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Abstract

Expressing a matrix as the sum of a low-rank matrix plus a sparse matrix is a flexible model cap-
turing global and local features in data. This model is the foundation of robust principle component
analysis [1, 2], and popularized by dynamic-foreground/static-background separation [3]. Compressed
sensing, matrix completion, and their variants [4, 5] have established that data satisfying low complex-
ity models can be efficiently measured and recovered from a number of measurements proportional to
the model complexity rather than the ambient dimension. This manuscript develops similar guaran-
tees showing that m× n matrices that can be expressed as the sum of a rank-r matrix and a s-sparse
matrix can be recovered by computationally tractable methods from O(r(m + n− r) + s) log(mn/s)
linear measurements. More specifically, we establish that the low-rank plus sparse matrix set is closed
provided the incoherence of the low-rank component is upper bounded as µ <

√
mn/(r

√
s), and

subsequently, the restricted isometry constants for the aforementioned matrices remain bounded in-
dependent of problem size provided p/mn, s/p, and r(m + n − r)/p remain fixed. Additionally, we
show that semidefinite programming and two hard threshold gradient descent algorithms, NIHT and
NAHT, converge to the measured matrix provided the measurement operator’s RIC’s are sufficiently
small. These results also provably solve convex and non-convex formulation of Robust PCA with the
asymptotically optimal fraction of corruptions α = O (1/(µr)), where s = α2mn, and improve the
previously best known guarantees by not requiring that the fraction of corruptions is spread in every
column and row by being upper bounded by α. Numerical experiments illustrating these results are
shown for synthetic problems, dynamic-foreground/static-background separation, and multispectral
imaging.

Keywords: matrix sensing, low-rank plus sparse matrix, robust PCA, restricted isometry property,
non-convex methods
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1. Introduction

Data with a known underlying low-dimensional structure can often be estimated from a number
of measurements proportional to the degrees of freedom of the underlying model, rather than what
its ambient dimension would suggests. Examples of such low-dimensional structures for which the
aforementioned is true include: compressed sensing [6, 7, 8], matrix completion [9, 10, 11], sparse
measures [12, 13, 14], and atomic decompositions [15] more generally. Our work extends these results
to the matrices which are formed as the sum of a low-rank matrix and a sparse matrix, a model
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popularized by the work on robust principle component anaysis (Robust PCA) [1, 2]. Specifically, we
consider matrices X ∈ R

m×n of the form X = L + S, where L is of rank at most r, and S has at
most s non-zero entries, ‖S‖0 ≤ s. The low-rank plus sparse model is a rich model with the low rank
component modeling global correlations, while the additive sparse component allows a fixed number
of entries to deviate from this global model in an arbitrary way. Among applications of this model are
image restoration [16], hyperspectral image denoising [17, 18, 19], face detection [20, 21], acceleration
of dynamic MRI data acquisition [22], analysis of medical imagery [23], separation of moving objects
in at otherwise static scene [3], and target detection [24].

Unlike Robust PCA whereX is directly available, we consider the compressed sensing setting where
X is measured through a linear operator A(·), where A : Rm×n → R

p, b ∈ R
p and typically p≪ mn.

Our contributions extend existing results on restricted isometry constants (RIC) for Gaussian and
other measurement operators for sparse vectors [25] or low-rank matrices [11] to the sets of low-rank
plus sparse matrices. For the set of matrices which are the sum of a low-rank plus a sparse matrix the
results differ subtly due to the space not being closed, in that there are matrices X for which there
does not exist a nearest projection to the set of low-rank plus sparse matrices [26]. To overcome this,
we introduce the set of low-rank plus sparse matrices with the incoherence constraint on the singular
vectors of the low-rank component, see Definition 1.1

Definition 1.1 (Low-rank plus sparse set LSm,n(r, s, µ)). Denote the set of m× n real matrices that
are the sum of a rank r matrix and a s sparse matrix as

LSm,n(r, s, µ) =



L+ S ∈ R

m×n : rank(L) ≤ r, ‖S‖0 ≤ s,
max
i∈[m]

∥∥UT ei
∥∥
2
≤
√
µr/m

max
i∈[n]

∥∥V T fi
∥∥
2
≤
√
µr/n



 , (1)

where U ∈ R
m×r, V ∈ R

n×r are the first r left and the right singular vectors of L respectively,
ei ∈ R

m, fj ∈ R
n are the canonical basis vectors, and µ ∈ [1,

√
mn/r] controls the incoherence of L.

The parameter µ is referred to as the incoherence of the low-rank component [1, 2] and it controls
correlation between the low-rank component and the sparse component. We show that LSm,n(r, s, µ)
sets are closed when the incoherence is sufficiently upper bounded as µ <

√
mn/(r

√
s), see Lemma 1.1.

This bound is equivalent to the asymptotically optimal scaling in terms of r, s and µ in the recov-
ery guarantees independently achieved in Robust PCA using convex relaxation [27] or in nonconvex
methods [28], but without the need for the assumption that the fraction of corruptions in each column
and row is upper bounded.

The natural generalization of the RIC definition from sparse vectors and low-rank matrices to the
space LSm,n(r, s, µ) is given in Definition 1.2.

Definition 1.2 (RIC for LSm,n(r, s, µ)). Let A : Rm×n → R
p be a linear map. For every pair of

integers (r, s) and every µ ≥ 1, define the (r, s, µ)-restricted isometry constant to be the smallest
∆r,s,µ(A) > 0 such that

(1−∆r,s,µ(A)) ‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + ∆r,s,µ(A)) ‖X‖2F , (2)

for all matrices X ∈ LSm,n(r, s, µ).

Random linear maps A which have a sufficient concentration of measure phenomenon can overcome
the dimensionality of LSm,n(r, s, µ) to achieve ∆r,s,µ which is bounded by a fixed value independent
of dimension size provided the number of measurements p is proportional to the degrees of freedom of
a rank-r plus sparsity-s matrix r(m+ n− r) + s. A suitable class of random linear maps is captured
in the following definition.

Definition 1.3 (Nearly isometrically distributed map). Let A be a random variable that takes values
in linear maps R

m×n → R
p. We say that A is nearly isometrically distributed if, for ∀X ∈ R

m×n,

E

[
‖A(X)‖2

]
= ‖X‖2F (3)
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and for all ε ∈ (0, 1), we have

Pr
(∣∣‖A(X)‖22 − ‖X‖2F

∣∣ ≥ ε‖X‖2F
)
≤ 2 exp

(
−p

2

(
ε2/2− ε3/3

))
, (4)

and there exists some constant γ > 0 such that for all t > 0, we have

Pr

(
‖A‖ ≥ 1 +

√
mn

p
+ t

)
≤ exp

(
−γpt2

)
. (5)

There are two crucial properties for a random map to be nearly isometric. Firstly, it needs to
be isometric in expectation as in (3), and exponentially concentrated around the expected value as
in (4). Secondly, the probability of large distortions of length must be exponentially small as in (5).
This ensures that even after taking a union bound over an exponentially large covering number for
LSm,n(r, s, µ), see Lemma 2.3, the probability of distortion remains small [25, 11].

In addition to developing RIC bounds as in Definition 1.2 we also show that the RIC of an operator
implies uniqueness of the decomposition and that exact recovery is possible with computationally
efficient algorithms such as convex relaxations or gradient descent methods. The following subsection
summarizes our main contributions. The rest of the paper is organized as

• In Section 2, we prove that the RICs of LSm,n(r, s, µ) for Gaussian and fast Johnson-Lindenstrauss
transform (FJLT) measurement operators remain bounded independent of problem size provided
the number of measurements p is proportional to O (r(m+ n− r) + s).

• In Section 3, we prove that when the RICs of A(·) are suitably bounded then the solution to a
linear systemA(X0) = b has a unique decomposition in LSm,n(r, s, µ) that can be recovered using
computationally tractable convex optimization solvers and hard thresholding gradient descent
algorithms which are natural extensions of algorithms developed for compressed sensing [29] and
matrix completion [30]. These results also provably solve Robust PCA with the asymptotically
optimal fraction of corruptions α = O (1/(µr)), where s = α2mn, and improve the previously
known guarantees by not requiring the fraction of the sparse corruptions in every column and
row is bounded by some α ∈ (0, 1).

• In Section 4, we empirically study the average case of recovery on synthetic data by solving
convex optimization and by the proposed gradient descent methods and observe a phase transi-
tion in the space of parameters for which the methods succeed. We also give an example of two
practical applications of the low-rank plus sparse matrix recovery in the form of a subsampled
dynamic-foreground/static-background video separation and robust recovery of multispectral
imagery.

1.1. Main contribution

We show that for sufficiently incoherent matrices the LSm,n(r, s, µ) set is a closed set, which is es-
sential in developing the recovery guarantees with asymptotically optimal scaling µ = O(√mn/(r

√
s)).

Lemma 1.1 (LSm,n(r, s, µ) is a closed set). Let µ <
√
mn/(r

√
s) and X = L + S ∈ LSm,n(r, s, µ).

Then the following holds

(1) |〈L, S〉| ≤ µ r
√
s√

mn
‖L‖F ‖S‖F ,

(2) ‖L‖F ≤
(
1− µ2 r2s

mn

)−1/2

‖X‖F and ‖S‖F ≤
(
1− µ2 r2s

mn

)−1/2

‖X‖F ,
(3) LSm,n(r, s, µ) is a closed set.

3



The proof, given in Appendix B on page 30, is a consequence of an upper bound on the magnitude
of the inner product beteween a sufficiently incoherent low-rank matrix and a sparse matrix and then
employing this bound to show that the Frobenius norm of the two components is upper bounded by
the Frobenius norm of their sum, which also makes LSm,n(r, s, µ) a closed set.

The foundational analytical tool for our recovery results is the RIC for LSm,n(r, s, µ), which as
for other RICs [25, 11], follows from balancing a covering number for the set LSm,n(r, s, µ) and the
measurement operator being a near isometry as defined in Definition 1.3.

Theorem 1 (RIC for LSm,n (r, s, µ)). For a given m,n, p ∈ N, µ <
√
mn/(r

√
s), ∆ ∈ (0, 1), and

a random linear transform A : Rm×n → R
p satisfying the concentration of measure inequalities in

Definition 1.3, there exist constants c0, c1 > 0 such that the RIC for LSm,n(r, s, µ) is upper bounded
with ∆r,s,µ(A) ≤ ∆ provided

p > c0 (r(m+ n− r) + s) log

((
1− µ2 r

2s

mn

)−1/2
mn

s

)
, (6)

with probability at least 1− exp (−c1p), where c0, c1 are constants that depend only on ∆.

Theorem 1 establishes that for random ensembles of linear transformations that satisfy the con-
centration of measure inequalities in Definition 1.3, the RIC for LSm,n(r, s, µ) is upper bounded in
the asymptotic regime as m,n and p approach infinity at appropriate rates and the incoherence µ is
sufficently upper bounded ensuring the set is closed; see Lemma 1.1. Specifically, the RIC remains
bounded independent of the problem dimensions m and n provided p to be taken proportional to the
order of degrees of freedom of the rank-r plus sparsity-s matrices times a logarithmic factor as in (6).

Examples of random ensembles of A which satisfy the conditions of Definition 1.3 include random
Gaussian ensemble which acquires the information about the matrix X through p linear measurements
of the form

bℓ := A(X)ℓ = 〈A(ℓ), X〉 for ℓ = 1, 2, . . . , p, (7)

where the p distinct sensing matrices A(ℓ) ∈ R
m×n are the sensing operators defining A and have

entries sampled from the Gaussian distribution as A
(ℓ)
i,j ∼ N (0, 1/p). Other notable examples include

symmetric Bernoulli ensembles, and Fast Johnson-Lindenstrauss Transform (FJLT) [31, 32].
For a linear transform A which has RIC suitably upper bounded and a given vector of samples

b = A(X0), the matrixX0 is the only matrix in the set LSm,n(r, s, µ) that satisfies the linear constraint.

Theorem 2 (Existence of a unique solution for A with RIC). Suppose that ∆2r,2s,µ(A) < 1 for
some integers r, s ≥ 1 and µ <

√
mn/(r

√
s). Let b = A(X0), then X0 is the only matrix in the set

LSm,n(r, s, µ) satisfying A(X) = b.

Proof. Assume, on the contrary, that there exists a matrix X ∈ LSm,n(r, s, µ) such that A(X) = b
and X 6= X0. Then Z := X0 −X is a non-zero matrix for which A(Z) = 0 and Z ∈ LSm,n(2r, 2s, µ)
by the subadditivity property of LSm,n(r, s, µ) sets in Lemma Appendix B.1. But then by the RIC

we would have 0 = ‖A(Z)‖22 ≥ (1 −∆2r,2s,µ) ‖Z‖2F > 0, which is a contradiction.

As in compressed sensing and matrix completion, it is in general NP-hard to recoverX0 = L0+S0 ∈
LSm,n(r, s, µ) from A(X0) for minimal r, s when p≪ mn. This follows from the non-convexity of the
feasible set LSm,n(r, s, µ). However, we show that if the linear transformation A has sufficiently small
RIC over the set LSm,n(r, s, µ), which requires µ <

√
mn/(r

√
s), then the solution can be obtained

with computationally tractable methods such as by solving the semidefinite program

min
X=L+S∈Rm×n

‖L‖∗ + λ ‖S‖1 , s.t. ‖A(X)− b‖2 ≤ εb, (8)
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Algorithm 1 Normalized Iterative Hard Thresholding (NIHT) for LS recovery

Input: b = A(X0),A, r, s, and termination criteria
Set: (L0, S0) = P (A∗(b); r, s, µ, ε) , X0 = L0 + S0, j = 0

Ω0 = supp(S0) and U0 as the top r left singular vectors of L0

1: while not converged do
2: Compute the residual Rj = A∗ (A(Xj)− b

)

3: Compute the stepsize: αj =
∥∥∥Proj(Uj ,Ωj)

(
Rj
)∥∥∥

2

F
/
∥∥∥A
(
Proj(Uj ,Ωj)

(
Rj
))∥∥∥

2

2

4: Set W j = Xj − αj R
j

5: Compute (Lj+1, Sj+1) = RPCAr,s,µ(W
j , εp) and set Xj+1 = Lj+1 + Sj+1

6: Let Ωj+1 = supp(Sj+1) and U j+1 be the top r left singular vectors of Lj+1

7: j = j + 1
8: end while

Output: Xj

where ‖ · ‖∗ is the Schatten 1-norm and ‖ · ‖1 is the sum of the absolute value of the entries2 and εb
is the model misfit.

Theorem 3 (Guaranteed recovery by the convex relaxation). Let b = A(X0) and suppose that r, s ≥ 1
and µ <

√
mn/(4r

√
2s) are such that the restricted isometry constant ∆4r,2s,2µ(A) ≤ 1

7 − 2γ where

γ := µ 4r
√
2s√

mn
. Let X∗ = L∗ + S∗ be the solution of (8) with λ =

√
2r/s, then ‖X∗ −X0‖F ≤ 42 εb.

