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Abstract
The curse of dimensionality poses severe challenges to both techni-
cal and conceptual progress in neuroscience. In particular, it plagues
our ability to acquire, process, and model high-dimensional data sets.
Moreover, neural systems must cope with the challenge of processing
data in high dimensions to learn and operate successfully within a com-
plex world. We review recent mathematical advances that provide ways
to combat dimensionality in specific situations. These advances shed
light on two dual questions in neuroscience. First, how can we as neu-
roscientists rapidly acquire high-dimensional data from the brain and
subsequently extract meaningful models from limited amounts of these
data? And second, how do brains themselves process information in
their intrinsically high-dimensional patterns of neural activity as well
as learn meaningful, generalizable models of the external world from
limited experience?
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INTRODUCTION
For most of its history, neuroscience has made
wonderful progress by considering problems
whose descriptions require only a small number
of variables. For example, Hodgkin & Huxley
(1952) discovered the mechanism of the nerve
impulse by studying the relationship between
two variables: the voltage and the current across
the cell membrane. But as we have started to
explore more complex problems, such as the
brain’s ability to process images and sounds,
neuroscientists have had to analyze many vari-
ables at once. For example, any given gray-scale
image requires N analog variables, or pixel in-
tensities, for its description, where N could be
on the order of 1 million. Similarly, such images

could be represented in the firing-rate patterns
of many neurons, with each neuron’s firing rate
being a single analog variable. The number of
variables required to describe a space of objects
is known as the dimensionality of that space;
i.e., the dimensionality of the space of all possi-
ble images of a given size equals the number of
pixels, whereas the dimensionality of the space
of all possible neuronal firing-rate patterns in
a given brain area equals the number of neu-
rons in that area. Thus our quest to understand
how networks of neurons store and process in-
formation depends crucially on our ability to
measure and understand the relationships be-
tween high-dimensional spaces of stimuli and
neuronal activity patterns.
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However, the problem of measuring and
finding statistical relationships between pat-
terns becomes more difficult as their dimen-
sionality increases. This phenomenon is known
as the curse of dimensionality. One approach to
addressing this problem is to somehow reduce
the number of variables required to describe
the patterns in question, a process known as di-
mensionality reduction. We can do this, for ex-
ample, with natural images, which are a highly
restricted subset of all possible images, so that
they can be described by many fewer variables
than the number of pixels. In particular, natu-
ral images are often sparse in the sense that if
you view them in the wavelet domain (roughly
as a superposition of edges), only a very small
number of K wavelet coefficients will have sig-
nificant power, where K can be on the order
of 20,000 for a 1-million-pixel image. This ob-
servation underlies JPEG compression, which
computes all possible wavelet coefficients and
keeps only the K largest (Taubman et al. 2002).
Similarly, neuronal activity patterns that actu-
ally occur are often a highly restricted subset of
all possible patterns (Ganguli et al. 2008a, Yu
et al. 2009, Machens et al. 2010) in the sense
that they often lie along a low K-dimensional
manifold embedded in N-dimensional firing-
rate space; by this we mean that only K numbers
are required to uniquely specify any observed
activity pattern across N neurons, where K can
be much smaller than N. As a concrete exam-
ple, consider the set of visual activity patterns
in N neurons in response to a bar presented
at a variety of orientations. As the orientation
varies, the elicited firing-rate responses trace
out a circle, or a one-dimensional manifold in
N-dimensional space.

More generally, given a class of apparently
high-dimensional stimuli, or neuronal activ-
ity patterns, how can either we or neural sys-
tems extract a small number of variables to de-
scribe these patterns without losing too much
important information? Machine learning pro-
vides a variety of algorithms to perform this
dimensionality reduction, but they are often
computationally expensive in terms of running

time. Moreover, how neuronal circuits could
implement many of these algorithms is not
clear. However, recent advances in an emerg-
ing field of high-dimensional statistics (Donoho
2000, Baraniuk 2011) have revealed a sur-
prisingly simple yet powerful method of per-
forming dimensionality reduction: One can
randomly project patterns into a lower-
dimensional space. To understand the central
concept of a random projection (RP), it is useful
to think of the shadow of a wire-frame object in
three-dimensional space projected onto a two-
dimensional screen by shining a light beam on
the object. For poorly chosen angles of light, the
shadow may lose important information about
the wire-frame object. For example, if the axis of
light is aligned with any segment of wire, that
entire length of wire will have a single point
as its shadow. However, if the axis of light is
chosen randomly, it is highly unlikely that the
same degenerate situation will occur; instead,
every length of wire will have a corresponding
nonzero length of shadow. Thus the shadow,
obtained by this RP, generically retains much
information about the wire-frame object.

