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Photoacoustic imaging (PAI) has been employed to reconstruct endogenous optical contrast present in tissues. At the cost of
longer calculations, a compressive sensing reconstruction scheme can achieve artifact-free imaging with fewer measurements. In
this paper, an effective acceleration framework using the alternating direction method (ADM) was proposed for recovering images
from limited-view and noisy observations. Results of the simulation demonstrated that the proposed algorithm could perform
favorably in comparison to two recently introduced algorithms in computational efficiency and data fidelity. In particular, it ran
considerably faster than these two methods. PAI with ADM can improve convergence speed with fewer ultrasonic transducers,
enabling a high-performance and cost-effective PAI system for biomedical applications.

1. Introduction

As an emerging biomedical imaging technique, photoacous-
tic imaging (PAI) has experienced considerable growth in the
past decade [1]. It has been explored for molecular imaging
of biomarkers [2], functional imaging of physiological
parameters [3, 4] and the imaging of tumor angiogenesis
[5–7] in both preclinical and clinical studies. Photoacoustic
tomography (PAT) provides speckle-free imaging with high
contrast and high resolution which is one form of PAI. When
biological tissues are irradiated by short laser pulses, some
optical energy is absorbed and converted into heat. The
resultant thermoplastic expansion leads to the emission of
ultrasonic waves which are acquired by a single-element
focused ultrasonic transducer with mechanical scanning or
an ultrasonic transducer array from a full view [8, 9]. Then
the information of the tissue’s optical absorption properties
can be recovered using a reconstruction algorithm.

Many algorithms have been developed to exactly or
approximately reconstruct the image with a full view of

data [10]. A limiting factor for the traditional filtered back-
projection (FBP) algorithm is the great number of mea-
surements made with transducers, implying long acquisition
times. In addition, it is almost impossible to cover the entire
surface of the tissues in many practices. To the best of our
knowledge, there is no exact formula reported for limited-
view PAT yet. To resolve such limiting factors, based on the
compressive sensing (CS) theory [11] can be used to achieve
artifact-free imaging from limited-view acquisition.

An image can be reconstructed from far fewer measure-
ments than what the Shannon sampling theory requires if
the image is sparse or can be compressed [12]. By using
data from a small number of angles and an L1magic convex
optimization algorithm, Provost et al. introduced the CS
theory into the field of PAT [13, 14]. The issue of artifacts
and loss of resolution in limited-view imaging can be
addressed by using random optical illuminations for fast
data acquisition via the SPGL1 algorithm [15, 16]. Sun et al.
have developed an arc-direction compressed-sensing PAT
algorithm with numerical phantoms [17]. Both phantom
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and in vivo results showed that the CS method can effectively
reduce undersampling artifacts via the nonlinear conjugate
gradient descent algorithm [18, 19]. All of these studies have
shown that CS-based reconstruction techniques can reduce
the number of ultrasonic transducers of the PAT system
significantly and obtain high-resolution results with limited-
view photoacoustic data. However, one of the critical issues
that used to hinder the application of CS in PAT is the
computational cost of the underlying image reconstruction
process.

In this paper, we proposed a fast CS reconstruction
algorithm to overcome this difficulty, leading to acceptable
computational times. We studied the use of the alternating
direction method (ADM) for L1-norm minimization com-
pressive sensing problems arising from sparse PAT recon-
struction [20]. The proposed algorithm was used to improve
the speed of the reconstruction from highly incomplete data
[21, 22]. The numerical simulation results showed that the
ADM algorithm was efficient and robust. In particular, the
ADM can generally reduce relative errors faster than all of
the other tested algorithms.

2. Method

2.1. Photoacoustic Imaging. According to the photoacoustic
signal generation theory, the acoustic pressure p(r, t) at loca-
tion r and time t in an acoustically homogeneous medium
obeys the following wave equation [23]:
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where c is the sound speed, p is pressure, β is the isobaric
volume expansion coefficient, Cp is the specific heat, and
H(r, t) is the heating function that can be written as the
product of the initial absorbed optical energy density A(r)
and a temporal function of illumination I(t). If the pulse
pumping can be regarded as a Dirac delta function I(t) =
δ(t), the following problem can be solved using the Green’s
functions to obtain the pressure:
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Taking the Fourier transform on variable t of (2) and denot-
ing k = ω/c, the forward problem in the temporal-frequency
domain is expressed as

p(r, k) =
−ickβ

4πCp
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d3r′. (3)

To numerically model the previously mentioned problem we
used a vector x to represent A(r) and a vector y to represent
the detected acoustic pressure p(r, k). Then (3) can be
expressed as y = Φx, and the forward projection matrix Φ

in the temporal-frequency domain can be written as

Φ(m,n)(i, j) = −ickn
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where m indicates the position of the transducer, n represents
the sampling point in the frequency domain, and ri j indicates
the Cartesian coordinates of the image pixels.

