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ABSTRACT

Compressed sensing is applied to multiview image sets and inter-
image disparity compensation is incorporated into image recon-
struction in order to take advantage of the high degree of inter-
image correlation common to multiview scenarios. Instead of re-
covering images in the set independently from one another, two
neighboring images are used to calculate a prediction of a tar-
get image, and the difference between the original measurements
and the compressed-sensing projection of the prediction is then re-
constructed as a residual and added back to the prediction in an
iterated fashion. The proposed method shows large gains in per-
formance over straightforward, independent compressed-sensing
recovery. Additionally, projection and recovery are block-based to
significantly reduce computation time.

Index Terms— Compressed sensing, multiview images, dis-
parity compensation

1. INTRODUCTION
Many systems today use multiple cameras to capture information
about a specified scene, such as 3D reconstruction, creation of vir-
tual environments, and surveillance applications. Because multi-
view systems require multiple sensors, the cost of data acquisi-
tion is often much higher than that of traditional systems. In these
multiple perspective, or multiview, situations, the correlation be-
tween images is often very high due to similar content. Compres-
sion, restoration, or other data-processing tasks can benefit greatly
by exploiting this redundancy of content to improve their perfor-
mance. Disparity compensation (DC) between the images within
a multiview image set can be used to take advantage of this corre-
lation.

Compressed sensing (CS) (e.g. [1]) is a recent paradigm which
allows for a signal to be sampled at sub-Nyquist rates and pro-
poses a methodology of recovery which incurs no loss. CS tells us
that this is achievable under the assumption that the original signal
can be described sparsely in either its ambient domain or in some
other basis, Ψ. The core of the signal-acquisition step commonly
involves a projection onto a random basis, Φ, which must exhibit
a high level of incoherence with the sparse domain [1]. Physical
implementations of this methodology have been made, such as the
well-known single-pixel camera [2], and many methods have been
proposed for the recovery of signals acquired in this manner [3–8].

In this paper, we propose a joint CS reconstruction algorithm
for multiview image sets which takes advantage of the strong cor-
relation between images within the set. In [4], an efficient algo-
rithm for reconstructing randomly projected blocked images was
proposed. The goal of this paper is to enhance the accuracy of this
algorithm within the multiview setting through the use of inter-
image DC during the reconstruction process. The results we ob-
tain are promising and show substantial performance improvement
over the straightforward, independent CS recovery of the images
of the set, even at very low subsampling rates.

2. PRELIMINARIES
One of the main advantages of the CS paradigm is the very low
computational burden placed on the encoding process, which re-
quires only the projection of the signal x, of dimensionality N ,
onto some measurement basis, ΦN×M , where M � N . The re-
sult of this computation is the M -dimensional vector of measure-
ments, y = Φx. Φ is often chosen to be a random matrix because
it satisfies the incoherency requirements of CS reconstruction for
any structured signal transform Ψ with a high probability. In this
way, the encoder can also be said to be structure agnostic. We
assume Φ is also chosen to be orthonormal (ΦT Φ = I).

This light encoding procedure offloads most the computation
of CS onto the decoder. Because the inverse of the projection x̂ =
Φ−1y is ill-posed, we cannot directly solve the inverse problem to
find the original signal from the given measurements. Instead, the
CS paradigm tells us that the correct solution for x is the sparsest
signal which lies in the set of signals that match the measurements
[1]; i.e.,

x̂ = arg min
x

‚‚Ψx
‚‚

�0
s.t. y = Φx, (1)

where sparsity is measured in the domain of transform Ψ. How-
ever, this �0-constrained optimization problem is computationally
infeasible due to its combinational and non-differentiable nature.
Thus, a �1 convex relaxation is often applied, sacrificing accuracy
but permitting the recovery to be implemented directly via linear-
programming techniques (e.g., [7–9]). Further relaxations of the
optimization have also been attempted, such as the mixed �1-�2
method proposed in [10]. However, all of these schemes still suf-
fer from very long reconstructions times for N of any practical or
interesting size.