In the context of image acquisition, an RP
of an image down to an M-dimensional space
can be obtained by taking M measurements of
the image, where each measurement consists of
a weighted sum of all the pixel intensities, and
allowing the weights themselves to be chosen
randomly (for example, drawn independently
from a Gaussian distribution). Thus the orig-
inal image (i.e., the wire-frame structure) is
described by M measurements (i.e., its shadow)
by projecting against a random set of weights
(i.e., a random light angle). Now, the field
of compressed sensing (CS) (Candes et al.
2006, Candes & Tao 2006, Donoho 2006; see
Baraniuk 2007, Candes & Wakin 2008,
Bruckstein et al. 2009 for reviews) shows that
the shadow can contain enough information to
reconstruct the original image (i.e., all N pixel
values) as long as the original image is sparse
enough. In particular, if the space of the images
in question can be described by K variables,
then as long as M is slightly larger than K, CS
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provides an algorithm (called L1 minimization,
described below) to reconstruct the image.
Thus for typical images, we can simultaneously
sense and compress 1-million-pixel images with
∼20,000 random measurements. As we review
below, these CS results have significant impli-
cations for data acquisition in neuroscience.

Furthermore, in the context of neuronal in-
formation processing, an RP of neuronal activ-
ity in an upstream brain region consisting of N
neurons can be achieved by synaptic mapping
to a downstream region consisting of M < N
neurons, where the downstream neurons’ firing
rates are obtained by linearly summing the fir-
ing rates of the upstream neurons through a set
of random synaptic weights. Thus the down-
stream activity constitutes a shadow of the up-
stream activity through an RP determined by
the synaptic weights (i.e., angle of light). As
we review below, the theory of CS and RPs
can provide a theoretical framework for under-
standing one of the most salient aspects of neu-
ronal information processing: radical changes
in the dimensionality, and sometimes sparsity,
of neuronal representations, often within a sin-
gle stage of synaptic transformation.

Finally, another application of CS is the
problem of modeling high-dimensional data.
This is challenging because such models have
high-dimensional parameter spaces, necessi-
tating many example data points to learn
the correct parameter values. Neural sys-
tems face a similar challenge in searching
high-dimensional synaptic weight spaces to
learn generalizable rules from limited experi-
ence. We review how regularization techniques
(Tibshirani 1996, Efron et al. 2004) closely re-
lated to CS allow statisticians and neural sys-
tems alike to rapidly learn sparse models of
high-dimensional data from limited examples.

ADVANCES IN THE THEORY
OF HIGH-DIMENSIONAL
STATISTICS
Before we describe the applicability of CS and
RPs to the acquisition and analysis of data
and to neuronal information processing and

learning, we first give in this section a more
precise overview of recent results in high-
dimensional statistics. We begin by giving an
overview of the CS framework and define the
mathematical notation we use throughout this
review. Subsequently, a reader who is inter-
ested mainly in applications can skip the rest
of this section. Here, we discuss how to re-
cover the sparse signals from small numbers of
measurements, even in the presence of approx-
imate sparsity and noise, and we discuss RPs
and sparse regression in more detail. Finally, we
discuss dictionary learning, an approach to find
bases in which ensembles of signals are sparse.

The Compressed Sensing Framework:
Incoherence and Randomness
We now formalize the intuitions given in the
introduction and describe the mathematical no-
tation that we use throughout this review (see
also Figure 1). We let u0 be an N-dimensional
signal that we wish to measure. Thus u0 is a
vector with components u0

i for i = 1, . . . , N ,
where each u0

i can take an analog value. In the
example of an image, u0

i would be the gray-scale
intensity of the ith pixel. The M linear mea-
surements of u0 are of the form xµ = bµ · u0

for µ = 1, . . . , M . Here we think of xµ as an
analog outcome of measurement µ obtained by
computing the overlap or dot product between
the unknown signal u0 and a measurement vec-
tor bµ. We can summarize the relationship be-
tween the signal and the measurements via the
matrix relationship x = Bu0. Here B is an
M × N measurement matrix, whose µth row
is the vector bµ, and x is a measurement vector
whose µ‘th component is xµ. Now the true sig-
nal u0 is sparse in a basis given by the columns
of an N × N matrix C. By this we mean that
u0 = Cs0, where s0 is a sparse N-dimensional
vector, in the sense that it has a relatively small
number K of nonzero elements, though we do
not know ahead of time which K of the N com-
ponents are nonzero. For example, when u0

is an image in the pixel basis, s0 could be the
wavelet coefficients of that same image, and the
columns of C would comprise a complete basis
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s0