Alternatively, X0 can be obtained from its compressed measurements A(X0) by iterative gradient
descent methods that are guaranteed to converge to a global minimizer of the non-convex optimization
problem

min
X=L+S∈Rm×n

‖A(X)− b‖2 , s.t. X ∈ LSm,n(r, s, µ). (9)

We introduce two natural extensions of the simple yet effective Normalized Iterative Hard Thresholding
(NIHT) for compressed sensing [29] and matrix completion [30] algorithms, here called NIHT and
Normalized Alternative Hard Thresholding (NAHT) for low-rank plus sparse matrices, Algorithms 1
and 2 respectively. In both cases we establish that if the measurement operator has suitably small
RICs then NIHT and NAHT provably converge to the global minimum of the non-convex problem
formulated in (9) and recover X0 ∈ LSm,n(r, s, µ) for which b = A(X0).

Theorem 4 (Guaranteed recovery by NIHT). Suppose that r, s ∈ N and µ <
√
mn
/ (

3r
√
3s
)
are such

that the restricted isometry constant ∆3 := ∆3r,3s,µ(A) < 1
5 . Then NIHT applied to b = A(X0) as

described in Algorithm 1 will linearly converge to X0 as

∥∥Xj+1 −X0

∥∥
F
≤ 4∆3

1−∆3

∥∥Xj −X0

∥∥
F
+ εp, (10)

within the precision of εp, where εp is the accuracy of the Robust PCA oblique projection that performs
projection on the set of incoherent low-rank plus sparse matrices LSm,n(r, s, µ).

Theorem 5 (Guaranteed recovery by NAHT). Suppose that r, s ∈ N and µ <
√
mn
/ (

3r
√
3s
)
are

such that the restricted isometry constant ∆3 := ∆3r,3s,µ(A) < 1
9 − γ2 where γ2 := µ 2r

√
2s√

mn
. Then

NAHT applied to b = A(X0) as described in Algorithm 2 will linearly converge to X0 = L0 + S0 as

∥∥Lj+1 − L0

∥∥
F
+
∥∥Sj+1 − S0

∥∥
F
≤ 6∆3 +

9
8γ2

1− 3∆3 − 9
8γ2

(∥∥Lj − L0

∥∥
F
+
∥∥Sj − S0

∥∥
F

)
. (11)

2Our use of ‖ · ‖1 as the sum of the modulus of the entries of a matrix differs from the vector induced 1-norm of a
matrix.

5



Algorithm 2 Normalized Alternating Hard Thresholding (NAHT) for LS recovery

Input: b = A(X0),A, r, s, and termination criteria
Set: (L0, S0) = P (A∗(b); r, s, τ, ε) , X0 = L0 + S0, j = 0

Ω0 = supp(S0) and U0 as the top r left singular vectors of L0

1: while not converged do
2: Compute the residual Rj

L = A∗ (A(Xj)− b
)

3: Compute the stepsize αL
j =

∥∥∥Proj(Uj ,Ωj)

(
Rj
)∥∥∥

2

F

/∥∥∥A
(
Proj(Uj ,Ωj)

(
Rj
))∥∥∥

2

2

4: Set V j = Lj − αL
j Rj

L

5: Set Lj+1 = HT(V j ; r, µ) and let U j+1 be the left singular vectors of Lj+1

6: Set Xj+ 1
2 = Lj+1 + Sj

7: Compute the residual Rj
S = A∗

(
A(Xj+ 1

2 )− b
)

8: Compute the stepsize αS
j =

∥∥∥Proj(Uj+1,Ωj)

(
Rj
)∥∥∥

2

F

/∥∥∥A
(
Proj(Uj+1,Ωj)

(
Rj
))∥∥∥

2

2

9: Set W j = Sj − αS
j Rj

S

10: Set Sj+1 = HT(W j ; s) and let Ωj+1 = supp(Sj+1)
11: Set Xj+1 = Lj+1 + Sj+1

12: j = j + 1
13: end while

Output: Xj = Lj + Sj

Note that the projection used in computing the stepsize is defined as Proj(Uj ,Ωj)

(
Rj
)
:= PUjRj +

1Ωj ◦ (Rj − PUjRj), where PUj := U j
(
U j
)∗
, 1Ωj is a matrix with ones at indices Ωj , and ◦ denotes

the entry-wise Hadamard product. This corresponds to first projecting the left singular vectors of
Rj on the subspace spanned by columns of U j , which makes the incoherence of the resulting matrix
bounded by µ, and then setting entries at indices Ωj to be equal to the entries of Rj at indices Ωj .
One can repeat this process to achieve better more precise projection of Rj in the low-rank plus sparse
matrix set defined by

(
U j ,Ωj

)
.

The hard thresholding projection in Algorithm 1 is performed by computing Robust PCA which
is solved to an accuracy proportional to εp. The Robust PCA projection of a matrix W ∈ R

m×n on
the set of LSm,n(r, s, µ) with precision εp returns a matrix X ∈ LSm,n(r, s, µ) such that

X ← RPCAr,s,µ(W, εp) s.t. ‖X −Wrpca‖F ≤ εp, (12)

where Wrpca := argminY ∈LSm,n(r,s,µ) ‖Y −W‖F is the optimal projection of the matrix W on the set
LSm,n(r, s, µ), which can be computed by a number of efficient Robust PCA algorithms, such as the
Alternating Projection algorithm (AltProj) [28] or the Accelerated Alternating Projection algorithm
(AccAltProj) by [33], which have high robustness in practice and provable global linear convergence
when α = O (1/ (µr)) and α = O

(
1/
(
µr2
))

respectively, where s = α2mn.

1.2. Relation to prior work

It is well known that the low-rank plus sparse matrix decomposition solved by Robust PCA does
not need to have a unique solution without further constraints, such as the singular vectors of the
low-rank component being uncorrelated with the canonical basis as quantified by the incoherence
condition [9, 11] with parameter µ

max
i∈{1,...,m}

‖U∗ei‖2 ≤
√

µr

m
, max

i∈{1,...,n}
‖V ∗fi‖2 ≤

√
µr

n
, (13)

where U ∈ R
m×r, V ∈ R

n×r are the first r left and the right singular vectors of L respectively,
ei ∈ R

m, fi ∈ R
n are the canonical basis vectors. The incoherence condition for small values of µ

6



ensures that the left and the right singular vectors are well spread out and not sparse. It is therefore
sensible to expect that the problem of recovering X0 ∈ LSm,n(r, s, µ) from subsampled measurements
should obey the same conditions. The incoherence assumption is directly assumed in the convergence
analysis of NAHT and the convex recovery is assumed where we require µ < O(√mn/(r

√
s)) which is

equivalent to the best known recovery bounds in Robust PCA [27, 28]. The incoherence assumption
is also implicitly used in the convergence analysis of NIHT in the Robust PCA projection step in
Algorithm 1, Line 5, the solution of which is dependent on the incoherence of L.

The results presented here extend the well developed literature on compressed sensing and matrix
completion/sensing [4, 5] to the setting of low-rank plus sparse matrices as defined in Definition 1.1.
These foundational RIC bound results allow for further extension to other non-convex algorithms,
such as [34], further model based constraints as in [35] and other additive models.

The recovery result by convex relaxation in Theorem 3 controls the measurement error and/or
model mismatch εb. In the proof of NIHT convergence in Theorem 4 we consider exact measurements
but we control the error of the Robust PCA projection which is assumed to be solved only within
prescribed precision εp. The convergence result of NAHT in Theorem 5 alternates between projecting
of the low-rank and the sparse component. The non-convex algorithms are also stable to error εb, but
we omit the stability analysis for clarity in the proofs.

Theorem 3, 4, and 5 also provably solve Robust PCA when A is chosen to be the identity and
µ <

√
mn/(r

√
s) which translates to the optimal scaling in terms of the number of corruptions

α = O (1/(µr)), where s = α2mn, but without the need of requiring that the fraction of the sparse
corruptions in every column and row is bounded by α.

2. Restricted Isometry Constants for LSm,n (r, s, µ)

This section presents a proof of Theorem 1, that linear maps A : Rm×n → R
p sampled from

a class of probability distributions obeying concentration of measure and large deviation inequali-
ties, have bounded RIC for sets of low-rank plus sparse matrices with bounded energy as defined in
Definition 1.2. More precisely, that the RIC of A remains bounded independent of dimension once

p ≥ O
(
(r(m + n− r) + s) log

(
(1− µ2 r2s

mn )
−1/2 mn

s

))
. Examples of linear maps which satisfy these

bounds include random Gaussian matrices and the Fast Johnson-Lindenstrauss transform (FJLT)
[31, 32]. We extend the method of proof used in the context of sparse vectors by [25] and its alteration
for the low-rank matrix recovery by [11].

Our proof of Theorem 1 follows from proving the alternative form of (2) defined without the
squared norms by

(
1− ∆̄r,s,µ(A)

)
‖X‖F ≤ ‖A(X)‖2 ≤

(
1 + ∆̄r,s,µ(A)

)
‖X‖F , (14)

which we denote as ∆̄. The discrepancy between (14) and (2) is due to (14) being more direct to
derive and (2) allowing for more concise derivation of Theorem 3, 4, and 5, but the two definitions
are related up to a multiplicative constant3.

The proof of Theorem 1 begins with the derivation of an RIC for a single subspace Σm,n(V,W, T, µ)
of LSm,n(r, s, µ) when the column space of C(L) is restricted in the subspace V , the row space C(LT )
in the subspace W , and the sparse component S is in the subspace T ,

Σm,n (V,W, T, µ) =




X = L+ S ∈ R

m×n :

C(L) ⊆ V, C(LT ) ⊆W,
supp (S) ⊆ T,

∀i ∈ [m] : ‖PV ei‖2 ≤
√µr

m ,

∀i ∈ [n] : ‖PW fi‖2 ≤
√

µr
n





, (15)

3The constant ∆̄ satisfiying the inequalities in (14) also implies
(

1− ∆̄
)2

‖X‖2
F

≤ ‖A(X)‖22 ≤
(

1 + ∆̄
)2

‖X‖2
F
,

which in turn ensures that ∆ in Definition 2 is ∆ = 2∆̄− ∆̄2 ∈ [0, 1] when ∆̄ ∈ [0, 1].

7



where PV and PW denote the orthogonal projection on the subspace V and W respectively, and
ei ∈ R

m and fi ∈ R
n are the canonical basis vectors.

Following this, we show that the isometry constant of A is robust to a perturbation of the column
and the row subspaces (V,W ) of the low-rank component. Finally, we use a covering argument over
all possible column and row subspaces (V,W ) of the low-rank component and count over all possible
sparsity subspaces T of the sparse component to derive an exponentially small probability bound for
the event that A(·) satisfies RIC with constant ∆̄ for sets

LSm,n(r, s, µ) = {Σm,n(V,W, T, µ) : V ∈ G(m, r), W ∈ G(n, r), T ∈ V(mn, s)} , (16)

where G(m, r) is the Grassmannian manifold – the set of all r-dimensional subspaces of Rm, and
V(mn, s) is the set of all possible supports sets of an m×n matrix that has s elements. Thus proving
RIC for sets of low rank plus sparse matrices given the energy bound on the low-rank component L.

The following result describes the behavior of A when constrained to a single fixed column and a
row space (V,W ) and a single sparse matrix space T .

Lemma 2.1 (RIC for a fixed LS subspace Σm,n(V,W, T, µ)). Let A : R
m×n → R

p be a nearly
isometric random linear map from Definition 1.3 and Σm,n(V,W, T, µ) as defined in (15) is fixed for
some (V,W ), T and µ <

√
mn/(r

√
s). Then for any ∆̄ ∈ (0, 1)

∀X ∈ Σm,n (V,W, T, µ) : (1− ∆̄)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ∆̄)‖X‖F , (17)

with probability at least

1− 2

(
24

∆̄
τ

)dimV ·dimW (
24

∆̄
τ

)dimT

exp

(
−p

2

(
∆̄2

8
− ∆̄3

24

))
, (18)

where τ := (1− µ2 r2s
mn )

−1/2.

The proof follows the same argument as the one for sparse vectors [25, Lemma 5.1] and for low-rank
matrices in [11, Lemma 4.3] with the exception of appropriately scaling the Frobenius norm of the
two components in relation to the Frobenius norm of their sum. Our variant of the proof for low-rank
plus sparse matrices is presented in Appendix B on page 32.

To establish the impact of a perturbation of the spaces (U, V ) on the ∆̄ in Lemma 2.1 we define a
metric ρ(·, ·) on G(D, d) as follows

U1, U2 ∈ G(D, d) : ρ(U1, U2) := ‖PU1
− PU2

‖. (19)

The Grassmannian manifold G (D, d) combined with distance ρ(·, ·) as in (19) defines a metric space
(G (D, d) , ρ (·, ·)), where PU denotes an orthogonal projection associated with the subspace U . Let us
also denote a set of matrices whose column and row space is a subspace of V and W respectively

(V,W ) =
{
X : C(X) ⊆ V, C(XT ) ⊆W

}
, (20)

and P(V,W ) is an orthogonal projection that ensures that the column space and row space of P(V,W )X
lies within V and W . The distance between Σ1 := Σm,n (V1,W1, T, µ) and Σ2 := Σm,n (V2,W2, T, µ)
that have a fixed T is given by

ρ ((V1,W1) , (V2,W2)) = ‖P(V1,W1) − P(V2,W2)‖. (21)

Lemma 2.2 (Variation of ∆̄ in RIC in respect to a perturbation of (V,W )). Let Σ1 := Σm,n(V1,W1, T, µ)
and Σ2 := Σm,n(V2,W2, T, µ) be two low-rank plus sparse subspaces with the same fixed subspace T
and µ <

√
mn/(r

√
s). Suppose that for ∆̄ > 0, the linear operator A satisfies

∀X ∈ Σ1 : (1− ∆̄)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ∆̄)‖X‖F . (22)

Then
∀Y ∈ Σ2 : (1 − ∆̄′)‖Y ‖F ≤ ‖A(Y )‖ ≤ (1 + ∆̄′)‖Y ‖F , (23)

with ∆̄′ := ∆̄+τρ ((V1,W1) , (V2,W2))
(
1 + ∆̄ + ‖A‖

)
with ρ as defined in (19) and τ := (1− µ2 r2s

mn )
−1/2.
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The proof is similar to the line of argument made in [11, Lemma 4.4], see Appendix B on page 35.

The notable exception is the term τ := (1 − µ2 r2s
mn )

−1/2 appearing in the expression for ∆̄′, which is
a result of the set LSm,n(r, s) not being closed, as shown in [26, Theorem 1.1], without the constraint
‖L‖F ≤ τ‖X‖F from Lemma 1.1.

To establish the proof of Theorem 1 we combine Lemma 2.1 and Lemma 2.2 with an ε-covering
of LSm,n(r, s, µ), where ε will be picked to control the maximal allowed perturbation between the
subspaces ρ ((V1,W1) , (V2,W2)). The covering number R(ε) of LSm,n(r, s, µ) at resolution ε is the
smallest number of subspaces (Vi,Wi, Ti) such that, for any triple of V ∈ G(m, r),W ∈ G(n, r), T ∈
V(mn, s) there exists i with ρ ((V,W ) , (Vi,Wi)) ≤ ε and T = Ti. The following Lemma gives an upper
bound on the cardinality of ε-covering.