2.2. CS Application in PAI. Mathematically, the projection
matrix Φ is ill conditioned if the measurement is insufficient.
This will lead to uncertainties during the reconstruction.
Fortunately, the CS theory tells us that a sparse signal can be
exactly reconstructed from incomplete datasets if satisfying
some requirements. It has been proven that photoacoustic
image is sparse or compressed enough in a certain domain
[13, 15]. By finding an appropriate sparse transform Ψ :
Ψx = θ, the photoacoustic image can be reconstructed by
solving a convex optimization problem in the following form
[12]:

min‖θ‖1 s.t. y = ΦΨ
−1θ. (5)

When y contains noise, or x is not exactly sparse but only
compressible, as in most practical applications, the con-
straint in y = ΦΨ−1θ must be relaxed, resulting in the con-
strained basis pursuit denoising problem

min
θ
‖θ‖1 s.t.
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−1θ
∥

∥

2

2 < ε, (6)

where ε is the noise level. From the optimization theory,
problem (6) is equivalent to the following problem with a
suitable parameter:
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As ε and µ approach zero, both problem (6) and (7) converge
to problem (5).

2.3. Reconstruction Method. Based on the classical ADM
technique, the first-order primal-dual algorithm that updates
both primal and dual variables at each iteration was used.
With an auxiliary variable r problem (7) is clearly equivalent
to

min
θ
‖θ‖1 +
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‖r‖2

2 s.t. y = ΦΨ
−1θ + r. (8)

Equation (8) has an augmented Lagrange subproblem of the
form
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where λ is a Lagrange multiplier and β > 0 is a penalty pa-
rameter. Given (θk, λk), the minimization of (9) with respect
to r is given by

rk+1 =
µβ
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Figure 1: Image reconstructions using the FBP method and ADM algorithm. (a) Original phantom. (b) and (c) image reconstructions using
the FBP method with 200 and 80 transducers evenly covering the circle. (d) and (e) image reconstructions using the ADM method with 80
and 40 transducers uniformly covering the 90-degree view. (f) Center lines extracted from (a) to (e).

For r = rk+1 and λ = λk are fixed, the minimization of (9)
with respect to θ is equivalent to
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The solution of (11) can be given explicitly by one-dimen-
sional shrinkage
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Finally, with a constant γ > 0 we updated the multiplier λ by

λk+1 = λk − γβ
(
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)

. (13)

In short, ADM applied to (7) produces the iteration:
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where both the primal and the dual variables are updated at
each and every iteration.

3. Results and Discussion

To demonstrate the efficiency and superiority of the ADM
algorithm in PAI reconstruction with limited angle observa-
tions, computer simulations were conducted in 2D where the
imaged sources are approximately located within the trans-
ducer focal plane. All of the experiments were performed
using MATLAB (MathWorks, Natick, MA, USA).
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Figure 2: Image reconstructions in (a) with L1magic, (b) with SPGL1, and (c) with ADM, using 56 detection angles and 64 Fourier samples
per angle with a uniform distribution at 90-degree curve noisy observation with SNR = 40 dB.

Although the existing CS algorithms provided accuracy
results, the computational cost of the optimization process
was significantly higher, hindering practical application. By
using the ADM algorithm, in the following section, the prob-
lem with the computational cost of the image reconstruction
could be overcome, leading to acceptable reconstruction
computational times.

3.1. Reconstruction from Simulated Limited-View Data. In
this section, based on both the Symmlet wavelet with an
order of 4 and L1-regularization, the numerical experiments
have been conducted on a sparse 30 mm × 30 mm phantom
(shown in Figure 1(a)) with a 128 × 128 resolution. In each
experiment, the single-element focused ultrasonic trans-
ducer was used to record the photoacoustic signals. To
model the transducer response, the domains of kn and n
were restricted to certain values kn/2πc ∈ [0.2, 2.5] and
n ∈ [1, 128]. At every detection angle, 64 randomly chosen
kn/2πc’s inside the [0.2, 2.5] MHz window were used to
completely define Φ(m,n)(i, j). By rescaling the intensity values
of the phantom to [0, 1], we generated measurements y using
Φ(m,n)(i, j) in the frequency domain.

The results reconstructed by the FBP and ADM algo-
rithms based on the multiangles observation with a different
detection position are shown in Figures 1(b)-1(c) and

Figures 1(d)-1(e), respectively. Figures 1(b) and 1(c) show
image reconstruction using the FBP algorithm with mea-
surements along a horizontal circle, stopping at the 200 and
80 positions. Figures 1(d) and 1(e) show the reconstruction
results using the ADM algorithm with 80 and 40 transducers
uniformly covering the 90-degree view. It is shown that the
results of the CS method are clearly superior to those of the
FBP method. This can be seen by extracting and comparing
lines from the reconstructed images in Figure 1(f).