C B L1 C

A  =  BC

u0 x ŝ ŝu

Figure 1
Framework of compressed sensing (CS). A high-dimensional signal u0 is sparse in a basis given by the
columns of a matrix C so that u0 = Cs0, where s0 is a sparse coefficient vector. Through a set of
measurements given by the rows of B, u0 is compressed to a low-dimensional space of measurements x. If
the measurements are incoherent with respect to the sparsity basis, then L1 minimization can recover a good
estimate ŝ of the sparse coefficients s0 from x, and then an estimate of u0 can be recovered by expanding in
the basis C.

of orthonormal wavelets. Finally, the overall re-
lationship between the measurements and the
sparse coefficients is given by x = As0, where
A = BC. We often refer to A also as the mea-
surement matrix.

An important question is, given a sparsity
basis C, what should we choose as our measure-
ment basis B? Consider what might happen if
we measured signals in the same basis in which
they were sparse. For example, in the case of an
image, one could directly measure M randomly
chosen wavelet coefficients of the image in
which M is just a little larger than K. The prob-
lem, of course, is that for any given image, it is
highly unlikely that all the K coefficients with
large power coincide with the M coefficients
we chose to measure. So unless the number of
measurements M equals the dimensionality of
the image, N, we will inevitably miss important
coefficients. In the wire-frame shadow example
above, this is the analog of choosing a poor
angle of light (i.e., measurement basis) that
aligns with a segment of wire (i.e., sparsity
basis), which causes information loss.

To circumvent this problem, one of the key
ideas of CS is that we should make our measure-
ments as different as possible from the domain
in which the signal is sparse (i.e., shine light at
an angle that does not align with any segment
of wire frame). In particular, the measurements
should have many nonzero elements in the

domain in which the image is sparse. This no-
tion of difference is captured by the mathemat-
ical definition of incoherence, or a small value
of the maximal inner product between rows of
B and columns of C, so that no measurement
vector should look like any sparsity vector. CS
provides mathematical guarantees that one can
achieve perfect recovery with a number of mea-
surements M that is only slightly larger than K,
as long as the M measurement vectors are suf-
ficiently incoherent with respect to the sparsity
domain (Candes & Romberg 2007).

An important observation is that any set
of measurement vectors, which are themselves
random, will be incoherent with respect to any
fixed sparsity domain. For example, the ele-
ments of each such measurement vector can be
drawn independently from a Gaussian distribu-
tion. Intuitively, it is highly unlikely for a ran-
dom vector to look like a sparsity vector (i.e.,
just as it is unlikely for a random light angle
to align with a wire segment). One of the key
results of CS is that with such random measure-
ment vectors, only

M > O(K log(N /K )) 1.

measurements are needed to guarantee perfect
signal reconstruction with high probability
(Candes & Tao 2005, Baraniuk et al. 2008,
Candes & Plan 2010). Thus random mea-
surements constitute a universal measurement
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strategy in the sense that they will work for
signals that are sparse in any basis. Indeed,
the sparsity basis need not even be known
yet when the measurements are chosen. Its
knowledge is required only after measurements
are taken, during the nonlinear reconstruction
process. And remarkably, investigators have
further shown that no measurement matrices
and no reconstruction algorithm can yield
sparse signal recovery with substantially fewer
measurements (Candes & Tao 2006, Donoho
2006) than that shown in Equation 1.

L1 Minimization: A Nonlinear
Recovery Algorithm
Given only our measurements x, how can we
recover the unknown signal u0? One could po-
tentially do this by inverting the relationship
between measurements and signal by solving
for an unknown candidate signal u in the equa-
tion x = Bu. This is a set of M equations, one
for each measurement, with N unknowns, one
for each component of the candidate signal u. If
the number of independent measurements M is
greater than or equal to the dimensionality N of
the signal, then the set of equations x = Bu has
a unique solution u = u0; thus, solving these
equations will recover the true signal u0. How-
ever, if M < N , the set of equations x = Bu
no longer has a unique solution. Indeed there
is generically an N − M dimensional space of
candidate signals u that satisfy the measurement
constraints. How might we find the true signal
u0 in this large space of candidate signals?