Lemma 2.3 (Covering number of LSm,n(r, s)). The covering number R(ε) of the set LSm,n(r, s) is
bounded above by

R(ε) ≤
(
mn

s

)(
4π

ε

)r(m+n−2r)

. (24)

The proof comes by counting the possible support sets with cardinality s and by the work of
Szarek on ε-covering of the Grassmannian [36, Theorem 8], for completeness the proof is given in
Appendix B, page 34.

Bounds on the RIC for the set of low-rank plus sparse matrices then follow a proof technique that
uses the covering number argument in combination with the concentration of measure inequalities as
was done before for sparse vectors [25] and subsequently for low-rank matrices [11].
Proof of Theorem 1 (RIC for LSm,n(r, s, µ)), stated on page 4.

Proof. By linearity of A and conicity of LSm,n(r, s, µ) assume without loss of generality ‖X‖F = 1

and consequently also ‖L‖F ≤ τ and ‖S‖F ≤ τ with τ := (1 − µ2 r2s
mn )

−1/2 by Lemma 1.1 and
by µ <

√
mn/(r

√
s). Let (Vi,Wi, Ti) be an ε-covering of LSm,n(r, s, µ) whose covering number is

bounded by Lemma 2.3 since LSm,n(r, s, µ) ⊂ LSm,n(r, s). For every triple (Vi,Wi, Ti) define a subset
of matrices

Bi = {X ∈ Σm,n (V,W, Ti, µ) : ρ ((V,W ) , (Vi,Wi)) ≤ ε} . (25)

By (Vi,Wi, Ti) being an ε-covering we have LSm,n(r, s, µ) ⊆
⋃

i Bi. Therefore, if for all Bi

(∀X ∈ Bi) : (1− ∆̄)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ∆̄)‖X‖F (26)

holds, then necessarily ∆̄r,s,µ ≤ ∆̄, proving that

Pr(∆̄r,s,µ ≤ ∆̄) = Pr
(
∀X ∈ LSm,n(r, s, µ) : (1− ∆̄)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ∆̄)‖X‖F

)
(27)

≥ Pr
(
(∀i), (∀X ∈ Bi) : (1− ∆̄)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ∆̄)‖X‖F

)
, (28)

where the inequality comes from the fact that LSm,n(r, s, µ) is a subset of the ε-covering
⋃

i Bi and
therefore the statement holds with less or equal probability. It remains to derive a lower bound on
the probability in the equation (28) which in turn proves the theorem.

In the case that ‖A‖ ≤ ∆̄
2τε − 1 − ∆̄

2 , which we show later in (37) occurs with probability expo-
nentially converging to 1, rearranging the terms yields

τε(1 + ∆̄/2 + ‖A‖) ≤ ∆̄/2. (29)

If the RIC holds for a fixed (Vi,Wi, Ti) with ∆̄/2, then by Lemma 2.2 in combination with (29)
yields

(∀X ∈ Bi) : (1− ∆̄)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ∆̄)‖X‖F . (30)
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Therefore, using the probability union bound on (28) over all i’s and the probability of ‖A‖ satisfying
the bound ε ≤ ∆̄/ (2τ (1 + ‖A‖)) ≤ ∆̄/ (2τ (1 + ‖A‖)) by (29) and ∆̄ ≥ 0.

Pr
(
(∀i), (∀X ∈ Bi) : (1 − ∆̄)‖X‖F ≤ ‖A(X)‖ ≤ (1 + ∆̄)‖X‖F

)
(31)

≥ 1−
∑

i

Pr

(
∃Y ∈ Σm,n(Vi,Wi, Ti, µ) :

‖A(Y )‖ < (1− ∆̄/2)
or ‖A(Y )‖ > (1 + ∆̄/2)

)
(32)

− Pr
(
‖A‖ ≥ ∆̄

2τε
− 1− ∆̄

2

)
. (33)

The probability in (32) is bounded from above as

∑

i

Pr

(
∃Y ∈ Σm,n(Vi,Wi, Ti, µ) :

‖A(Y )‖ < (1− ∆̄/2)
or ‖A(Y )‖ > (1 + ∆̄/2)

)
(34)

≤ 2R(ε)

(
48

∆̄
τ

)r2 (
48

∆̄
τ

)s

exp

(
−p

2

(
∆̄2

32
− ∆̄3

192

))
(35)

≤ 2

(
mn

s

)(
4π

ε

)r(m+n−2r)(
48

∆̄
τ

)r2+s

exp

(
−p

2

(
∆̄2

32
− ∆̄3

192

))
, (36)

where in the first inequality we used Lemma 2.1 and in the second inequality the bound on the
ε-covering of the subspaces by Lemma 2.3.

In order to complete the lower bound in (31) it remains to upper bound (33) which we obtain by

selecting the covering resolution ε sufficiently small so that the Pr
(
‖A‖ ≥ ∆̄

2τε − 1− ∆̄
2

)
is exponen-

tially small with the exponent proportional to the bound in (36). From condition (5) of Definition 1.3
we have that the random linear map satisfies

(∃γ > 0) : Pr

(
‖A‖ ≥ 1 +

√
mn

p
+ t

)
≤ exp

(
−γpt2

)
, (37)

in particular

Pr

(
‖A‖ ≥ ∆̄

2τε
− 1− ∆̄

2

)
≤ exp

(
−γp

(
∆̄

2τε
− ∆̄

2
−
√

mn

p
− 2

)2
)
. (38)

Selecting the covering resolution ε

ε <
∆̄

4τ
(√

mn/p+ 1 + ∆̄/4
) , (39)

obtains the following exponentially small upper bound

Pr

(
‖A‖ ≥ ∆̄

2τε
− 1− ∆̄

2

)
≤ exp (−γmn) . (40)

Returning to the inequality (31), combined with the bound on the first term in (36), and setting

ε = ∆̄
/(

4τ
(√

mn/p+ 1 + ∆̄/4
))

in the second term of (36), such that (39) is satisfied, we have
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that

2
(emn

s

)s
(
16π(

√
mn/p+ 1 + ∆̄/4)

∆̄
τ

)r(m+n−2r)(
48

∆̄
τ

)r2+s

· exp
(
−p

2

(
∆̄2

32
− ∆̄3

192

))
(41)

= exp

(
− pa(∆̄) + r (m+ n− 2r) log

(√
mn

p
+ 1 +

∆̄

4

)
+ r (m+ n− 2r) log

(
16π

∆̄
τ

)

+ (r2 + s) log

(
48

∆̄
τ

)
+ s log

(emn

s

)
+ log(2)

)
, (42)

where we used the inequality
(
mn
s

)
≤
(
emn
s

)s
and we define a(∆̄) := ∆̄2/64− ∆̄3/384. The 2nd, 3rd

and 4th terms in (42) can be bounded as

(∃c2 > 0) : 2nd + 3rd + 4th ≤
(
c2/a(∆̄)

)
r(m+ n− r) log

(
mn

p
τ

)
, (43)

and the 5th and 6th term of (42) as

(∃c3 > 0) : 5th + 6th ≤
(
c3/a(∆̄)

)
s log

(mn

s
τ
)
, (44)

where c2 and c3 are dependent only on ∆̄. Therefore there exists positive constants c0, c1 that
depend4 only on ∆̄ such that if p ≥ c0 (r(m + n− r) + s) log

(
mn
s τ
)
, then RICs are upper bounded

by the constant ∆̄ with probability at least e−c1p. By the constant ∆̄ in (14) being related to the
RIC with squared norms, the result also implies an upper bound on RICs with the squared norms in
Definition 1.2.

3. Provable recovery guarantees using computationally efficient algorithms

This section contains the proofs of our main algorithmic contributions that a low-rank plus sparse
matrix X0 ∈ LSm,n(r, s, µ) can be efficiently recovered from subsampled measurements taken by a
linear mapping A(·) which satisfies given bounds on its RIC. These algorithms also provably solve
Robust PCA when A is chosen to be the identity and s = O

(
mn/(µ2r2)

)
which is the optimal scaling

in terms of the number of corruptions, rank, and the incoherence. Subsection 3.1 presents the proof
of Theorem 3 which shows that the convex relaxation (8) of (9) robustly recovers X0. Subsection 3.2
states the proofs of Theorem 4 and Theorem 5 for the simple yet efficient hard thresholding algorithms
NIHT and NAHT, described in Alg. 1 and Alg. 2 respectively.

3.1. Recovery of X0 ∈ LSm,n(r, s, µ) using the convex relaxation (8).

Let X∗ = L∗ + S∗ be the solution of the convex optimization problem formulated in (8). Here it
is shown that if the RICs of the measurement operator A(·) are sufficient small, then X∗ = X0 when
the linear constraint in the convex optimization problem (8) is satisfied exactly, or alternatively that
‖X∗ −X0‖F is proportional to ‖A(X∗)− b‖2.
Proof of Theorem 3 (Guaranteed recovery by the convex relaxation (8)), stated on page 5.

4We have that c1 = (1 + γ)a(∆̄)−1 and c0 = 16π/(∆̄ a(∆̄)).
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Proof. Let R = X∗ − X0 = (L∗ − L0) + (S∗ − S0) = RL + RS be the residual split into the low-
rank component RL = L∗ − L0 and the sparse component RS = S∗ − S0. We treat RL and RS

separately, combining the method of proof used in the context of compressed sensing by [37] and
its extension for the low-rank matrix recovery by [11] with the important exception of needing to
decompose RL into a sum of incoherent low-rank matrices using Lemma Appendix B.6 and carefully
treat its correlation with RS.

By Lemma Appendix B.4 on page 35 there exist matricesRL
0 , R

L
c ∈ R

m×n such thatRL = RL
0 +RL

c

and

RL
0 ∈ LSm,n(2r, 0, µ) (45)

L0(R
L
c )

T = 0m×m and LT
0 R

L
c = 0n×n. (46)

Similarly, by the argument made in the proof of [37, Theorem 1], which we state in Lemma Appendix B.5,
there exist matrices RS

0 , R
S
c ∈ R

m×n such that RS = RS
0 +RS

c and
∥∥RS

0

∥∥
0
≤ s (47)

supp (S0) ∩ supp
(
RS

c

)
= ∅. (48)

By (L∗, S∗) being a minimum and X0 being feasible of the convex optimization problem (8)

‖L0‖∗ + λ ‖S0‖1 ≥ ‖L∗‖∗ + λ ‖S∗‖1 (49)

=
∥∥L0 +RL

0 +RL
c

∥∥
∗ + λ

∥∥S0 +RS
0 +RS

c

∥∥
1

(50)

≥
∥∥L0 +RL

c

∥∥
∗ −

∥∥RL
0

∥∥
∗ + λ

∥∥S0 +RS
c

∥∥
1
− λ

∥∥RS
0

∥∥
1

(51)

= ‖L0‖∗ +
∥∥RL

c

∥∥
∗ −

∥∥RL
0

∥∥
∗ + λ ‖S0‖1 + λ

∥∥RS
c

∥∥
1
− λ

∥∥RS
0

∥∥
1
, (52)

where the second line comes from L∗ − L0 = RL
0 + RL

c and S∗ − S0 = RS
0 + RS

c , the inequality
in the third line comes from the reverse triangle inequality, and the fourth line comes from the
construction of RL

c and RS
c combined with [11, Lemma 2.3], restated as Corollary Appendix B.1, and

by supp(RS
c ) ∩ supp(RS

0 ) = ∅. Subtracting ‖L0‖∗ and ‖S0‖1 from both sides of (52) and rearranging
terms yields ∥∥RL

c

∥∥
∗ + λ

∥∥RS
c

∥∥
1
≤
∥∥RL

0

∥∥
∗ + λ

∥∥RS
0

∥∥
1
. (53)

We proceed by decomposing the remainder terms RL
c and RS

c as sums of matrices with de-
creasing energy as was done by [11] for low-rank matrices and by [37] for sparse vectors. By
Lemma Appendix B.6 there exists a decomposition RL

c = RL
1 +RL

2 + . . . such that

RL
i ∈ LSm,n(Mr, 0, µ) (54)

RL
i

(
RL

j

)T
= 0m×m and

(
RL

i

)T
RL

j = 0n×n, ∀i 6= j (55)

∥∥RL
i+1

∥∥2
F
≤ 1

Mr

∥∥RL
i

∥∥2
∗ . (56)

To decompose the residual of the sparse component order the indices of RS
c as v1, v2, . . . , vmn ∈

[m]× [n] in decreasing order of magnitude of the entries of RS
c and split the indices of the entries into

sets of size Ms as
Ti := {vℓ : (i− 1)Ms ≤ ℓ ≤ iMs} , (57)

Constructing RS
i :=

(
RS

c

)
Ti

decomposes RS
c into a sum RS

c = RS
1 +RS

2 + . . . such that

∥∥RS
i

∥∥
0
≤Ms, ∀i ≥ 1 (58)

∅ = Ti ∩ Tj, ∀i 6= j (59)
∣∣RS

c

∣∣
(v)
≤ 1

Ms

∑

j∈Ti

∣∣RS
i

∣∣
(j)

, ∀v ∈ Ti+1 (60)
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where the inequality (60) implies that
∥∥RS

i+1

∥∥2
F
≤ 1

Ms

∥∥RS
i

∥∥2
1
. We denote Ri = RL

i + RS
i which are

in LSmn(Mr,Ms, µ) by construction. Combining the two decompositions of RL
c and RS

c gives the
following bound

∑

j≥2

‖Rj‖F ≤
∑

j≥2

∥∥RL
j

∥∥
F
+
∑

j≥2

∥∥RS
j

∥∥
F

(61)

≤
√

1

Mr

∑

j≥1

∥∥RL
j

∥∥
∗ +

√
1

Ms

∑

j≥1

∥∥RS
j

∥∥
1

(62)

=

√
1

Mr

∥∥RL
c

∥∥
∗ +

√
1

Ms

∥∥RS
c

∥∥
1

(63)

≤
√

1

Mr

(
∥∥RL

0

∥∥
∗ +

√
Mr

Ms

∥∥RS
0

∥∥
1

)
(64)

≤
√

2r

Mr

∥∥RL
0

∥∥
F
+

√
s

Ms

∥∥RS
0

∥∥
F
, (65)

where the inequality in the first line comes from the triangle inequality, the second inequality comes as
a consequence of (56) and (60), the third line comes from (55) combined with [11, Lemma 2.3], restated
as Corollary Appendix B.1, and from (59), the fourth inequality comes from (53) with λ =

√
Mr/Ms,

and the last fifth line is a property of ℓ1 and Schatten-1 norms. Choosing Mr = 2r and Ms = s in
(65) gives ∑

j≥2

‖Rj‖F ≤
∥∥RL

0

∥∥
F
+
∥∥RS

0

∥∥
F
, (66)

and also that λ =
√
2r/s as stated in the theorem.