3.2. Comparison of CS Reconstruction Algorithms. We com-
pared ADM with L1magic and SPGL1 for the solution model
(6). For all of the experiments, the same number of trans-
ducers and Fourier samples per angle uniformly covering the
90-degree view was used. In order to compare these three
algorithms in a way that is as independent as possible, the
same iteration stopping criteria δ = ‖xk+1−xk‖/‖xk‖ < 0.005
were used. The quality of the reconstructed image including
the number of iterations, the CPU times, and the signal-to-
noise (SNR) achieved by each of the algorithms is presented
in Table 1; all of which are the average values over 10 runs for
each experiment.

We can conclude from Table 1 that there are large
differences between the algorithm execution times: ADM can
be roughly 6 times faster than SPGL1, which itself is about
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Figure 3: Image reconstructions using the ADM algorithm with 40 detection angles that were uniformly distributed at a 90-degree curve
(a) noiseless observation; noisy observation with (b) SNR = 30 dB; (c) SNR = 20 dB; (d) SNR = 10 dB.

Table 1: Numerical results for L1magic, SPGL1, and ADM methods on PAI images with different sampling angles and 64 Fourier samples
per angle uniformly covering the 90-degree view.

Positions

Experimental

Iterations CPU time (seconds) SNR (dB)

Magic SPG ADM Magic SPG ADM Magic SPG ADM

16 67 340 88 471.2 16.3 5.5 −3.8 −3.6 −3.5

24 75 422 73 692.1 28.7 3.4 0.7 0.9 3.9

32 77 345 68 831.5 29.5 7.9 3.3 3.4 3.6

40 78 350 58 877.5 37.5 6.6 11.1 12.1 13.4

48 80 337 53 1280.7 43.2 9.3 11.1 11.7 13.8

56 79 317 46 1294.2 45.3 4.1 20.3 24.6 28.6

64 79 429 43 1179.6 64.5 5.0 20.4 22.1 25.9

72 81 367 46 1711.9 66.4 6.0 21.2 22.9 28.7

80 84 366 42 1580.9 68.7 11.4 22.7 29.1 29.7

Average 1102.2 44.5 6.6

20 times faster than L1magic. The proposed algorithm is not
only faster, but also maintains the best SNR ratio.

In order to demonstrate the data fidelity of the
ADM algorithm, Figure 2 shows the reconstruction results
obtained with these three minimization schemes with mea-
surements from 56 detection angles polluted by average
SNRs of 40. In terms of reconstruction quality, all of the algo-
rithms produced similar results overall. The denoising effect

of the CS can be observed on the residual images. For a
computed solution x′, its relative error to x is defined as

RelErr(x) =
‖x′ − x‖

‖x‖
× 100%. (15)

3.3. Discussion. It has been demonstrated that 90 degrees
is sufficient for high-quality reconstruction. To study the
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Figure 4: Relative errors for different CS reconstruction algorithms at different positions for a uniform distribution at a 90-degree curve.
(a) Noiseless observation; noisy observation with (b) SNR = 40 dB; (c) SNR = 30 dB; (d) SNR = 20 dB.

effects of white Gaussian noise polluted measurements on the
reconstruction performance for the ADM algorithm, acqui-
sitions were simulated of different SNRs. The reconstructions
are shown in Figure 3. As predicted in theory [12, 21], the
proposed algorithm based on the CS scheme is robust to
inaccurate measurements. By contrasting the influence of
different noise levels on the reconstruction results, we can
see that the increased measurement noise only increases the
reconstruction noise. No major artifacts can be observed.

Figure 4 shows the tendency chart of relative errors
in reconstructed photoacoustic images obtained with these
three CS algorithms. It is clear that the ADM algorithm is
efficient and robust. In particular, the proposed algorithm
cannot only use fewer measurements to obtain better perfor-
mance, but also reduce relative errors faster than other tested
algorithms. However, while keeping the noise level at SNR =
20 dB, the ADM algorithm sometimes reduced relative errors
slower than the other two algorithms.

4. Conclusion

We presented a novel fast algorithm for PAI using a small
number of angles. The proposed algorithm is based on the
CS theory. Numerical simulations showed that our algorithm
produced better images than FBP and other state-of-the-
art CS algorithms. Moreover, the proposed algorithm has
been shown to be robust to noise in limited-view imaging.
Ongoing work includes a more thorough experimental
evaluation of ADM.
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