If we know nothing further about the true
signal u0, then the situation is indeed hopeless.
However, if u0 = Cs0 where s0 is sparse, we
can try to exploit this prior knowledge as fol-
lows (see Figure 1). First, the measurements
are linearly related to the sparse coefficients s0

through the M equations x = As0, where A =
BC is an M × N matrix. Again, when M < N ,
there is a large N − M dimensional space of
solutions s to the measurement constraint x =
As. However, not all of them will be sparse, as
we expect the true solution s0 to be. Thus one
might try to construct an estimate ŝ of s0 by

solving the optimization problem

ŝ = arg min
s

N∑

i=1

V (s i ) subject to x = As, 2.

where V(s) is any cost function that penalizes
nonzero values of s. A natural choice is V (s ) = 0
if s = 0 and V (s ) = 1 otherwise. With this
choice, Equation 2 says that our estimate ŝ is
obtained by searching, in the space of all can-
didate signals s that satisfy the measurement
constraints x = As, for the one that has the
smallest number of nonzero elements. This ap-
proach, while reasonable given the prior knowl-
edge that the true signal s0 has a small number
of nonzero coefficients, unfortunately yields a
computationally intractable combinatorial op-
timization problem; to solve it, one must essen-
tially search over all subsets of possible nonzero
elements in s.

An alternative approach, adopted by CS,
is to solve a related and potentially easier
problem, by choosing V (s ) = |s |. The quantity∑N

i=1 |s i | is known as L1 norm of s; hence,
this method is called L1 minimization. The
advantage of this choice is that the L1 norm
is a convex function on the space of candidate
signals, which implies that the optimization
problem in Equation 2, with V (s ) = |s |, has
no (nonglobal) local minima, and there are
efficient algorithms for finding the global
minimum using methods of linear program-
ming (Boyd & Vandenberghe 2004), message
passing (Donoho et al. 2009), and neural circuit
dynamics (see below). CS theory shows that
with an appropriate choice of A, L1 minimiza-
tion exactly recovers the true signal so that
ŝ = s0, with a number of measurements that is
roughly proportional to the number of nonzero
elements in the source, K, which can be much
smaller than the dimensionality N of the signal.

A popular and even simpler reconstruc-
tion algorithm is L2 minimization in which
V (s ) = s 2 in Equation 2. This result can arise
as a consequence of oft-used Gaussian priors
on the unknown signal and leads to an estimate
that is simply linearly related to the measure-
ments through the pseudoinverse relation
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Figure 2
Geometry of compressed sensing (CS). (a) A geometric interpretation of L2 minimization. An unknown N = 2 dimensional sparse
signal s0 with K = 1 nonzero components is measured using M = 1 linear measurements, yielding a one-dimensional space of
candidate signals consistent with the measurement constraints (red line). The estimate ŝ is the candidate signal with the smallest L2
norm and can be found geometrically by expanding the locus of points with a fixed and increasing L2 norm (the olive circles) until the
locus first intersects the allowed space of candidate signals. This intersection point is the L2 estimate ŝ, which is different from the true
signal s0. (b) In the identical scenario as in panel a, L1 minimization recovers an estimate by expanding the locus of points with the same
L1 norm (blue diamonds), and in this case, the expanding locus first intersects the space of candidate signals at the true signal s0 so that
perfect recovery ŝ = s0 is achieved. Of course, a sparse signal could also have been located on the other coordinate axis, in which case
L1 minimization would have failed to recover s0 accurately. (c) An unknown sparse signal s0 of dimension N = 200, with
f = K/N = 0.2, i.e., 20% of its elements are nonzero. (d ) An estimate ŝ (red dots) recovered from M = 120 random linear
measurements of s0 (α = N /T = 0.6, or 60% subsampling) by L2 minimization superimposed on the true signal s0. (e) From the same
measurements in panel d, L1 minimization yields an estimate ŝ (red dots) that coincides with the true signal. Note that the parameters of
f = 0.2 and α = 0.6 lie just above the phase boundary for perfect recovery in Figure 3.

