.

Similar Monte Carlo simulations imposing a 1–D wavelet-based sparsity constraint showed

similar characteristics to those observed with the 1D TV constraint, and are not shown due

to space limitations. Notably, the regimes for which random encoding outperforms the

Fourier-based schemes (in terms of relative error) are different for the Shepp–Logan

phantom compared to the brain image, and are also different for different sparsifying

transforms (i.e., the 1D TV and wavelet transforms and the 2D transforms considered in the

previous subsection). This further suggests that the choice between the use of random

encoding versus a Fourier encoding scheme should be made carefully based on the

constraints of each application.

D. Performance Guarantees

The use of random encoding in this work was motivated by the desire to improve restricted

isometry constants and improve the theoretical characterization of CS-MRI reconstruction.

As mentioned in the introduction, it is generally computationally infeasible to compute the

restricted isometry constants. However, it is relatively straightforward to calculate the δ1

restricted isometry constant for a matrix Φ using (5) with

(16)

where the vectors ϕi are the columns of Φ.

Besides RIPs, there are also incoherence conditions on Φ that can guarantee good CS

performance [23]–[25]. While these incoherence-based guarantees are generally weaker than

RIP-based guarantees, they have been used previously in the design of CS-MRI encoding

schemes [8] and in other contexts [56]. For example, Lustig et al. [8] suggested that the

maximum of the transform point spread function (TPSF) be used to characterize the

incoherence of a sampling scheme, with more incoherent sampling schemes characterized as

better for CS reconstruction. The TPSF has the form

(17)

Haldar et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 February 02.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



and is somewhat representative of the level of ambiguity between the ith and jth transform

coefficients. Ideally, the TPSF should be small when i ≠ j. The maximum of the TPSF is

equal to the mutual incoherence μ

(18)

which can be used to generate another set of CS performance guarantees [23], [24], [57]. For

example, if ‖c‖ℓ0 < (1/4)(1/μ + 1) and if the columns of Φ are normalized to unit length, then

the solution to (3) is guaranteed to satisfy (see [24, Th. 3.1])

(19)

where ‖x‖ℓ0 is defined as the number of nonzero entries of x

Table III shows representative values of δ1 and μ for the three encoding schemes we have

considered and using a Ψ matrix corresponding to a Daubechies-4 wavelet transform.

Values are shown for reconstruction of both a 256 × 256 image and a 128 × 128 image. For

the 256 × 256 case, both δ1 and μ are smaller for random encoding than for FE1 and FE2.

However, it is also important to note that δ1 is never less than 0.307 for any encoding

scheme, and only is only less than 0.4734 for random encoding with 64 frequency encoding

lines. Since it is always true that when δt ≥ δs, t ≥ s this implies that the current RIP-based

guarantees for CS performance cannot be applied to the other measurement matrices, even

for signals that have only one nonzero entry. Similar to what was observed with δ1, μ is also

smallest for random encoding at this image resolution. However, the characterization given

by (19) can only be applied for nonzero vectors c when μ < 1/3, so the observed μ values

give no useful guarantees for any of the encoding schemes. Despite this, CS empirically

works much better than what the theoretical bounds might suggest, and it is promising that

random encoding yields the smallest δ1 and μ values.

It is also important to note that the good theoretical properties for “universal” encoding are

somewhat dependent on the problem size, with a higher probability of good RIPs as M and

N grow large [4]. We have observed that the superiority of the μ and δ1 values for random

encoding is also dependent on the problem size. For example, with a 128 × 128 image, we

have observed that FE2 has consistently better δ1 values relative to random encoding, which

is opposite from the behavior observed with 256 × 256 images. However, it is observed that

μ does not follow the same trend as for this 128 × 128 case, and that μ can still be smaller

for random encoding than for FE2 (cf. Table III).

E. Non-Cartesian Acquisitions and Multidimensional Undersampling

For both Fourier and random encoding, we have focused on 2D Cartesian k-space sampling

patterns with undersampling along a single dimension to keep the discussion as short and

simple as possible. In practice, however, several CS-MRI studies have shown good results

when using non-Cartesian Fourier sampling patterns and/or multidimensional

undersampling schemes (e.g., [8]–[20]). We note that non-Cartesian and

multidimensionally-undersampled forms of random encoding are also possible, though there

are several ways of implementing such schemes. For example, a naive approach to non-

Cartesian random encoding would be to maintain the same 1D spatially-selective excitation

scheme as in Section II-B, but replace standard frequency-encoding with a non-Cartesian

readout. A more complicated implementation could change the orientation of RF encoding

for each excitation pulse in combination with a non-Cartesian readout. Preliminary

simulations using both of these schemes with Fourier encoding along radial lines indicate
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further performance improvements [34], though a detailed investigation of these and other

multidimensional encoding schemes is left for future work.