By feasibility of X∗ and linearity of A we have

εb ≥ ‖A (X∗)− b‖2 = ‖A (X∗ −X0)‖2 = ‖A (R)‖2 . (67)

Let ∆ := ∆4r,2s,µ be the RIC with squared norms for LSm,n(4r, 2s, µ) and γ := µ 4r
√
2s√

mn
< 1. Then

(1−∆)‖RL
0 ‖2F ≤

∥∥A
(
RL

0

)∥∥2
2
=
∣∣〈A(RL

0 ), A(RL
0 −R+ R)

〉∣∣ (68)

=
∣∣〈A(RL

0 ), A(RL
0 − R)

〉
+
〈
A(RL

0 ), A(R)
〉∣∣ (69)

≤

∣∣∣∣∣∣

〈
A
(
RL

0

)
, A(−RS

0 −R1 −
∑

j≥2

Rj)

〉∣∣∣∣∣∣
+
∣∣〈A(RL

0 ), A(R)
〉∣∣ (70)

≤
(

2γ

1− γ2
+∆

)∥∥RL
0

∥∥
F


∥∥RS

0

∥∥
F
+ ‖R1‖F +

∑

j≥2

‖Rj‖F


+

∥∥A
(
RL

0

)∥∥
2
‖A (R)‖2 , (71)

≤
(

2γ

1− γ2
+∆

)∥∥RL
0

∥∥
F

(∥∥RL
0

∥∥
F
+ 2

∥∥RS
0

∥∥
F
+ ‖R1‖F

)
+ (1 +∆)‖RL

0 ‖F εb (72)

where the inequality in the first line comes from RL
0 ∈ LSm,n(4r, 2s, µ) satisfying the RICs, the second

line is a consequence of feasibility in (67), the third line comes from Lemma Appendix B.7 and by
sums of individual pairs in the inner product being in LSm,n(4r, 2s, µ) by Lemma Appendix B.1, and
the last inequality follows from the optimality condition in (66). After dividing both sides of (72) by
(1−∆)

∥∥RL
0

∥∥
F
gives

∥∥RL
0

∥∥
F
≤ 1

1−∆

(
2γ

1− γ2
+∆

)(∥∥RL
0

∥∥
F
+ 2

∥∥RS
0

∥∥
F
+ ‖R1‖F

)
+ εb

1 + ∆

1−∆
. (73)
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Mutatis mutandis, the same argument applies to
∥∥RS

0

∥∥
F

∥∥RS
0

∥∥
F
≤ 1

1−∆

(
2γ

1− γ2
+∆

)(
2
∥∥RL

0

∥∥
F
+
∥∥RS

0

∥∥
F
+ ‖R1‖F

)
+ εb

1 + ∆

1−∆
, (74)

and similarly to ‖R1‖F as

‖R1‖F ≤
1

1−∆

(
2γ

1− γ2
+∆

)(
2
∥∥RS

0

∥∥
F
+ 2

∥∥RL
0

∥∥
F

)
+ εb

1 + ∆

1−∆
. (75)

Adding (73), (75), and (75) together gives

∥∥RL
0

∥∥
F
+
∥∥RS

0

∥∥
F
+ ‖R1‖F ≤

1

1−∆

(
2γ

1− γ2
+∆

)(
5
∥∥RL

0

∥∥
F
+ 5

∥∥RS
0

∥∥
F
+ 2 ‖R1‖F

)
+ 3 εb

1 + ∆

1−∆
,

(76)

For ∆ < 1
7 − 2γ the prefactor 1

1−∆

(
∆+ 2γ

1−γ2

)
< 1

6 and therefore also ∆
1−∆ < 1

6 , resulting into

(76) being upper bounded as

∥∥RL
0

∥∥
F
+
∥∥RS

0

∥∥
F
+ ‖R1‖F ≤

5

6

(∥∥RL
0

∥∥
F
+
∥∥RS

0

∥∥
F
+ ‖R1‖F

)
+

7

2
εb, (77)

which after rearranging yields
∥∥RL

0

∥∥
F
+
∥∥RS

0

∥∥
F
+ ‖R1‖F ≤ 21 εb . (78)

Applying the triangle inequality on R = RL
0 +RS

0 +R1+
(∑

j≥2 Rj

)
and using the bounds in (66)

and (78) concludes the proof

‖R‖F ≤
∥∥RL

0

∥∥
F
+
∥∥RS

0

∥∥
F
+ ‖R1‖F +

∑

j≥2

‖Rj‖

≤ 2
∥∥RL

0

∥∥
F
+ 2

∥∥RS
0

∥∥
F
+ ‖R1‖F ≤ 42 εb .

3.2. Recovery of X0 ∈ LSm,n(r, s, µ) by Alg. 1 and Alg. 2.

This section presents the proofs of Theorem 4 and 5, that NIHT and NAHT respectively recover
X0 ∈ LSm,n(r, s, µ) from A(X0) and knowledge of (r, s, µ) provided the RICs of A(·) are sufficiently
bounded.

The proof of NIHT follows the same line of thought as the one for low-rank matrix completion
[30], with the only difference of the hard thresholding projection, in the form of RPCA, being an
imprecise projection with accuracy εp as stated in (12). The proof consists of deriving an inequality
where ‖Xj+1 − X0‖F is bounded by a factor multiplying ‖Xj − X0‖F , and then showing that this
multiplicative factor is strictly less then one if A satisfies RIC with ∆3 := ∆r,s,µ(A) < 1/5.
Proof of Theorem 4 (Guaranteed recovery by NIHT, Alg. 1).

Proof. Let b = A(X0) be the vector of measurements of the matrix X0 ∈ LSm,n(r, s, µ) and W j =
Xj − αj A∗ (A(Xj)− b

)
to be the update of Xj before the oblique Robust PCA projection step

Xj+1 = RPCAr,s,µ(W
j , εp). By Xj+1 being within an εp distance in the Frobenius norm of the

optimal RPCA projection Xj+1
rpca := RPCAr,s,µ(W

j , 0) defined in (12)

∥∥W j −Xj+1
∥∥2
F
=
∥∥W j −Xj+1

rpca +Xj+1
rpca −Xj+1

∥∥2
F

(79)

≤
(∥∥W j −Xj+1

rpca

∥∥
F
+
∥∥Xj+1 −Xj+1

rpca

∥∥
F

)2
(80)

≤
(∥∥W j −X0

∥∥
F
+ εp

)2
, (81)
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where in the second line we used the triangle inequality, and the third line comes from Xj+1
rpca being

the optimal projection thus being the closest matrix in LSm,n(r, s, µ) to W j in the Frobenius norm
and by Xj+1 being within εp distance of Xj+1

rpca. By expansion of the left hand side of (79)

∥∥W j −Xj+1
∥∥2
F
=
∥∥W j −X0 +X0 −Xj+1

∥∥2
F

(82)

=
∥∥W j −X0

∥∥2
F
+
∥∥X0 −Xj+1

∥∥2
F
+ 2

〈
W j −X0, X0 −Xj+1

〉
(83)

=
(∥∥W j −X0

∥∥
F
+ εp

)2 ≤
∥∥W j −X0

∥∥2
F
+ 2 εp

∥∥W j −X0

∥∥
F
+ εp

2 (84)

where the last line (84) follows from the inequality in (81). Subtracting ‖W j −X0‖2F from both sides
of (84) gives

∥∥Xj+1 −X0

∥∥2
F
≤ 2

〈
W j −X0, X

j+1 −X0

〉
+ 2 εp

∥∥W j −X0

∥∥
F
+ εp

2 . (85)

The matrix W j in the inner product on the right hand side of (85) can be expressed using the
update rule W j = Xj − αj A∗ (A

(
Xj
)
− b
)

2
〈
W j −X0, X

j+1 −X0

〉

= 2〈Xj −X0, X
j+1 −X0〉 − 2αj

〈
A∗A

(
Xj −X0

)
, Xj+1 −X0

〉
(86)

= 2
〈
Xj −X0, X

j+1 −X0

〉
− 2αj

〈
A
(
Xj −X0

)
, A
(
Xj+1 −X0

)〉
(87)

≤ 2
∥∥I − αj A

∗
QAQ

∥∥
2

∥∥Xj −X0

∥∥
F

∥∥Xj+1 −X0

∥∥
F
, (88)

where in the first line we use that b = A(X0) is the vector of measurements5 and linearity of A, in the
second line we split the inner product into two inner products by linearity of A, and the inequality in
the third line is a consequence of Lemma Appendix B.8.

The matrix W j can be expressed using the update rule W j = Xj − αj A∗ (A
(
Xj
)
− b
)
in the

second term of the right hand side of (85) and upper bounded by Lemma Appendix B.8

∥∥W j −X0

∥∥
F
=
∥∥Xj −X0 − αj A∗ (A

(
Xj −X0

))∥∥
2

(89)

≤
∥∥I − αj A

∗
QAQ

∥∥
2

∥∥Xj −X0

∥∥
F
. (90)

By Lemma Appendix B.8, the eigenvalues of
(
I − αj A

∗
QAQ

)
are bounded by

1− αj (1 + ∆3) ≤ λ
(
I − αj A

∗
QAQ

)
≤ 1− αj (1−∆3) , (91)

where ∆3 := ∆3r,3s,µ.
Consider the stepsize computed in Algorithm 1, Line 3 inspired by the previous work on NIHT in

the context of compressed sensing [29] and low-rank matrix sensing [30]

αj =

∥∥∥Proj(Uj ,Ωj)

(
Rj
)∥∥∥

2

F∥∥∥A
(
Proj(Uj ,Ωj) (R

j)
)∥∥∥

2

2

(92)

where the projection Proj(Uj ,Ωj)

(
Rj
)
ensures that the residualRj is projected onto the set LSm,n(r, s, µ).

Then we can bound αj using the RIC of A as

1

1 + ∆1
≤ αj ≤

1

1−∆1
, (93)

5Here it would be possible to extend the result to be stable under measurement error εb as done in Theorem 3 by
adding an error term in (86).
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where ∆1 := ∆r,s,µ. Combining (91) with (93) gives

1− 1 + ∆3

1−∆1
≤ λ

(
I − αj A

∗
QAQ

)
≤ 1− 1−∆3

1 + ∆1
. (94)

Since ∆3 ≥ ∆1, the magnitude of the lower bound in (94) is greater than the upper bound. Therefore

η := 2

(
1 + ∆3

1−∆1
− 1

)
≥ 2

∥∥I − αj A
∗
QAQ

∥∥
2
, (95)

where the constant η is strictly smaller than one if ∆3 < 1/5.
Finally, the error in (85) can be upper bounded by (88) combined with (90) with η being the upper

bound on the operator norm in (95)

∥∥Xj+1 −X0

∥∥2
F
≤ η

∥∥Xj −X0

∥∥
F

∥∥Xj+1 −X0

∥∥
F
+ η εp

∥∥Xj −X0

∥∥
F
+ εp

2 . (96)

It remains to show the inequality (96) implies the update rule contracts the error and the iterates
Xj converge to a matrix within the precision εp of the RPCA. For the ease of notation we rewrite
(96) using the notation ej := ‖Xj −X0‖F and arrange the inequality into a squared form

(
ej+1

)2 ≤ η ej ej+1 + η εp ej + εp
2

(
ej+1 − 1

2
ηej
)2

≤
(
1

2
ηej + εp

)2

. (97)

Since the right hand side of (97) is positive, we have ej+1 ≤ ηej + εp, which by 1/5 > ∆3 ≥ ∆1 gives
an upper bound on the convergence rate

∥∥Xj+1 −X0

∥∥
F
≤ 4∆3

1−∆3

∥∥Xj −X0

∥∥
F
+ εp .

Proof of Theorem 5 (Guaranteed recovery of NAHT, Alg. 2).

Proof. Let b = A(X0) be the vector of measurements6 of the matrix X0 ∈ LSm,n(r, s, µ) and V j =
Lj −αL

j A∗ (A(Xj)− b
)
to be the update of Lj before the rank r projection Lj+1 = HT(V j ; r, µ). As

a consequence of Lj+1 being the closest rank r matrix to V j in the Frobenius norm we have that
∥∥V j − L0

∥∥2
F
≥
∥∥V j − Lj+1

∥∥2
F
=
∥∥V j − L0 + L0 − Lj+1

∥∥2
F

=
∥∥V j − L0

∥∥2
F
+
∥∥L0 − Lj+1

∥∥2
F
+ 2

〈
V j − L0, L0 − Lj+1

〉
. (98)

Subtracting
∥∥V j − L0

∥∥2
F
from both sides of (98) and rearranging terms gives

∥∥L0 − Lj+1
∥∥2
F
≤ 2

〈
V j − L0, L

j+1 − L0

〉
(99)

=2
〈
Lj − αL

j A∗ (A
(
Xj −X0

))
− L0, L

j+1 − L0

〉
(100)

=2
〈
Lj − L0 − αL

j A∗ (A
(
Lj − L0 + Sj − S0

))
, Lj+1 − L0

〉
(101)

=2
〈
Lj − L0, L

j+1 − L0

〉
− 2αL

j

〈
A
(
Lj − L0

)
, A
(
Lj+1 − L0

)〉

− 2αL
j

〈
A
(
Sj − S0

)
, A
(
Lj+1 − L0

)〉
(102)

≤2
∥∥I − αL

j A∗
QAQ

∥∥ ∥∥Lj − L0

∥∥
F

∥∥Lj+1 − L0

∥∥
F

+ 2αL
j ρ2

∥∥Sj − S0

∥∥
F

∥∥Lj+1 − L0

∥∥
F
, (103)

6Again, it is possible to extend the result to the case when there is a measurement error εb as done in Theorem 3
by having b = A(X0) + e, with ‖e‖2 ≤ εb.
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where in the second line we expanded V j using the update rule V j = Lj − αL
j A

(
A(Xj)− b

)
and

b = A(X0), in the third line we expanded Xj = Lj + Sj, in the fourth line we split the inner product
into two inner products by linearity of A, and in the last line the inequality comes from Lemma
Appendix B.8 bounding the first two terms and Lemma Appendix B.7 bounding the third term

with ρ2 :=
(
∆2 +

2γ2

1−γ2
2

)
where ∆2 := ∆2r,2s,µ and γ2 := µ 2r

√
2s√

mn
since

(
Lj+1 − L0 + Sj − S0

)
∈

LSm,n(2r, 2s, µ). Dividing both sides of (103) by
∥∥L0 − Lj+1

∥∥
F
gives

∥∥L0 − Lj+1
∥∥
F
≤ 2

∥∥I − αL
j A∗

QAQ

∥∥ ∥∥Lj − L0

∥∥
F
+ 2αL

j ρ2
∥∥Sj − S0

∥∥
F
. (104)

LetW j = Sj−αS
j A∗

(
A(Xj+ 1

2 )− b
)
be the subsequent update of Sj before the s-sparse projection

Sj+1 = HTs(W
j). By Sj+1 being the closest s sparse matrix to W j in the Frobenius norm and by

‖S0‖0 ≤ s, it follows that

∥∥W j − S0

∥∥2
F
≥
∥∥W j − Sj+1

∥∥2
F
=
∥∥W j − S0 + S0 − Sj+1

∥∥2
F

=
∥∥W j − S0

∥∥2
F
+
∥∥S0 − Sj+1

∥∥2
F
+ 2

〈
W j − S0, S0 − Sj+1

〉
. (105)