ŝ = (AT A)−1AT x. Figure 2 provides heuristic
intuition for the utility of L1 minimization and
its superior performance over L2 minimization
in the case of sparse signals.

An interesting observation is that the bound
in Equation 1 represents a sufficient condition
on the number of measurements M for perfect
signal recovery. Alternately, recent work on the
typical behavior of CS in the limit where M and
N are large has revealed that the performance
of CS is surprisingly insensitive to the details
of the measurement matrix A and the unknown
signal s0 and depends only on the degree of
subsampling α = M /N and the signal sparsity

f = K/N . In the α − f plane, there is a
universal, critical phase boundary αc ( f ) such
that if α > αc ( f ), then L1 minimization will
typically yield perfect signal reconstruction,
whereas if α < αc ( f ), it will yield a nonzero
error (see Figure 3) (Donoho & Tanner
2005a,b, Donoho et al. 2009, Kabashima et al.
2009, Ganguli & Sompolinsky 2010b).

Dimensionality Reduction
by Random Projections
The above CS results can be understood using
the theory of RPs. Geometrically, the mapping
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Figure 3
Phase transition in compressed sensing (CS) (reproduced from Ganguli &
Sompolinsky 2010b). We use linear programming to solve Equation 2 50 times
for each value of α and f in increments of 0.01, with N = 500. The grey
transition region shows when the fraction of times perfect recovery occurs is
neither 0 nor 1. The red curve is the theoretical phase boundary αc ( f ). As
f → 0, this boundary is of the form αc ( f ) = f log 1/ f .

x = As through a measurement matrix A can
be thought of as a linear projection from a
high N-dimensional space of signals down to a
low M-dimensional space of measurements. In
this geometric picture, the space of K-sparse
signals consists of a low-dimensional (non-
smooth) manifold, which is the union of all
K-dimensional linear spaces characterized by
K nonzero values at specific locations, as in
Figure 4a. Candes & Tao (2005) show that
any projection that preserves the geometry
of all K-sparse vectors allows one to recon-
struct these vectors from the low-dimensional
projection efficiently and robustly using L1

minimization. The power of compression by
RPs lies in the fact that they preserve the
geometrical structure of this manifold. In
particular, Baraniuk et al. (2008) show that RPs
down to an M = O(K log(N /K )) dimensional
space preserve the distance between any pair
of K-sparse signals up to a small distortion.

However, we can move beyond sparsity
and consider how well RPs preserve the ge-
ometric structure of other signal or data pat-
terns that lie on more general low-dimensional
manifolds embedded in a high-dimensional

space. An extremely simple manifold is a point
cloud consisting of a finite set of points, as
in Figure 4b. Suppose this cloud consists of
P points sα , for α = 1, . . . , P , embedded in
an N-dimensional space, and we project them
down to the points xα = Asα in a low M-
dimensional space through an appropriately
normalized RP. How small can we make M
before the point cloud becomes distorted in
the low-dimensional space so that pairwise dis-
tances in the low-dimensional space are no
longer similar to the corresponding distances
in the high-dimensional space?

The celebrated Johnson-Lindenstrauss ( JL)
lemma ( Johnson & Lindenstrauss 1984, Indyk
& Motwani 1998, Dasgupta & Gupta 2003)
provides a striking answer. It states that RPs
with M > O(log P ) will yield, with high prob-
ability, only a small distortion in distance be-
tween all pairs of points in the cloud. Thus the
number of projected dimensions M needs only
be logarithmic in the number of points P in-
dependent of the embedding dimension of the
source data, N.

Finally, we consider data distributed along
a nonlinear K-dimensional manifold embedded
in N-dimensional space, as in Figure 4c. An ex-
ample might be a set of images of a single object
observed under different lighting conditions,
perspectives, rotations, and scales. Another ex-
ample would be the set of neural firing-rate
vectors in a brain region in response to a con-
tinuous family of stimuli. Baraniuk & Wakin
(2009) and Baraniuk et al. (2010) show that
M > O(K log NC) RPs preserve the geome-
try of the manifold with small distortion. Here
C is a number related to the curvature of the
manifold so that highly curved manifolds re-
quire more projections. Overall, these results
show that surprisingly small numbers of RPs,
which can be chosen without any knowledge
of the data distribution, can preserve geometric
structure in data.