IV. Conclusions

This work introduces a random encoding scheme for CS-MRI, replacing traditional phase

encoding with RF encoding using randomized excitation profiles. This random scheme is

conceptually similar to the “universal” encoding schemes suggested by the CS literature, and

simulations and experiments reveal that it has the potential to outperform Fourier-based

schemes in certain high-SNR scenarios. However, our study also indicates that the random

encoding scheme fails to satisfy the theoretical sufficient conditions for stable and accurate

CS reconstruction in many scenarios of interest. Therefore, there is still no general

theoretical performance guarantee for CS-MRI, with or without random encoding. As a

result, the practical utility of CS methodology for MRI should be evaluated carefully for

each application.
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Fig. 1.
(a) The conventional Fourier-encoded spin-warp sequence, and (b) the proposed 1D

random-encoding sequence. GPE, GFE, and GSS represent the gradients along the phase

encoding, frequency encoding, and slice select dimensions, respectively. Also shown are (c)

a typical random-encoding RF pulse and (d) its corresponding excitation profile. The impact

of random-encoding is depicted with real experimental data in (e)–(h). The (e) magnitude

and (f) phase of a phantom acquired with standard excitation and full Fourier encoding, as

compared to the (g) magnitude and (h) phase of the same phantom acquired with random-

encoding excitation and full Fourier encoding. The frequency encoding (FE) and phase

encoding (PE) directions for these images are labeled in (e).
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Fig. 2.
Fully Fourier-encoded images of the section of kiwi fruit from a real experiment is shown in

(a). High-SNR images of the compartmental phantom and the brain image used for

simulations are shown in (b) and (c), respectively.
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Fig. 3.
CS-MRI reconstructions from real experimental data from the compartmental phantom.

Each row represents a different encoding scheme, while each column represents a different

amount of measured data. These reconstructions demonstrate that CS-MRI with random

encoding is feasible, and has different characteristics than either FE1 (which samples low-

frequency k-space) or FE2 (which uses randomized k-space phase-encoding locations).
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Fig. 4.
CS-MRI reconstructions of real experimental data from the section of kiwi fruit. Each row

represents a different encoding scheme, while each column represents a different amount of

measured data. As before, random encoding enables visualization of both low- and high-

resolution image features with very limited data.
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Fig. 5.
CS-MRI reconstructions from high-SNR simulations of the compartmental phantom. Each

row represents a different encoding scheme, while each column represents a different

amount of measured data. Relative to the experimental data, the improved SNR leads to

better reconstructions for all encoding schemes. Reasonably accurate reconstruction was

obtained using random encoding with only 32 excitations, while the Fourier encoding

schemes required more data to achieve the same accuracy.
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Fig. 6.
Error images (i.e., the difference between the gold standard and the reconstruction)

corresponding to the high-SNR simulation results shown in Fig. 5. Each row represents a

different encoding scheme, while each column represents a different amount of measured

data. The error images have been scaled up by a factor of 3 for improved visualization.
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Fig. 7.
CS-MRI reconstructions from high-SNR random encoding simulations of the compartmental

phantom. The top row shows results using the calibrated excitation profiles from a real

experiment, while the bottom row shows results using random 2D excitation profiles.
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Fig. 8.
Simulated random-encoding reconstruction results in the presence of miscalibration of the

RF excitation profiles. (a)–(c) Representative reconstructions from 32 excitations in the

presence of increasing levels of calibration error. (d) The total reconstruction error (shown

averaged over five realizations) is observed to grow linearly with respect to the calibration

error.
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Fig. 9.
Simulated CS-MRI reconstructions of the compressible brain image from 96 excitations,

with a TV penalty. The top row shows the reconstructions themselves, while the bottom row

shows the differences (scaled up by a factor of 6) between the reconstructions and the gold

standard.
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Fig. 10.
Simulated CS-MRI reconstructions of the compressible brain image from 96 excitations,

with a Daubechies-4 wavelet penalty. The top row shows the reconstructions themselves,

while the bottom row shows the differences (scaled up by a factor of 6) between the

reconstructions and the gold standard.
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Fig. 11.
Plots showing the median relative error as a function of SNR from the Monte Carlo

simulations with a brain image. In all cases, the relative error decreases as the amount of

acquired data increases. FE1 encoding was generally superior in cases with very limited data

or with high levels of noise. However, for moderate noise and sufficient data acquisition,

random encoding performed better than the other two schemes, and FE2 outperforms FE1.

For fully-encoded data, the SNR efficiency of the Fourier schemes allows them to dominate

the random encoding scheme.
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Fig. 12.
Plots showing the median relative error as a function of SNR from the Monte Carlo

simulations with the Shepp–Logan phantom. The trends are similar to those observed for the

compressible brain image, though for the same number of measurements, smaller relative

error is generally achieved with this sparse image. Notably, the regime for which random

encoding outperforms the Fourier-based schemes is different than it was with the brain

image.
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TABLE I

Relative Reconstruction Errors for the High-SNR Simulations Using the Compartmental Phantom

Relative Error

Encoding Scheme 16 Excitations 32 Excitations 64 Excitations

FE1 0.249 0.149 0.086

FE2 0.713 0.394 0.265

Random 0.245 0.121 0.053

Random (real profiles) 0.252 0.133 0.065

Random (2D profiles) 0.127 0.079 0.048

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 February 02.
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Haldar et al. Page 28

TABLE II

Relative Reconstruction Errors for the High-SNR Simulations Using the Brain Image

Relative Error

Encoding Scheme
(Sparsifying Transform) 64 Excitations 96 Excitations 128 Excitations

FE1 (TV) 0.179 0.119 0.076

FE2 (TV) 0.184 0.113 0.074

Random (TV) 0.154 0.090 0.055

FE1 (wavelet) 0.228 0.154 0.117

FE2 (wavelet) 0.330 0.191 0.133

Random (wavelet) 0.251 0.158 0.099

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 February 02.
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