Subtracting
∥∥W j − S0

∥∥2
F
from both sides in (105) and rearranging terms gives

∥∥S0 − Sj+1
∥∥2
F
≤ 2

〈
W j − S0, S

j+1 − S0

〉
(106)

=2
〈
Sj − αS

j A∗
(
A
(
Xj+ 1

2 −X0

))
− S0, S

j+1 − S0

〉
(107)

=2
〈
Sj − S0 − αS

j A∗ (A
(
Lj+1 − L0 + Sj − S0

))
, Sj+1 − S0

〉
(108)

=2
〈
Sj − S0, S

j+1 − S0

〉
− 2αS

j

〈
A
(
Sj − S0

)
, A
(
Sj+1 − S0

)〉

− 2αS
j

〈
A
(
Lj+1 − L0

)
, A
(
Sj+1 − S0

)〉
(109)

≤2
∥∥I − αS

j A∗
QAQ

∥∥ ∥∥Sj − S0

∥∥
F

∥∥Sj+1 − S0

∥∥
F

+ 2αS
j ρ2

∥∥Lj+1 − L0

∥∥
F

∥∥Sj+1 − S0

∥∥
F
, (110)

where in the second line we express W j using the update rule W j = Sj − αS
j A

(
A(Xj+ 1

2 )− b
)
and

b = A(X0), in the third line we expanded Xj+ 1
2 = Lj+1 + Sj , in the fourth line we split the inner

product into two inner products by linearity of A, and the inequality in the last line comes from
Lemma Appendix B.8 bounding the first two terms and Lemma Appendix B.7 bounding the third

term with ρ2 :=
(
∆2 +

2γ2

1−γ2
2

)
where ∆2 := ∆2r,2s,µ and γ2 := γ2r,2s,µ since

(
Lj+1 − L0 + Sj+1 − S0

)
∈

LSm,n(2r, 2s, µ). Dividing both sides of (110) by
∥∥S0 − Sj+1

∥∥
F
gives

∥∥S0 − Sj+1
∥∥
F
≤ 2

∥∥I − αS
j AT

QAQ

∥∥ ∥∥Sj − S0

∥∥
F
+ 2αS

j ρ2
∥∥Lj+1 − L0

∥∥
F
. (111)

Adding together (104) and (111)
∥∥L0 − Lj+1

∥∥
F
+
∥∥S0 − Sj+1

∥∥
F
≤

2
∥∥I − αL

j AT
QAQ

∥∥ ∥∥Lj − L0

∥∥
F
+ 2αL

j ρ2
∥∥Sj − S0

∥∥
F

+2
∥∥I − αS

j AT
QAQ

∥∥ ∥∥Sj − S0

∥∥
F
+ 2αS

j ρ2
∥∥Lj+1 − L0

∥∥
F
, (112)

which after rearranging terms in (112) becomes
(
1− 2αS

j ρ2
) ∥∥L0 − Lj+1

∥∥
F
+
∥∥S0 − Sj+1

∥∥
F

≤ 2
∥∥I − αL

j AT
QAQ

∥∥ ∥∥Lj − L0

∥∥
F

+2
(∥∥I − αS

j AT
QAQ

∥∥+ αL
j ρ2

) ∥∥Sj − S0

∥∥
F

(113)
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and because αS
j , α

L
j ,∆2 ≥ 0 and γ2 ∈ (0, 1), subtracting 2αS

j ρ2‖S0 − Sj+1‖F on the left does not

increase the left hand side while adding 2αL
j ρ2

∥∥Lj − L0

∥∥
F

on the right does not decrease the right
hand side of (113), therefore

(
1− 2αS

j ρ2
) (∥∥L0 − Lj+1

∥∥
F
+
∥∥S0 − Sj+1

∥∥
F

)

≤ 2
(∥∥I − αj A

T
QAQ

∥∥+ αL
j ρ2

) (∥∥Lj − L0

∥∥
F
+
∥∥Sj − S0

∥∥
F

)
, (114)

where
∥∥I − αj A

T
QAQ

∥∥ = max
{∥∥I − αL

j AT
QAQ

∥∥ ,
∥∥I − αS

j AT
QAQ

∥∥}. Dividing both sides of (114) by(
1− 2αS

j ρ2
)
simplifies to

∥∥L0 − Lj+1
∥∥
F
+
∥∥S0 − Sj+1

∥∥
F

≤ 2

∥∥I − αj A
T
QAQ

∥∥+ αL
j ρ2

1− 2αS
j ρ2

(∥∥Lj − L0

∥∥
F
+
∥∥Sj − S0

∥∥
F

)
. (115)

By Lemma Appendix B.8, the eigenvalues of
(
I − αj A

T
QAQ

)
can be bounded as

1− αj (1 + ∆3) ≤ λ
(
I − αj A

T
QAQ

)
≤ 1− αj (1−∆3) , (116)

with ∆3 := ∆3r,3s,µ being the RIC of A. By αL
j and αS

j being the normalized stepsizes as introduced
in [29, 30]

αL
j =

∥∥∥Proj(Uj ,Ωj)

(
Rj
)∥∥∥

2

F∥∥∥A
(
Proj(Uj ,Ωj) (R

j)
)∥∥∥

2

2

and αS
j =

∥∥∥Proj(Uj+1,Ωj)

(
Rj
)∥∥∥

2

F∥∥∥A
(
Proj(Uj+1,Ωj) (R

j)
)∥∥∥

2

2

(117)

where the projection Proj(Uj ,Ωj)

(
Rj
)
,Proj(Uj+1,Ωj)

(
Rj+ 1

2

)
ensures that the residual Rj and Rj+ 1

2

is projected into the set LSm,n(r, s, µ). Then, it follows from the RIC for A that the stepsizes αL
j , α

S
j

can be bounded as
1

1 + ∆1
≤ α

L/S
j ≤ 1

1−∆1
, (118)

where ∆1 := ∆r,s,µ. Putting (116) and (118) together

1− 1 + ∆3

1−∆1
≤ λ

(
I − α

L/S
j AT

QAQ

)
≤ 1− 1−∆3

1 + ∆1
. (119)

Since ∆3 ≥ ∆1 we have that the magnitude of the lower bound in (119) is greater than the upper
bound. Therefore

1 + ∆3

1−∆1
− 1 ≥

∥∥∥I − α
L/S
j AT

QAQ

∥∥∥
2
. (120)

Finally, the constant on the right hand side of (115) can be upper bounded

η := 2

∥∥I − αS
j AT

QAQ

∥∥+ αL
j ρ2

1− 2αS
j ρ2

(121)

≤ 2

(
1+∆3

1−∆1
− 1
)
+ 1

1−∆1

(
∆2 +

2γ2

1−γ2
2

)

1− 2 1
1−∆1

(
∆2 +

2γ2

1−γ2
2

) = 2
∆3 +∆1 +∆2 +

2γ2

1−γ2
2

1−∆1 − 2∆2 − 4γ2

1−γ2
2

(122)

≤
6∆3 +

4γ2

1−γ2
2

1− 3∆3 − 4γ2

1−γ2
2

(123)
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where the inequality in the second line in (122) comes from upper bounds in (120) and in (118), and
the third line in (123) follows from ∆2 ≥ ∆1.

To ensure that η < 1, it suffices to show that the right-hand side in (123) is smaller than one,
which translates to

∆3 ≤
1

9

(
1− 8

γ2
1− γ2

2

)
, (124)

which is satisfied when ∆3 ≤ 1
9 − γ2. For ∆3r,3s,µ < 1

9 − γ2 the inequality in (115) implies contraction
of the error ∥∥L0 − Lj+1

∥∥
F
+
∥∥S0 − Sj+1

∥∥
F
≤ η

(∥∥Lj − L0

∥∥
F
+
∥∥Sj − S0

∥∥
F

)
, (125)

because η < 1, which guarantees linear convergence of iterates Lj and Sj to L0 and S0 respectively.

4. Numerical experiments

This section demonstrates the computational efficacy of recoverying a low-rank plus sparse matrix
X0 ∈ LSm,n(r, s, µ) from its undersampled values A(X0). Section 4.1 considers synthetic examples
where matrices in X0 ∈ LSm,n(r, s, µ) are created, and recovery from their undersampled values at-
tempted for the following algorithms: NIHT (Alg. 1), NAHT (Alg. 2), SpaRCS [34], and the convex
relaxation (8). Figure 1 presents empirically observed phase transitions, which indicate the values of
model complexity r, s, and measurements p for which recovery is possible. Figure 2 and 3 gives ex-
amples of convergence rates for NIHT, NAHT, and SpaRCS, including contrasting different methods
to implement the projection NIHT, step 5 of Alg. 1. Section 4.2 presents applications to dynamic-
foreground/static-background and computational multispectal imaging. An additional phase transi-
tion simulation for the convex relaxation is given in Appendix Appendix A. Software to reproduce
the experiments in this section is publicly available7.

4.1. Empirical average case performance on synthetic data

Synthetic matrices X0 = L0 + S0 ∈ LSm,n(r, s, µ) are generated using the experimental setup
proposed in the Robust PCA literature [28, 38, 33]. The low-rank component is formed as L0 = UV T ,
where U ∈ R

m×r, V ∈ R
n×r are two random matrices having their entries drawn i.i.d. from the

standard Gaussian distribution. The support set of the sparse component S0 is generated by sampling
a uniformly random subset of [m]× [n] indices of size s and each non-zero entry (S0)i,j is drawn from
the uniform distribution over [−E (|(L0)i,j |) ,E (|(L0)i,j |)]. Each synthetic matrix is measured using
linear operators A : Rm×n → R

p. The random Gaussian measurement operators are constructed by p

matrices A(ℓ) ∈ R
m×n whose entries are sampled from Gaussian distribution A

(ℓ)
i,j ∼ N (0, 1/p) where

p is the number of measurements. The Fast Johnson-Lindenstrauss Transform is implemented as

AFJLT (X) = RHD vec (X) , (126)

where R ∈ R
p×mn is a restriction matrix constructed from a mn ×mn identity matrix with p rows

randomly selected, H ∈ R
mn×mn is discrete cosine transform matrix, D ∈ R

mn×mn is a diagonal
matrix whose entries are sampled independently randomly from {−1, 1}, and vec (X) ∈ R

mn is the
vectorized matrix X ∈ R

m×n.
Theorems 1, 3, 4, and 5 indicate that recovery of X0 from A(X0) depends on the problem dimen-

sions through the ratios of the number of measurements p with the ambient dimension mn, and the
minimum number of measurements, r(m+n−r)+s, through an undersampling and two oversampling
ratios

δ =
p

mn
and ρr =

r(m + n− r)

p
, ρs =

s

p
. (127)

7https://github.com/SimonVary/lrps-recovery
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The matrix dimensions m and n are held fixed, while p, r and s are chosen according to varying
parameters δ, ρr and ρs. For each pair of ρr, ρs ∈ {0, 0.02, 0.04, . . . , 1} where ρr + ρs ≤ 1, with the
sampling ratio restricted to values δ ∈ {0.02, 0.04, . . . , 1}, 20 simulated recovery tests are conducted
and we compute the critical subsampling ratio δ∗ above which more than half of the experiments
succeeded. For the linear transform A drawn from the (dense) Gaussian distribution, the highest per
iteration cost in NIHT and NAHT comes from applying A to the residual matrix, which requires pmn
scalar multiplications which scales proportionally to (mn)

2
. For this reason, our tests are restricted to

the matrix size of m = n = 100 in the case of NIHT and NAHT, and to a smaller size m = n = 30 for
testing the recovery by solving the convex relaxation (8) with semidefinite programming [39] that has
O
(
(mn)2

)
variables which is more computationally demanding8 compared to the hard thresholding

gradient descent methods. Algorithms are terminated at iteration ℓ when either: the relative residual
error is smaller than 10−6, that is when ‖A(Xℓ) − b‖2/‖b‖2 ≤ 10−6‖b‖2, or the relative decrease in
the objective is small ( ‖A(Xℓ)− b‖2

‖A(Xℓ−15)− b‖2

)1/15

> 0.999, (128)

or the maximum of 300 iterations is reached. An algorithm is considered to have successfully recovered
X0 ∈ LSm,n(r, s, µ) if it returns a matrix Xℓ ∈ LSm,n(r, s, µ) that is within 10−2 of X0 in the relative
Frobenius error, ‖Xℓ −X0‖F ≤ 10−2‖X0‖F .

Figure 1 depicts the phase transitions of δ above which NIHT and NAHT successfully recovers
X0 in more than half of the experiments. For example, the level curve 0.4 in Fig. 1 denotes the
values of ρr and ρs below which recovery is possible for at least half of the experiments for p = 0.4mn
and ρr, ρs as given by (127). Note that the bottom left portion of Fig. 1 corresponds to smaller
values of model complexity (r, s) and are correspondingly easier to recover than larger values of (r, s).
Both algorithms are observed to recover matrices with prevalent rank structure, ρr ≤ 0.6, even from
very few measurements as opposed to matrices with prevalent sparse structure requiring in general
more measurements for a successful recovery. Phase transitions corresponding to the sparse-only
(ρr = 0) and to the rank-only (ρs = 0) cases are roughly in agreement with phase transitions that
have been observed for non-convex algorithms in compressed sensing [40] and matrix completion
literature [30, 41]. We observe that NAHT achieves almost identical performance to NIHT in terms
of possible recovery despite not requiring the computationally expensive Robust PCA projection in
every iteration. For both algorithms we see that the successful recovery is possible for matrices with
higher ranks and sparsities in the case of FJLT measurements compared to Gaussian measurements.

Equivalent experiments are conducted for the convex relaxation (8), but with smaller matrix size
30 × 30 and limited to 10 simulations for each set of parameters due to the added computational
demands. The convex optimization is formulated using CVX modeling framework [42] and solved in
Matlab by the semidefinite programming optimization package SDPT3 [39]. We observe that recovery
by solving the convex relaxation is successful for somewhat lower ranks and sparsities and requiring
larger sampling ratio δ compared to the non-convex algorithms. The observed phase transitions of the
convex relaxation alongside phase transitions for m = n = 30 experiments with NIHT and NAHT are
depicted in Figure A.6 in Appendix A. Comparing the phase transitions of the non-convex algorithms
in Fig. 1 and Fig. A.6 show that with the increased problem size, the phase transition are independent
of the dimension with only small differences due to finite dimensional effects of the smaller problem
size in the case of m = n = 30.