Compressed Computation
Although CS emphasizes the reconstruction
of sparse high-dimensional signals from
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a cb

Figure 4
Random projections. (a) A manifold of K-sparse signals (red) in N-dimensional space is randomly projected down to an M-dimensional
space (here K = 1, N = 3, M = 2). (b,c) Projection of a point cloud, and a nonlinear manifold respectively.

low-dimensional projections, many important
problems in signal processing and learning
can be accomplished by performing compu-
tations directly in the low-dimensional space
without the need to first reconstruct the high-
dimensional signal. For example, regression
(Zhou et al. 2009), signal detection (Duarte
et al. 2006), classification (Blum 2006, Haupt
et al. 2006, Davenport et al. 2007, Duarte
et al. 2007), manifold learning (Hegde et al.
2007), and nearest neighbor finding (Indyk &
Motwani 1998) can all be accomplished in a
low-dimensional space given a relatively small
number of RPs. Moreover, task performance
is often comparable to what can be obtained
by performing the task directly in the original
high-dimensional space. The reason for this

remarkable performance is that these com-
putations rely on the distances between data
points, which are preserved by RPs. Thus RPs
provide one way to cope with the curse of
dimensionality, and as we discuss below, this
can have significant implications for neuronal
information processing and data analysis.

Approximate Sparsity and Noise
Above, we have assumed a definition of spar-
sity in which an N-dimensional signal s0 has
K < N nonzero elements, with the other el-
ements being exactly 0. In reality, many of the
coefficients of a signal may be small, but they
are unlikely to be exactly zero. We thus expect
signals not to be exactly sparse but to be well
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approximated by a K-sparse vector s0
K , which is

obtained by keeping the K largest coefficients
of s0 and setting the rest of them to 0. In addi-
tion, we have to allow for measurement noise
so that x = As0 + z, where z is a noise vector
whose µ’th component is zero mean Gaussian
noise with a fixed variance.

In the presence of noise, it no longer makes
sense to enforce perfectly the measurement
constraints x = As. Instead, a common ap-
proach, known as the LASSO method, is to
solve the alternate optimization problem

ŝ = arg min
s

{

‖x − As‖2 + λ

T∑

i=1

V (s i )

}

, 3.

where V (s ) = |s | (the absolute value function)
and λ is a parameter to be optimized. The cost
function minimized here allows deviations be-
tween As, which are the noise-free measure-
ment outcomes generated by a candidate sig-
nal s, and the actual noisy measurements x.
However, such deviations are penalized by the
quadratic term in Equation 3.

Several works (see e.g., Candes et al. 2006,
Wainwright 2009, Bayati et al. 2010, Candes &
Plan 2010) have addressed the performance of
the LASSO in the combined situation of noise
and departures from perfect sparsity. The main
outcome is roughly that for an appropriate
choice of λ, which depends on the signal-to-
noise ratio (SNR), the same conditions that
guaranteed exact recovery of K-sparse signals
by L1 minimization in the absence of noise also
ensure good performance of the LASSO for
approximately sparse signals in the presence
of noise. In particular, whenever s0

K is a good
approximation to s0, the LASSO estimate ŝ in
Equation 3 is a good approximation to s0, up
to a level of precision that is allowed by the
noise.

Sparse Models of
High-Dimensional Data
L1-based minimization can also be applied to
the modeling of high-dimensional data. A sim-
ple example is sparse linear regression. Suppose

that our data set consists of M N-dimensional
vectors, aµ, along with M scalar response vari-
ables xµ. The regression model assumes that on
each observation, µ, xµ = aµ · s0 + zµ, where s0

is an N-dimensional vector of unknown regres-
sion coefficients and zµ is Gaussian measure-
ment noise. This can be summarized in the ma-
trix equation x = As0 + z, where the M rows of
the M ×N matrix A are the N-dimensional data
points, aµ. Now if the number of data points M
is fewer than the dimensionality of the data N, it
would seem hopeless to infer the regression co-
efficients. However, in many high-dimensional
regression problems, we expect that the regres-
sion coefficients will be sparse. For example,
aµ could be a vector of expression levels of
N = O(1000) genes measured in a microarray
under experimental condition µ, and xµ could
be the response of a biological signal of interest.
However, only a small fraction of genes are ex-
pected to regulate any given signal of interest,
and hence we expect the regression coefficients
s0 to be sparse.