Iterative thresholding algorithms have also been proposed as
another class of solutions for CS recovery. The most common of
these is the iterated hard thresholding (IHT) algorithm (e.g., [11–
14]). IHT replaces the constrained optimization formulation with
an unconstrained optimization problem via a Lagrangian multi-
plier and further relaxes the problem by loosening the equality
constraint to an �2-distance penalty,

x̂ = arg min
x

‚‚Ψx
‚‚

�1
+ λ

‚‚y −Φx
‚‚

�2
. (2)

Algorithms of this class recover x̂ by successive projection and
thresholding operations. Given some initial approximation x̌(0) to
the transform coefficients x̌ = Ψx, the solution is calculated in
the following manner:

ˇ̌x(i) = x̌
(i) +

1

γ
ΨΦ

T
“
y −ΦΨ

−1
x̌

(i)
”

, (3)

x̌
(i+1) =

(
ˇ̌x(i),

˛̨̨
ˇ̌x(i)

˛̨̨
≥ τ (i),

0 else,
(4)
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where γ is a scaling factor, and τ (i) is the threshold used at the
ith iteration. Further observation of this process shows us that this
procedure is actually a specific instance of a projected Landweber
(PL) algorithm [15]. We note that convergence of IHT has been
shown in [5].

IHT recovery improves reconstruction speed by at least an or-
der of magnitude and maintains a high degree of accuracy. Recon-
struction time can be further reduced by implementing a block-
based measurement and recovery procedure, as proposed in [3].
In this technique, Φ is applied on a block-by-block basis, while
the reconstruction step incorporates a smoothing operation (such
as Weiner filtering) into the IHT. By employing blocking, the re-
sults in [3] show a reduction of computation time by four orders
of magnitude for comparable accuracy versus linear programming
approaches. In [4], this method is referred to as block CS and
smoothed PL (BCS-SPL) and is extended via the use of directional
transforms. The algorithm in [4] is given as

function x(i+1) = SPL(x(i),y,Φblock,Ψ, λ)

x̂(i) = Wiener(x(i))
for each block j

ˆ̂x
(i)
j = x̂

(i)
j + ΦT

block(y −Φblockx̂
(i)
j )

ˇ̌x(i) = Ψˆ̂x(i)

x̌(i) = Threshold(ˇ̌x(i), λ)

x̄(i) = Ψ−1x̌(i)

for each block j

x
(i+1)
j = x̄

(i)
j + ΦT

block(y −Φblockx̄
(i)
j )

Here, x(0) = ΦT y. The method uses hard thresholding with a
fixed convergence factor λ for all iterations [6], and can be calcu-
lated as a function of the number of coefficients used in Ψ [16].

3. DC-BCS-SPL
In [4], BCS-SPL was shown to be both more computationally ef-
ficient and to provide more accurate reconstructions than other re-
covery techniques, especially when using directional transforms
as the sparse basis. We now propose a method which incorporates
disparity estimation and compensation as side information into this
competitive recovery algorithm with the goal of improving recov-
ery accuracy when used within the multiview setting. We exploit
the strong correlations between multiview images by reconstruct-
ing the residual between images and their disparity-compensated
predictions as a means for refining the accuracy of direct BCS-
SPL reconstruction. Our method requires no additional informa-
tion from the encoder, simply the typical CS formulation—namely,
the measurement matrix, Φd; a set of measurements, y = Φdxd;
and the sparsity basis, Ψ. We refer to this proposed method as
disparity-compensated BCS-SPL (DC-BCS-SPL).

The DC-BCS-SPL algorithm, depicted in Fig. 1, is partitioned
into two phases. In the first phase, a prediction of the current im-
age, xd, is created by bidirectionally interpolating the BCS-SPL
reconstructions of the two nearest views (the left and right neigh-
bors), i.e. xp = ImageInterpolation(x̂d−1, x̂d+1). Next, the
residual, r is calculated by taking the difference between the given
measurements, yd, and the projection of xp onto the measurement
basis, yp = Φdxp. This residual, r = yp − y, is then recon-
structed using BCS-SPL and added back to xp to obtain the recon-
struction x̂d.