Figure 2 presents convergence timings of Matlab implementations of the three non-convex algo-
rithms used for recovery of matrices with m = n = 100 from p = (1/2)102 (δ = 1/2) measurements
and three values of ρr = ρs = {0.05, 0.1, 0.2}. The convergence results are presented for two variants
of NIHT with different Robust PCA algorithms Accelerated Alternating Projection (AccAltProj) [33]

8As an example, a low-rank plus sparse matrix with m = n = 100 with ρr = ρs = 0.1 undersampled and measured
with Gaussian matrix with δ = 0.5 takes 2.5 seconds and 2.3 seconds to recover using NIHT and NAHT respectively,
while the recovery using the convex relaxation takes over 7 hours.
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(c) NAHT (Gaussian measurements)
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(d) NAHT (FJLT measurements)

Figure 1: Phase transition level curves denoting the value of δ∗ for which values of ρr and ρs below
which are recovered for at least half of the experiments for δ, ρr, and ρs as given by (127). NIHT is
observed to recover matrices of higher ranks and sparsities from FJLT than from Gaussian measure-
ments, while the phase transitions for NIHT and NAHT are comparable. The Robust PCA projection
in NIHT, step 5 in Alg. 1, is performed by AccAltProj [33].

and Go Decomposition (GoDec) [43] in the projection step 5 of Alg. 1. Both NIHT and NAHT con-
verge at a much faster rate than the existing non-convex algorithm for low-rank plus sparse matrix
recovery SpaRCS [34]. All the algorithms take longer to recover a matrix for increased rank r and/or
sparsity s.

The computational efficacy of NIHT compared to NAHT depends on the cost of computing the
Robust PCA calculation in comparison to the cost of applying A. NAHT computes two step sizes
in each iteration which results into computing A twice per iteration in comparison to just one such
computation per iteration in the case of NIHT. On the other hand, NIHT involves solving Robust PCA
in every iteration for the projection step whereas NAHT performs computationally cheaper singular
value decomposition (SVD) and sparse hard thresholding projection.

Figure 3 illustrates the convergence of the individual low-rank and sparse components ‖Lℓ−L0‖F
and ‖Sℓ − S0‖F as a function of time. The algorithms are observed to approximate the the low-rank
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Figure 2: Relative error in the approximate Xℓ as a function of time for synthetic problems with
m = n = 100 and p = (1/2)1002, δ = 1/2, for Gaussian linear measurements A. In (b), SpaRCS
converged in 171 sec. (45 iterations), and in (c), SpaRCS did not converge.
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Figure 3: Error between between the approximate recovered low-rank and sparse components Lℓ and
Sℓ and the true low-rank and sparse components L0 and S0. Error is plotted as a function of recovery
time for synthetic problems with m = n = 100 and p = (1/2)1002, δ = 1/2, for Gaussian linear
measurements A.

factor more accurately than the sparse component and that the computational time increases for
larger values of sparsity fraction ρs. Moreover, for both NIHT and NAHT the relative error of both
components decreases together.

4.2. Applications

4.2.1. Dynamic-foreground/static-background video separation

Background/foreground separation is the task of distinguishing moving objects from the static-
background in a time series, e.g. a video recording. A widely used approach is to arrange frames of the
video sequence into an m× n matrix, where m is the number of pixels and n is the number of frames
of the recording and apply Robust PCA to decompose the matrix into the sum of a low-rank and a
sparse component which model the static background and dynamic foreground respectively [3]. Herein
we consider the same problem but with the additional challenge of recovering the video sequence from
subsampled information [34] analogous to compressed sensing.

We apply NIHT, Alg. 1, to the well studied shopping mall surveillance [44] which is 256×256×150
video sequence. The video sequence is rearranged into a matrix of size 26 600×150 and measured using
subsampled FJLT (126) with one third as many meausrements as the ambient dimension, δ = 0.33.
The static-background is modeled with a rank-r matrix with r = 1 and the dynamic-foreground by an
s-sparse matrix with s = 197 505 (ρr = 0.02, ρs = 0.15). Figure 4 displays the reconstructed image
Xniht and its sparse component Sniht alongside the results obtained from applying Robust PCA
(AccAltProj [33]) which makes use of the fully sampled video sequence rather than the one-third

22



(a) Xrpca

(b) Xniht

(c) Srpca

(d) Sniht

Figure 4: NIHT recovery results of a 256×256×150 video sequence compared to the approximation of
the complete video sequence by Robust PCA (AccAltProj [33]). The video sequence is reshaped into
a 26 600× 150 matrix and either recovered from FJLT measurements with δ = 0.33 using rank r = 1
and sparsity s = 197 505 or approximated from the full video sequence by computing Robust PCA
by AccAltProj with the same rank and sparsity parameters. Recovery by NIHT from subsampled
information achieves PSNR of 34.5 dB whereas the Robust PCA approximation from the full video
sequence achieves PSNR of 35.5 dB.

measurements available to NIHT. NIHT accurately estimates the video sequence achieving PSNR of
34.5 dB while also separating the low-rank background from the sparse foreground. The results are
of a similar visual quality to the case of Robust PCA that achieves PSNR of 35.5 dB which requires
access to the full video sequence.

4.2.2. Computational multispectral imaging

A multispectral image captures a wide range of light spectra generating a vector of spectral re-
sponses at each image pixel thus acquiring information in the form of a third order tensor. Low-rank
model has a vital role in multispectral imaging in the form of a linear spectral mixing models that
assume the spectral responses of the imaged scene are well approximated as a linear combination of
spectral responses of only few core materials referred to as endmembers [45]. As such, the low-rank
structure can be exploited by computational imaging systems which acquire the image in a compressed
from and use computational methods to recover a high-resolutional image [46, 47, 48]. However, when
different materials are in close proximity the resulting spectrum can be highly nonlinear combination
of the endmembers resulting in anomalies of the model [49]. Herein we propose the low-rank plus
sparse matrix recovery as a way to model the spectral anomalies in the low-rank structure.

We employ NIHT on a 512 × 512 × 48 airborne hyperspectral image from the GRSS 2018 Data
Fusion contest [50] that is rearranged into a matrix of size 262 144× 48 and subsampled using FJLT
with δ = 0.33. Figure 5 demonstrates recovery by NIHT using rank r = 3 and sparsity s = 150 995
(ρr = 0.25, ρs = 0.05) in comparison with the the low-rank model with rank r = 3 and s = 0
(ρr = 0.25, ρs = 0). Both methods recover the image well but the low-rank plus sparse recovery
achieves slightly higher PSNR of 39.1 dB compared to the low-rank recovery that has PSNR of
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(a) Groundtruth Xtrue (b) Low-rank plus sparse Xniht (c) Low-rank Xmc

(d) PSNR (low-rank)

(e) PSNR (low-rank plus sparse)

Xtrue

Xniht

Xmc

(f) Detail 1 (694 nm) (g) Detail 2 (694 nm)

Figure 5: Recovery by NIHT from FJLT measurements with δ = 0.33 using low-rank model (ρr =
0.25, ρs = 0) compared to the low-rank plus sparse model (ρr = 0.25, ρs = 0.05). Figure 5a - 5b
show the color renderings of the original multispectral image and the two recovered images. Figure 5d
and Figure 5e show the spatial PSNR of the recovery from the low-rank only model (overall PSNR of
38.9 dB) and the low-rank plus sparse model (overall PSNR of 39.1 dB) respectively. Figure 5f and
Figure 5g show two details of size 128× 128 in the 694 nm band.

38.9 dB and slightly better fine details. Figure 5d and Figure 5e depict the localization of the error in
terms of PSNR and shows that adding the sparse component improves PSNR of a few localized parts.
Although the overall gain in the PSNR is small compared to the low-rank model, the differences in
the localized regions of the image can be potentially impactful when further analyzed in practical
applications such as semantic segmentation [51].

5. Conclusion

The main theorems, Theorems 1, 2, 3, 4, and 5, are the natural extension of analogous results
in the compressed sensing and matrix completion literature to the space of low-rank plus sparse ma-
trices, Definition 1.1, see [4, 5] and references therein. They establish the foundational theory and
provide examples of algorithms for recovery of matrices that can be expressed as a sum of a low-rank
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and a sparse matrix from under sampled measurements. While these results could be anticipated,
with [34] being an early non-convex algorithm for this setting, these advancements had not yet been
proven. We prove that the restricted isometry constants of random linear operators obeying concen-
tration of measure inequalities, such as Gaussian measurements or the Fast Johnson-Lindenstrauss
Transform, can be upper bounded when the number of measurements are of the order depending
on the degrees of freedom of the low-rank plus sparse matrix. Making use of these RICs, we show
that low-rank plus sparse matrices can be provably recovered by computationally efficient methods,
e.g. by solving semidefinite programming or by two gradient descent algorithms, when the restricted
isometry constants of the measurement operator are sufficiently bounded. These results also provably
solve Robust PCA with the asymptotically optimal number of corruptions and improve the previously
known guarantees by not requiring an assumption on the support of the sparse matrix. Numerical
experiments on synthetic data empirically demonstrate phase transitions in the parameter space for
which the recovery is possible. Experiments for dynamic-foreground/static-background video separa-
tion show that the segmentation of moving objects can be obtains with similar error from only one
third as many measurement as compared to the entire video sequence. The contributions here open
up the possibility of other algorithms in compressed sensing and low-rank matrix completion/sensing
to be extended to the case of low-rank plus sparse matrix recovery, e.g. more efficient algorithms such
as those employing momentum [52, 53] or minimising over increasingly larger subspaces [41]. These
results also illustrate how RICs can be developed for more complex additive data models, provided it
is possible to control the correlation between them, and one can expect that similar results would be
possible for new data models.
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Appendix A. Phase transitions for synthetic problem of size m = n = 30

Figure A.6 depicts the phase transitions of δ above which NIHT, NAHT and solving the convex
relaxation problem in (8) successfully recovers X0 in more than half of the experiments. Comparing
Fig. A.6 to Fig. 1 we see that the phase transitions roughly occur for the same parameters ρr, ρs with
only small differences due to the finite dimensional effects of the smaller problem size being more
pronounced when m = n = 30. We also observe that non-convex algorithms perform better than the
convex relaxation in that they are able to recover higher ranks and sparsities from fewer samples in
addition to also taking less time to converge.
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Figure A.6: Phase transition level curves denoting the value of δ∗ for which values of ρr and ρs below
which are recovered for at least 5 out of 10 experiments for δ, ρr, and ρs as given by (127). The convex
optimization problem is solved by SDPT3 [39]. NIHT and NAHT are observed to recover matrices of
higher ranks and sparsities compared to solving the convex relaxation.
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Appendix B. Supporting lemmata

The following lemma reveals the usefulness of incoherence in controlling the correlation between
incoherent low-rank and sparse matrices.

Lemma Appendix B.1 (Subadditivity of the LSm,n(r, s, µ) set). The sum of two incoherent low-
rank plus sparse matrices X1, X2 ∈ LSm,n(r, s, µ) is also an incoherent low-rank plus sparse matrix
X1 +X2 ∈ LSm,n(2r, 2s, µ), and consequently

LSm,n(r, s, µ) + LSm,n(r, s, µ) = LSm,n(2r, 2s, µ),

where the plus sign denotes the Minkowski sum of two sets.

Proof. Let X1, X2 ∈ LSm,n(r, s, µ) with X1 = L1+S1, X2 = L2+S2, and U1, U2 and V1, V2 being the
left and the right singular vectors of L1 and L2 respectively.

Construct the sum X = L + S, where L = L1 + L2, S = S1 + S2, and U, V are the left and right
singular vectors of the newly constructed L. Since the column space of U is a subspace of the column
space of the concatenated matrix [U1 U2] we have that the projection on U must have a smaller or
equal norm than the projection on [U1 U2]

∥∥UT ei
∥∥2
2
≤
∥∥∥[U1 U2]

T
ei

∥∥∥
2

2

= eTi [U1 U2] [U1U2]
T ei

=
∥∥UT

1 ei
∥∥2
2
+
∥∥UT

2 ei
∥∥2
2
≤ 2

µr

m
,

where in the third line we use the definition of incoherence. Since the rank of the matrix doubled, the

inequality yields the desired result ‖UT ei‖ ≤
√

µ2r
m . The argument can be followed mutatis mutandis

for the upper bound on the right singular vectors V .

Proof of Lemma 1.1 (LSm,n(r, s, µ) is a closed set), stated on page 3.

Proof. The first part (1) of the statement is proved as part of Lemma Appendix B.2.

To prove the second part (2) of the statement, let X = L+S ∈ LSm,n(r, s, µ) and denote γ = µ r
√
s√

mn

for which we have γ < 1 by µ <
√
mn/(r

√
s). By conicity of LSm,n(r, s, µ) we can assume without

loss of generality ‖X‖F = 1. The bound on the correlation in (1) states

γ ≥ |〈L, S〉|
‖L‖F‖S‖F

,

which combined with the rearranged terms of the identity ‖X‖2F = 1 = ‖L‖2F + ‖S‖2F +2〈L, S〉 yields

γ ≥ |〈L, S〉|
‖L‖F‖S‖F

=
1

2

∣∣∣∣
1

‖L‖F‖S‖F
− ‖S‖F‖L‖F

− ‖L‖F‖S‖F

∣∣∣∣ . (B.1)

The proof follows by showing that the inequality in (B.1) implies an upper bound on ‖L‖F and
‖S‖F . For ease of notation, we denote x := ‖L‖F and y := ‖S‖F , and multiply the inequality in (B.1)
by ‖L‖F ‖S‖F

2γxy ≥ |1− x2 − y2|. (B.2)

where we used that ‖L‖F , ‖S‖F are strictly positive.
The case of 1−x2− y2 ≥ 0 implies that x ≤ 1 and y ≤ 1, and thus concludes the proof. The other

case of 1− x2 − y2 ≤ 0 in (B.2) is equivalent to

2γxy ≥ x2 + y2 − 1,

30



which has two roots y = −cx ±
√
c2x2 − x2 + 1. Since x, y denote the Frobenius norm of L and S

respectively, we seek only the real roots, for which to exist we need c2x2 − x2 + 1 ≥ 0, and because
c < 1, we can rearrange the terms as

x ≤ 1√
1− γ2

,

which is equivalent to

‖L‖F ≤
1√

1− γ2
=

(
1− µ2 r

2s

mn

)−1/2

,

prooving the second statement (2) in Lemma 1.1. Applying the same arguments to ‖S‖F yields the
bound on the Frobenius norm of the sparse component.

Finally, to prove the third part of the statement (3), consider a sequence Xi = Li + Si ∈
LSm,n(r, s, µ) that converges to a matrix X ∈ R

m×n as i → ∞. Since, also ‖Xi‖F → ‖X‖F , we
have that for any εp > 0, there exists i0 ∈ N such that

∀i > i0 : ‖X‖F − εp ≤ ‖Xi‖F ≤ ‖X‖F + εp,

which, combined with ‖Li‖F ≤ τ ‖Xi‖F , implies that for all i ≥ i0 we have ‖Li‖F ≤ τ ‖X‖F + τ εp

where τ := (1− µ r2s
mn )

−1/2 by the second part of the statement (2).
Denote the closed set of rank-r matrices whose Frobenius norm is bounded by γ > 0 as

Lm,n (r, γ) =
{
Y ∈ R

m×n : rank (Y ) ≤ r, ‖Y ‖F ≤ γ
}
,

which is also compact by being closed and bounded.
We have that Li ∈ Lm,n (r, ‖X‖F + τ εp) for all i ≥ i0. Since the set is compact and closed, we

can assume, by passing to a subsequence, that Li
i→∞−−−→ L ∈ Lm,n (r, τ ‖X‖F + τ εp) as i ≥ i0.