This scenario is exactly equivalent to the case
of CS with noise. Here the regression coeffi-
cients s0 play the role of an unknown sparse
signal to be recovered, the input data points
aµ play the role of the measurement vectors,
and the scalar output or response xµ plays the
role of the measurement outcome in CS. The
same LASSO algorithm described in Equation
3 can be used to infer the regression coefficients
(Tibshirani 1996). Here, the parameter λ is not
set by the SNR but rather is chosen to minimize
some measure of the prediction error on a new
input. This estimate can be obtained through
cross validation, for example. Efron et al. (2004)
have proposed efficient algorithms to compute
ŝ, optimizing over λ for a given data set (A, x).

The technique of L1 regularization general-
izes beyond linear regression to the problem of
learning large statistical models with expected
sparse parameter sets. Indeed it has been used
successfully in learning logistic regression (Lee
et al. 2006b) and in various graphical models
(Lee et al. 2006a, Wainwright et al. 2007), as
well as in point process models of neuronal
spike trains (Kelly et al. 2010).
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Dictionary Learning
As Equations 2 and 3 imply, to reconstruct a
signal from a small number of random mea-
surements using L1 minimization, we need to
know A = BC, which means that we need to
know the basis C in which the signal is sparse.
What if we have to work with a new ensemble
of signals and we do not yet know of a basis in
which these signals are sparse?

One approach is to perform dictionary
learning (Olshausen et al. 1996; Olshausen &
Field 1996a,b, 1997) on the ensemble of sig-
nals. Suppose {xα} for α = 1, . . . , P is a col-
lection of P M-dimensional signals. We imag-
ine that each signal is well approximated by a
sparse linear combination of the columns of an
unknown M ×N matrix A, i.e., xα ≈ Asα for all
α = 1, . . . , P , where sα is an unknown sparse N-
dimensional vector. We refer to the columns of
A as the dictionary elements. Thus, the nonzero
coefficients of sα indicate which dictionary el-
ements linearly combine to form the signal xα .
Here N can be larger than M, in which case we
are looking for an overcomplete basis, or dic-
tionary, to represent the ensemble of signals.
Given our training signals xα , we wish to find
the sparse codes sα and dictionary A. These can
potentially be found by minimizing the follow-
ing energy function:

E(s1, . . . , sP , A) =
P∑

α=1

(‖xα − Asα‖2 + λ‖sα‖1),

4.
where ||sα||1 denotes the L1 norm of sα . For
each α, this second term enforces the sparsity
of the code, whereas the first quadratic cost
term enforces the fidelity of the code and the
dictionary. Subsequent work (Kreutz-Delgado
et al. 2003; Aharon et al. 2006a,b) has extended
this basic formalism as well as derived efficient
algorithms for solving Equation 4. Moreover,
Aharon et al. (2006b), Isely et al. (2010), and
Hillar & Sommer (2011) have recently shown
that if the signals xα are indeed generated by
sparse noiseless codes through a dictionary A,
under certain conditions related to CS, dictio-
nary learning will recover A, up to permutations
and scalings of its columns.

COMPRESSED SENSING
OF THE BRAIN

Rapid Functional Imaging

In many ways, magnetic resonance imaging
(MRI) is a well-suited application for CS
(Lustig et al. 2008). In MRI, a strong static
magnetic field with a linear spatial gradient,
#H, causes magnetic dipoles in a tissue sample
to align with the magnetic field. A radio fre-
quency excitation pulse then generates a trans-
verse complex magnetic moment at location
r, with amplitude m(r) and a phase φ(r) pro-
portional to r · #H. Depending on the sam-
ple preparation, the amplitudes m(r) correlate
with various local properties of interest. For
example, in functional MRI, it correlates with
the concentration of oxygenated hemoglobin,
which in turn increases in response to neural ac-
tivity. Thus, the measurement goal is to extract
the spatial profile of m(r). A detector coil mea-
sures the spatial integral of the complex magne-
tization. Hence, it essentially measures a spatial
Fourier transform of the profile with a Fourier
wave vector k = (kx, ky, kz) ∝ #H.

The traditional approach to MR imaging has
been to sample the image densely through a
regular lattice in Fourier wave vector space, or
k-space, by generating a sequence of static lin-
ear gradient fields and radio frequency pulses.
If the Fourier space is sampled at the Nyquist-
Shannon rate, then one can perform a lin-
ear reconstruction of the image m(r) simply
by performing an inverse Fourier transform
of the measurements. However, acquiring each
Fourier sample can take time, so any method to
reduce the number of such samples can dramat-
ically reduce patient time in scanners, as well
as increase the temporal resolution of dynamic
imaging.