In the second phase, the reconstruction obtained from the first
phase is used to refine the prediction, xp. Disparity estimation is
used to find two sets of disparity vectors, DVd−1 and DVd+1, be-
tween x̂d and the reconstructions of its neighbor images. The dis-

parity vectors are then used to produce two disparity-compensated
predictions of x̂d which are averaged together to produce a sin-
gle prediction. This prediction will serve as the xp for the next
reconstruction. This process is repeated k times.

The iterative process improves the quality of the final recon-
struction because the use of DC allows us to make a better predic-
tion of the image, which leads to smoother and more easily recon-
structed residuals, which then allow us to make more accurate pre-
dictions, and so on. DC-BCS-SPL converges quickly—typically
iterating for 2 ≤ k ≤ 5 is sufficient.

4. EXPERIMENTAL RESULTS
In order to observe the effectiveness of the DC-BCS-SPL recov-
ery, we evaluate the performance of the proposed method against
that of the direct-recovery approach, i.e., BCS-SPL used to recon-
struct the frame independently of its neighbors. We use several
transforms, specifically a DCT, DWT, complex dual-tree DWT
(DDWT), and contourlet transform (CT). In our results, we refer
to the implementations of the direct approach simply by the name
of the used transform, and DC-transform is used to refer to the
implementations of DC-BCS-SPL using the named transform. In
our simulations, disparity vectors are calculated using a full block-
based search with integer-pixel accuracy, a block size of 16× 16,
and a search window of 32 × 32. It is conceivable that the per-
formance of DC-BCS-SPL could be increased with more sophisti-
cated disparity-vector estimation. For DC-BCS-SPL, we consider
two measurement block sizes, 32×32 and 64×64, and the wavelet
based transforms are computed to 5 and 6 levels of decomposition,
respectively, for these block sizes. Additionally, all images within
the measured multiview set are projected using the same subrate.

Tables 1 and 2 present the performance, in PSNR, for several
512 × 512 images from the Middlebury multiview database1 at
several subrates, M/N , and for the two measurement block sizes
considered. All images are rectified, and any radial distortion is
removed. It should be noted that, due to the variation in quality
that can result from differences in random measurement matrices,
all PSNR values represent an average of 5 independent trials.

As illustrated in Fig. 2, the quality of DC-BCS-SPL is over-
all ∼2 dBs higher than the PSNR performance obtained by using
direct BCS-SPL under the same conditions. We have found this
performance gain to be true regardless of the sparsity basis, Ψ,
used. Note that results in Fig. 2 are calculated by using a single
iteration (k = 1) of reconstruction. Increasing the number of iter-
ations shows further performance gains.

The DC-BCS-SPL method shows a performance improvement
of ∼1 dB to ∼3 dB for lower to higher subrates in comparison
to direct BCS-SPL. Of the transforms used, the DDWT gave the
best performance for both direct and DC BCS-SPL. Additionally,
for images with high variation or texture (such as the “Monopoly”
multiview image set), the performance gain of the DC method over
direct BCS-SPL is even more pronounced, peaking at ∼4.5 dB.
It should also be noted that low-variation images benefited from
larger measurement block sizes, as can be seen for the “Plastic”
multiview image set which shows a performance gain of∼1.5 dBs
when 64× 64 blocks are used instead of 32× 32 blocks.

5. CONCLUSIONS
In this paper, we proposed a new method for the CS recovery of
multiview images which takes advantage of the high degree of
inter-frame correlation which is characteristic of the multiview ap-
plication. We included side information in the form of disparity

1http://cat.middlebury.edu/stereo/data.html
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Figure 1: The DC-BCS-SPL reconstruction algorithm.

Figure 2: Images from the five multiview sets (left to right: Aloe, Baby, Plastic, Bowling, and Monopoly) reconstructed using the given
experimental framework: the first row using direct BCS-SPL, the second row using DC-BCS-SPL

estimation and compensation and using the technique of recon-
structing a residual rather than an image, and we incorporated this
information into the CS-recovery framework. Experimental results
displayed an increase in performance when using this extra infor-
mation in comparison to recoveries which merely reconstruct each
image independently from one another.
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