Additionally, since τ > 0 is fixed, the upper bound of the Frobenius norm of the low-rank compo-
nent ‖Li‖F ≤ τ ‖Xi‖F must also hold in the limit ‖L‖F ≤ τ ‖X‖F .

By the set of s-sparse matrices being closed, we have that the limit point

Si = Xi − Li → X − L,

is also an s-sparse matrix, thus

X = L+ (X − L) ∈ LSm,n(r, s, µ),

proving that LSm,n(r, s, µ) is closed.

Lemma Appendix B.2 (The rank-sparsity correlation bound). Let L, S ∈ R
m×n and L = UΣV T

be the singular value decomposition of L, then

|〈L, S〉| ≤
∥∥abs (U) abs

(
V T
)∥∥

∞ σmax (L) ‖S‖1 , (B.3)

where abs(·) denotes the entry-wise absolute value of a matrix, the matrix norms are vectorised entry-
wise ℓp-norms, and σmax (L) is the largest singular value of L. As a consequence, if L is a rank-r
matrix that is µ-incoherent and S is an s-sparse matrix

|〈L, S〉| ≤ µ
r
√
s√

mn
‖L‖F ‖S‖F . (B.4)
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Proof. For L, S ∈ R
m×n and L = UΣV T being the singular value decomposition of L, we have

|〈L, S〉| =

∣∣∣∣∣∣
∑

(i,j)∈[m]×[n]

Si,j Li,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(i,j)∈[m]×[n]

Si,j e
T
i UΣV T fj

∣∣∣∣∣∣
(B.5)

≤
∑

(i,j)∈[m]×[n]

|Si,j |
∣∣∣
(
UT ei

)T
Σ
(
V T fj

)∣∣∣ (B.6)

=
∑

(i,j)∈[m]×[n]

|Si,j |
∣∣∣∣∣

r∑

k=1

σk

(
UT ei

)
k

(
V T fj

)
k

∣∣∣∣∣ (B.7)

≤
∑

(i,j)∈[m]×[n]

|Si,j |
r∑

k=1

σk abs
(
UT ei

)
k
abs

(
V T fj

)
k

(B.8)

≤ σmax(L)
∑

(i,j)∈[m]×[n]

|Si,j | abs
(
UT ei

)T
abs

(
V T fj

)
(B.9)

≤ σmax(L) ‖S‖1
∥∥abs (U) abs

(
V T
)∥∥

∞ (B.10)

where in the first line in (B.5) we denote ei ∈ R
m, fi ∈ R

n to be the canonical basis vectors of Rm

and R
n, the inequality in the second line (B.6) comes from the subadditivity of the absolute value,

in the third line (B.7) we write out the inner product as a sum, in the fourth line (B.8) we use the
subadditivity and multiplicativity of the abslolute value and denote abs(·) as the entry-wise absolute
value of a vector, the fifth line (B.9) comes from σmax(L) being the largest singular value of L, and
the final line in (B.10) comes from the entry-wise ℓ∞-norm bounding the absolute value of all entries
of
(
abs (U) abs

(
V T
))
.

If the low-rank component L is also µ-incoherent, we further have

∥∥abs (U) abs
(
V T
)∥∥

∞ = max
(i,j)∈[m]×[n]

abs
(
UT ei

)T
abs

(
V T fj

)
(B.11)

≤
∥∥UT ei

∥∥
2

∥∥V T fj
∥∥
2

(B.12)

≤ µ
r√
mn

, (B.13)

where the first upper bound comes from the Cauchy-Schwarz inequality on the entry-wise absolute
values of UT ei and V T fj , and the second upper bound comes from the definition of incoherence in
(13) Combining (B.13) with (B.10), the fact that ‖S‖1 ≤

√
s ‖S‖F for s-sparse matrices, and that

σmax ≤ ‖L‖F yields the result in (B.4)

Proof of Lemma 2.1 (RIC for a fixed LS subspace), stated on page 8.
The proof uses similar to arguments as [25, Lemma 5.1] and [11, Lemma 4.3] with the exception that
here we consider two subsets, one for the low rank and another for the sparse component.

Proof. By the linearity of A(·) and conicity of Σm,n(V,W, T, µ) we can assume without loss of general-

ity that ‖X‖F = 1. By Lemma 1.1 with ‖X‖F = 1 and µ <
√
mn

r
√
s
, we can bound the Frobenius norm

of the low-rank and the sparse component as ‖L‖F ≤ τ and ‖S‖F ≤ τ , where τ :=
(
1− µ2 r2s

mn

)−1/2

.

There exist two finite (∆̄/8)-coverings of the two matrix sets with bounded norms

{
L ∈ R

m×n : C(L) ⊆ V, C(LT ) ⊆W, ‖L‖F ≤ τ
}

(B.14)
{
S ∈ R

m×n : S ⊆ T, ‖S‖F ≤ τ
}
, (B.15)
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that we denote ΛL,ΛS and by [54, Chapter 13] they are subsets of the two sets in (B.14) and (B.15),
and their covering numbers are upper bounded as

∣∣ΛL
∣∣ ≤

(
24

∆̄
τ

)dimV ·dimW ∣∣ΛS
∣∣ ≤

(
24

∆̄
τ

)dimT

. (B.16)

Let Λ :=
{
QL +QS : QL ∈ ΛL, QS ∈ ΛS

}
be the set of sums of all possible pairs of the two coverings.

The set Λ is a (∆̄/4)-covering of the set Σm,n (V,W, T, µ) since for all X ∈ Σm,n (V,W, T, µ) there
exists a pair Q ∈ Λ such that

‖X −Q‖F =
∥∥L+ S −

(
QL +QS

)∥∥
F

(B.17)

≤
∥∥L−QL

∥∥
F
+
∥∥S −QS

∥∥
F
≤ ∆̄

8
+

∆̄

8
, (B.18)

where in the first line we used the fact that X can be expressed as L + S, and in the second line we
applied the triangular inequality combined with the QL, QS being (∆̄/8)-coverings of the matrix sets
for the low-rank component and the sparse component respectively.

Applying the probability union bound on concentration of measure of A as in (4) with εp = ∆̄/2
gives that

(∀Q ∈ Λ) :

(
1− ∆̄

2

)
‖Q‖F ≤ ‖A(Q)‖2 ≤

(
1 +

∆̄

2

)
‖Q‖F , (B.19)

holds with the probability at least

1− 2

(
24

∆̄
τ

)dimV ·dimW (
24

∆̄
τ

)dimT

exp

(
−p

2

(
∆̄2

8
− ∆̄3

24

))
. (B.20)

By Σm,n(V,W, T, µ) being a closed set by Lemma 1.1, the maximum

M = max
Y ∈Σm,n(V,W,T,µ), ‖Y ‖F=1

‖A(Y )‖2, (B.21)

is attained. Then there exists Q ∈ Λ such that

‖A(X)‖2 ≤ ‖A(X)‖2 + ‖A(X −Q)‖2 ≤ 1 +
∆̄

2
+M

∆̄

4
, (B.22)

where the first inequality comes from applying the triangle inequality to X and Q − X and in the
second inequality we used (B.19) to upper bound ‖A(X)‖2 since (X − Q) ∈ Σm,n(V,W, T, µ) by
Lemma Appendix B.1 and the upper bound of ‖X −Q‖F comes from Q ∈ Λ combined with Λ being
a (∆̄/4)-covering. Note that the inequality (B.22) holds for all X ∈ Σm,n(V,W, T, µ) whose Frobenius

norm ‖X‖F = 1 and thus also for a matrix X̂ for which the maximum in (B.21) is attained. The

inequality in (B.22) applied to the matrix that attains the maximum X̂ yields

M ≤ 1 +
∆̄

2
+M

∆̄

4
=⇒ M ≤ 1 + ∆̄. (B.23)

The lower bound follows from the reverse triangle inequality

‖A(X)‖2 ≥ ‖A(Q)‖2 − ‖A(X −Q)‖2 ≥
(
1− ∆̄

2

)
− (1 + ∆̄)

∆̄

4
≥ 1− ∆̄ (B.24)

where the second inequality comes from ‖A(X −Q)‖2 ≤ M ‖X −Q‖F ≤
(
1 + ∆̄

)
∆̄
4 by (B.21) com-

bined with Q being an element of a (∆̄/4)-covering.
Combining (B.22) with the bound on M in (B.23) gives the upper bound and (B.24) gives the

lower bound on ‖A(X)‖2 completing the proof.
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Lemma Appendix B.3 (ε-covering of the Grassmannian [36, Theorem 8]). Let (G(D, d), ρ(·, ·)) be
a metric space on a Grassmannian manifold G(D, d) with the metric ρ as defined in (19). Then there

exists ε-covering G(D, d) with Λ = {Ui}Ni=1 ⊂ G(D, d) such that

∀U ∈ G(D, d) : min
Û∈Λ

ρ(U, Û) ≤ ε, (B.25)

and N ≤
(
C0

ε

)d(D−d)
with C0 independent of ε, bounded by C0 ≤ 2π.

The above bound on the covering number of the Grassmannian is used in the following lemma to
bound the covering number of the set LSm,n(r, s, τ).
Proof of Lemma 2.3 (Covering number of LSm,n(r, s)), stated on page 9.

Proof. By Lemma Appendix B.3 there exist two finite (ε/2)-coverings Λ1 := {Vi}|Λ1|
i=1 ⊆ G(m, r) and

Λ2 := {Wi}|Λ2|
i=1 ⊆ G(n, r), with their covering numbers upper bounded as

|Λ1| ≤
(
4π

ε

)r(m−r)

|Λ2| ≤
(
4π

ε

)r(n−r)

, (B.26)

as given in [11, (4.18)] that uses [36, Theorem 8]. By Λ1,Λ2 being (ε/2)-coverings

∀V ∈ G(m, r) : ∃Vi ∈ Λ1, ρ(V, V1) ≤ ε/2, (B.27)

∀W ∈ G(n, r) : ∃Wi ∈ Λ2, ρ(W,W1) ≤ ε/2. (B.28)

Let Λ3 = V(mn, s) where V(mn, s) is the set of all possible support sets of an m× n matrix that has
s elements. Thus the cardinality of Λ3 is

(
mn
s

)
.

Construct Λ = (Λ1 × Λ2 × Λ3) where × denotes the Cartesian product. Choose any V ∈
G(m, r),W ∈ G(n, r) and T ∈ V(mn, s) for which we now show there exists

(
V̂ , Ŵ , T̂

)
∈ Λ such that

ρ
(
(V,W ) ,

(
V̂ , Ŵ

))
≤ ε and T = T̂ , thus showing that the set Λ is an ε-covering of LSm,n(r, s, τ).

Satisfying T = T̂ comes from Λ3 = V(mn, s) containing all support sets with at most s entries.
The projection operator onto the pair (V,W ) can be written as P(V,W ) = PV ⊗ PW , so for the two

pairs of subspaces (V,W ) and (V̂ , Ŵ ) we have the following

ρ
(
(V,W ) ,

(
V̂ , Ŵ

))
= ‖P(V,W ) − P

(V̂ ,Ŵ )
‖ (B.29)

= ‖PV ⊗ PW − PV̂ ⊗ P
Ŵ
‖ (B.30)

= ‖
(
PV − PV̂

)
⊗ PW + PV̂

(
PW − P

Ŵ

)
‖ (B.31)

≤ ‖PV − PV̂ ‖‖PW ‖+ ‖PV̂ ‖‖PW − P
Ŵ
‖ (B.32)

= ρ
(
V, V̂

)
+ ρ

(
W, Ŵ

)
. (B.33)

By Λ1 and Λ2 being (ε/2)-coverings, we have that for any V,W exist V̂ ∈ Λ1 and Ŵ ∈ Λ2, such that

ρ
(
(V,W ) ,

(
V̂ , Ŵ

))
≤ ρ

(
V, V̂

)
+ ρ

(
W, Ŵ

)
≤ ε. Using the bounds on the cardinality of Λ1,Λ2 in

(B.26) combined with |Λ3| =
(
mn
s

)
yields that the cardinality of Λ is bounded above by

R(ε) = |Λ1| |Λ2| |Λ3| ≤
(
mn

s

)(
4π

ε

)r(m+n−2r)

. (B.34)

Proof of Lemma 2.2 (Variation of ∆̄ in RIC in respect to a perturbation of (V,W )), stated on
page 8.

34



Proof. Recall the notation used in Lemma 2.2 that there are sets Σ1 := Σm,n (V1,W1, T, µ) and
Σ2 := Σm,n (V2,W2, T, µ) which have a shared support T of the sparse component.

Let Y ∈ Σ2, so we can write Y = L + S such that supp(S) = T, C(L) ⊆ V2, C(LT ) ⊆ W2 and

‖L‖F ≤ τ‖Y ‖F for τ := (1 − µ2 r2s
mn )

−1/2 by Lemma 1.1. By linearity of A assume without loss of
generality ‖Y ‖F = 1 and therefore ‖L‖F ≤ τ . Denote U1 = (V1,W1) and U2 = (V2,W2) and let PUi

be an orthogonal projection onto the space of matrices whose column and row space is defined by
Vi,Wi such that left and right singular vectors of PUi

Y lie in Vi respectively Wi. Then

‖A(Y )‖ = ‖A(L + S)‖ = ‖A (PU1
L+ S − (PU1

L− PU2
L))‖ (B.35)

≤ ‖A (PU1
L+ S)‖+ ‖A ([PU1

− PU2
]L)‖ (B.36)

≤ (1 + ∆̄) ‖PU1
L+ S‖+ ‖A‖ρ (U1, U2) ‖L‖ (B.37)

= (1 + ∆̄) ‖PU2
L+ S + [PU1

− PU2
]L‖+ ‖A‖ρ (U1, U2) ‖L‖ (B.38)

≤ (1 + ∆̄) (‖Y ‖F + ρ(U1, U2)‖L‖) + ‖A‖ρ (U1, U2) ‖L‖ (B.39)

≤ ‖Y ‖F
(
1 + ∆̄ + τρ(U1, U2)

(
1 + ∆̄ + ‖A‖

))
, (B.40)

where in the first line (B.35) we use the fact that PU2
L = L, the second line (B.36) follows by

the triangle inequality and linearity of A, and in the third inequality we bound the effect of A on
(PU1

L+ S) using the RICs of A combined with the definition of ρ in (19). We proceed in (B.38) and
(B.39) by projecting L to space U2 and again bounding the effect of A on (PU2

L + S). Finally, in
(B.40) we use ‖L‖F ≤ τ . We obtain a similar lower bound using the reverse triangular inequality

‖A(Y )‖ = ‖A (PU1
L+ S − (PU1

L− PU2
L))‖ (B.41)

≥ ‖A (PU1
L+ S)‖ − ‖A ([PU1

− PU2
]L)‖ (B.42)

≥
(
1− ∆̄

)
‖PU1

L+ S‖ − ‖A‖ρ(U1, U2)‖L‖F (B.43)

=
(
1− ∆̄

)
‖PU2

L+ S − [PU2
− PU1

]L‖ − ‖A‖ρ(U1, U2)‖L‖F (B.44)

≥
(
1− ∆̄

)
(‖Y ‖F − ρ(U1, U2)‖L‖F )− ‖A‖ρ(U1, U2)‖L‖F (B.45)

≥ ‖Y ‖F
(
1− ∆̄− τρ(U1, U2)(1 − ∆̄ + ‖A‖)

)
. (B.46)

Combining (B.40) and (B.46) yields

∀Y ∈ Σ2 : (1− ∆̄′)‖Y ‖F ≤ ‖A(Y )‖ ≤ (1 + ∆̄′)‖Y ‖F , (B.47)

with ∆̄′ = ∆̄ + τρ(U1, U2)
(
1 + ∆̄ + ‖A‖

)
.

In the proof of Theorem 3 we make use of the following Lemma Appendix B.4 and Corol-
lary Appendix B.1 from [11] which we restate here for completeness with the small addition of the
incoherence property in (2).

Lemma Appendix B.4 ([11, Lemma 3.4]). Let A ∈ LSm,n(r, 0, µ) and B ∈ R
m×n. Then there

exist matrices B1 and B2 such that

(1) B = B1 +B2,

(2) B1 ∈ LSm,n(2r, 0, µ),

(3) ABT
2 = 0 and ATB2 = 0,

(4) 〈B1, B2〉 = 0.

Proof. Consider a full singular value decomposition of A,

A = U

[
Σ 0
0 0

]
V T , (B.48)
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and let B̂ := UTBV . Partition B̂ as

B̂ =

[
B̂11 B̂12

B̂21 B̂22

]
. (B.49)

Defining now

B1 := U

[
B̂11 B̂12

B̂21 0

]
V T , B2 := U

[
0 0

0 B̂22

]
V T , (B.50)

it can be verified that B1 and B2 satisfy the conditions of the lemma.

Corollary Appendix B.1 ([11, Lemma 2.3]). Let A and B be matrices of the same dimensions. If
ABT = 0 and ATB = 0, then ‖A+B‖∗ = ‖A‖∗ + ‖B‖∗.

Lemma Appendix B.5 (Decomposing RS = RS
0 + RS

c ). Let suppS0 = Ω0 and construct a matrix
RS

0 that has the entries of RS at indices Ω0

(RS
0 )i,j =

{
(RS)i,j if (i, j) ∈ Ω0,

0 if (i, j) /∈ Ω0,
(B.51)

and a matrix RS
c = RS −RS

0 that has the entries of RS at the indices of the complement of Ω0. Then

(1) ‖RS
0 ‖0 ≤ ‖S0‖0 = s (by |Ω0| = s),

(2) ‖S0 +RS
c ‖1 = ‖S0‖1 + ‖RS

c ‖1 (by supp(RS
0 ) ∩ supp(RS

c ) = ∅),
(3) 〈RS

0 , R
S
c 〉 = 0 (by supp(RS

0 ) ∩ supp(RS
c ) = ∅).

Proof. It can be easily verified that RS
0 and RS

c constructed as in (B.51) satisfy the conditions (1)-(3).

Lemma Appendix B.6 (Decomposing RL
c into a sequence of incoherent low-rank matrices). Let

RL
c ∈ R

m×n be an arbitrary matrix and Mr ∈ N be a fixed rank of the decomposition. There exists a
decomposition RL

c =
∑mn

i=1 R
L
i such that

RL
i ∈ LSm,n(Mr, 0, 1) (B.52)

RL
i

(
RL

j

)T
= 0m×m and

(
RL

i

)T
RL

j = 0n×n, ∀i 6= j (B.53)

∥∥RL
i+1

∥∥2
F
≤ 1

Mr

∥∥RL
i

∥∥2
∗ . (B.54)

Proof. Let Y = [y1, y2, . . . , ym] ∈ R
m×m and Z = [z1, z2, . . . , zn] ∈ R

n×n be two bases whose vectors
are maximally incoherent with the canonical basis

∀i, j ∈ [m] ‖yTj ei‖2 =
1√
m

(B.55)

∀i, j ∈ [n] ‖zTj ei‖2 =
1√
n
, (B.56)

which can be constructed by taking m columns and the same rows of a Hadamard matrix and rescaling
it such that it forms an orthonormal basis.

Denote E =
{
yiz

T
j

}m,n

i,j=1
⊂ R

m×n. Since E is a basis, there are coefficients c1, c2, . . . , cmn ∈ R

such that

RL
c =

mn∑

k=1

ck yk z
T
k . (B.57)
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Since the columns of Y and Z can be arbitrarily permutated, we can assume without loss of generality
that |ck| ≥ |ck+1| for all i. We split the indices of {1, . . . ,mn} into sets of size Mr as

Ii := {(i− 1)Mr + 1, . . . , iMr} . (B.58)

Constructing RL
i :=

∑
k∈Ii

ck yk z
T
k results into the decomposition with desirable properties. The

first property (B.52) follows from the subadditivity of the incoherence in Lemma Appendix B.1, the
second property in (B.53) follows from E being an orthogonal basis, and finally, the last property in
(B.54) comes from the ck being the singular values of each constructed RL

i .

Lemma Appendix B.7 (Upper bound on 〈A(·),A(·)〉). For an operator A(·) whose RICs are
upper bounded by ∆2 := ∆2r,2s,µ and two incoherent low-rank plus sparse matrices X1 = L1 + S1 ∈
LSm,n(r, s, µ), X2 = L2+S2 ∈ LSm,n(r, s, µ) that have orthogonal components 〈L1, L2〉 = 0, 〈S1, S2〉 =
0 and have bounded the rank-sparsity coefficient γ2 := γ2r,2s,µ < 1, we have that

∣∣∣〈A(X1),A(X2)〉
∣∣∣ ≤

(
∆2 +

2γ2
1− γ2

2

)
‖X1‖F ‖X2‖F , (B.59)

where γ2 = µ 2r
√
2s√

mn
is the rank-sparsity correlation coefficient as defined in Lemma B.4 on page31.

Proof. By A(·) being a linear transform, bilinearity of the inner-product, and conicity of LSm,n(r, s, µ),
we can assume without loss of generality that ‖X1‖F = 1 and ‖X2‖F = 1. The parallelogram law
applied to ‖A(X1)‖2 and ‖A(X2)‖2 yields

2
(
‖A(X1)‖22 + ‖A(X2)‖22

)
= ‖A(X1) +A(X2)‖22 + ‖A(X1)−A(X2)‖22 . (B.60)

Subtracting 2 ‖A(X1)−A(X2)‖22 from both sides of (B.60)

4〈A(X1),A(X2)〉 = ‖A(X1) +A(X2)‖22 − ‖A(X1)−A(X2)‖22 . (B.61)

We can expand the equality in (B.61) to bound its right-hand side using the RICs as

|〈A(X1),A(X2)〉| =
1

4

∣∣‖A(X1 +X2)‖2F − ‖A(X1 −X2)‖2F
∣∣ (B.62)

≤ 1

4

∣∣∣(1 + ∆2) ‖X1 +X2‖2F − (1 −∆2) ‖X1 −X2‖2F
∣∣∣ (B.63)

≤ 1

4

∣∣∣∣(1 + ∆2)
(
‖X1‖2F + 2〈X1, X2〉+ ‖X2‖2F

)

− (1 −∆2)
(
‖X1‖2F − 2〈X1, X2〉+ ‖X2‖2F

) ∣∣∣∣ (B.64)

=

∣∣∣∣
∆2

2

(
‖X1‖2F + ‖X2‖2F

)
+ 〈X1, X2〉

∣∣∣∣ =
∣∣∣∆2 + 〈X1, X2〉

∣∣∣ (B.65)

where the inequality in the second line in (B.63) comes from the RICs of A(·) and by X1 +X2 and
X1 −X2 being in the set LSm,n(2r, 2s, µ) combined with Lemma Appendix B.1, the equality in the
third line in (B.64) is the result of expanding the inner products, and finally, the last equality in
(B.64) comes from elementary operations and using the fact that ‖X1‖ = 1 and ‖X2‖ = 1.

Moreover, by X1 and X2 being component-wise orthogonal 〈L1, L2〉 = 0 and 〈S1, S2〉 = 0, we can
upper-bound the magnitude of the correlation between X1 and X2 as

|〈X1, X2〉| = |〈L1, L2〉+ 〈L1, S2〉+ 〈L2, S1〉+ 〈S1, S2〉| (B.66)

= |〈L1, S2〉+ 〈L2, S1〉| (B.67)

≤ γ2

(
‖L1‖F ‖S2‖F + ‖L2‖F ‖S1‖F

)
(B.68)

≤ 2γ2
1− γ2

2

, (B.69)

37



where in the first equality in (B.66) we expanded the inner-product, the second equality in (B.67) is
the consequence of the components being orthogonal, the inequality in the third line in (B.68) is the
consequence of Lemma Appendix B.2, and the last inequality in (B.69) comes from the upper-bound
of the norms ‖L1‖F , ‖L2‖F , ‖S1‖F , ‖S2‖F from Lemma 1.1 and by ‖X1‖F = 1 and ‖X2‖F = 1.

We can now further upper bound (B.65) using the bound in (B.65) combined with the triangle on
the absolute value

∣∣∣ 〈A(X1), A(X2)〉
∣∣∣ ≤ ∆2 +

2γ2
1− γ2

2

, (B.70)

when ‖X1‖F = 1 and ‖X2‖F = 1 which translates into the bound in (B.59) in the general case
∣∣∣∣
〈
A
(

X1

‖X1‖F

)
, A
(

X2

‖X2‖F

)〉∣∣∣∣ ‖X1‖F ‖X2‖F

≤
(
∆2 +

2γ2
1− γ2

2

)
‖X1‖F ‖X2‖F , (B.71)

by linearity of A(·) and the inner product.
Note that the bound can be lowered for specific matrices X1, X2 such that the matrices of their

sums X1 +X2 and X1 −X2 are in LSm,n(r, s, µ) sets with smaller ranks or sparsities.

Lemma Appendix B.8. Let Xj , Xj+1, X0 be any matrices in the set LSm,n(r, s, µ) with µ <√
mn
/ (

3r
√
3s
)
, αj ≥ 0, and A(·) be an operator whose RICs are sufficiently upper bounded, then the

following two inequalities hold

〈Xj −X0, X
j+1 −X0〉 − αj〈A(Xj −X0),A(Xj+1 −X0)〉

≤ ‖I − αj A
T
QAQ‖2‖Xj −X0‖F ‖Xj+1 −X0‖F , (B.72)

and
‖Xj −X0 − αj A∗ (A

(
Xj −X0

))
‖F ≤ ‖I − αj A

T
QAQ‖2‖Xj −X0‖F , (B.73)

where the spectrum of the matrix
(
I − αj A

T
QAQ

)
∈ R

mn×mn is bounded as

1− αj (1 + ∆3r,3s,µ) ≤ λ
(
I − αj A

T
QAQ

)
≤ 1− αj (1−∆3r,3s,µ) , (B.74)

which gives an upper bound on the norm ‖I−αj A
T
QAQ‖2 ≤ |1− αj (1 + ∆3r,3s,µ)| as the lower bound

in (B.74) is larger then the upper bound.

Proof. We vectorize the matrices on the left hand side of (B.72) using a mapping vec(·) : Rm×n → R
mn

that stacks columns of a given matrix into a vector and a mapping mat(·) from the space of linear
operators A : Rm×n → R

p to the space of matrices of size p×mn

x0 = vec (X0) , x
j = vec

(
Xj
)
, xj+1 = vec

(
Xj+1

)
∈ R

mn

A = mat (A) =




vec (A1)
T

...

vec (Ap)
T


 ∈ R

p×mn.
(B.75)

Let X0 = U0Σ0V 0 + S0, Xj = U jΣjV j + Sj , Xj+1 = U j+1Σj+1V j+1 + Sj+1 be the singular value
decompositions where the matrices of the left singular vectors are U j ∈ R

m×r and their sparse
components are supported at indices Ωj = supp

(
Sj
)
. Consider the union of the index sets Ω :={

Ω0,Ωj,Ωj+1
}
and construct the following frame

Q = [In ⊗ U E] =




U 0n,3r . . . 0n,3r
0n,3r U . . . 0n,3r
...

. . . eΩ1
. . . eΩ3s

0n,3r . . . . . . U


 ∈ R

mn×3(nr+s), (B.76)
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where U ∈ R
m×3r is formed by concatenating U0, U j, U j+1 and eΩi

is a vector corresponding to

a vectorized matrix with a single entry 1 at the index Ωi. Note that PQ = Q
(
QTQ

)−1
QT is an

orthogonal projection matrix on the low-rank plus sparse subspace defined by the matrix U and the
index set Ω. Note that by Q being formed by the low-rank plus sparse bases of X0, X

j, Xj+1 we have
that the projection does not change the vectorized matrices

PQx0 = x0, PQx
j = xj , PQx

j+1 = xj+1. (B.77)

To establish the bound in (B.72) we write the left hand side in its vectorized form

(
xj − x0

)T (
xj+1 − x0

)
− αj

(
A(xj − x0)

)T (
A(xj+1 − x0)

)
, (B.78)

and replacing A with AQ = APQ in (B.78) using the identities in (B.77) simplifies the term as

(
xj − x0

)
T
(
xj+1 − x0

)
− αj

(
AQ(x

j − x0)
)T (

AQ(x
j+1 − x0)

)
(B.79)

=
(
xj − x0

)T (
(xj+1 − x0)− αj A

∗
QAQ(x

j+1 − x0)
)

(B.80)

=
(
xj − x0

)T (
(I − αj A

∗
QAQ)(x

j+1 − x0)
)

(B.81)

≤ ‖I − αj A
∗
QAQ‖2 ‖xj − x0‖2 ‖xj+1 − x0‖2 (B.82)

= ‖I − αj A
∗
QAQ‖2 ‖Xj −X0‖F ‖Xj+1 −X0‖F , (B.83)

where ‖I − αj A
∗
QAQ‖2 is the ℓ2 operator norm of an mn×mn matrix.

Similarly we now establish the bound in (B.73)

∥∥Xj −X0 − αj A∗ (A
(
Xj −X0

))∥∥
F
=
∥∥xj − x0 + αj A

TA
(
x0 − xj

)∥∥
2

(B.84)

=
∥∥(I − αj A

TA
) (

xj − x0

)∥∥
2

(B.85)

≤
∥∥I − αj A

∗
QAQ

∥∥
2

∥∥Xj −X0

∥∥
F
, (B.86)

where we just vectorized the matrices and the linear operator A(·) and upper bounded the expression
using ℓ2-operator norm ‖I − αj A

∗
QAQ‖2. Matrix AQ acts on a subspace of LSm,n(3r, 3s, µ) and is

self-adjoint, as such its eigenvalues can be bounded using the RICs as done by [30] and by [41]

1− αj (1 + ∆3r,3s,2µ) ≤ λ
(
I − αj A

∗
QAQ

)
≤ 1− αj (1−∆3r,3s,2µ) . (B.87)
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