CS provides an interesting approach to
reducing the number of measurements. In the
CS framework, the measurement basis B in
Figure 1 consists of Fourier modes. CS will
work well if the MRI image is sparse in a basis C
that is incoherent with respect to B. For exam-
ple, many MRI images, such as angiograms, are
sparse in the position, or pixel basis. For such
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images, one can subsample random trajectories
in k-space and use nonlinear L1 reconstruction
to recover the image. For appropriately chosen
random trajectories, one can obtain high-
quality images using a tenth of the number
of measurements required in the traditional
approach (Lustig et al. 2008). Similarly, brain
images are often sparse in a wavelet basis, and
for such images, random trajectories in k-space
can be found that speed up the rate at which im-
ages can be acquired by a factor of 2.4 compared
with the traditional approach (Lustig et al.
2007). Moreover, dynamic movies of oscilla-
tory phenomena that are sparse in the temporal
frequency domain can be obtained at high tem-
poral resolution by sampling randomly both in
k-space and in time (Parrish & Hu 1995).

Fluorescence Microscopy
Simultaneously imaging the dynamics of mul-
tiple molecular species at both high spatial and
temporal resolution is a central goal of cellu-
lar microscopy. CS-inspired technologies such
as single-pixel cameras (Takhar et al. 2006,
Duarte et al. 2008) combined with fluores-
cence microscopy techniques (Wilt et al. 2009,
Taraska & Zagotta 2010) provide one promis-
ing route toward such a goal (Coskun et al.
2010; E. Candes, personal communication).
In fluorescence imaging, multiple molecular
species can be tagged with markers capable of
emitting light at different frequencies. Imag-
ing the molecules then requires two key steps:
First, the sample must be illuminated with light,
causing the tagged species to fluoresce, and sec-
ond, the emitted photons from the fluorescent
species must be detected. Traditionally, two
main methods have been used to accomplish
both steps. In widefield (WF) microscopy, the
entire image is illuminated at once, and a large
array of detectors records the emitted photons.
In raster scan (RS) microscopy, each point of
the image is illuminated in sequence, so only
one detector is required to collect the emitted
photons at any given time.

WF can achieve high temporal resolution
but requires many photodetectors for high

spatial resolution. This is problematic for imag-
ing applications in which photons at many
different frequencies, corresponding to differ-
ent molecules, need to be simultaneously mea-
sured. This requires a prohibitively expensive
high-density array of photodetectors that can
perform hyperspectral imaging, i.e., measure
many spectral channels at once. One could em-
ploy a single such detector in RS mode, but then
achieving high spatial resolution comes at the
cost of low temporal resolution because of the
required number of raster scans.

The single-pixel-camera approach exploits
the potential spatial sparsity of a fluorescence
image to achieve both high spatial and tempo-
ral resolution. In this approach, the image is
illuminated using a sequence of random light
patterns. This can be achieved by a digital mi-
cromirror device (DMD), which consists of a
spatial array of micrometer scale mirrors whose
angles can be rapidly and individually adjusted.
Light is reflected off this array into the sample,
and on each trial, a different configuration of
mirrors leads to a different pattern of illumina-
tion. A single hyperspectral photodetector (the
single pixel) then measures the total emitted
fluorescence. Owing to the randomness of the
light patterns, the image can be reconstructed at
the micrometer spatial resolution of the DMD
using a number of measurements that is much
smaller than the number of pixels (or resolvable
spatial locations) in the image. Thus compres-
sive imaging retains the relative speed and reso-
lution of WF and the simplicity and achievable
spectral range of RS. As such, this rapidly evolv-
ing method has the potential to open up new
experimental windows into the dynamics of in-
tracellular molecular cascades within neurons.

Gene-Expression Analysis
The use of microarrays to collect large-scale
data sets of gene-expression levels across many
brain regions is now a well-established enter-
prise in neuroscience. Suppose we want to mea-
sure a vector s0 of concentrations of N genetic
sequences in a sample. A microarray consists
of N spots, indexed by i = 1, . . . , N , where
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each spot i contains a unique complementary
sequence that will specifically bind with the
sequence i in the sample. All N genetic se-
quences of interest in the sample are fluores-
cently tagged and exposed to all the spots. Each
spot binds a specific sequence, and after the ex-
cess unbound DNA is washed off, the vector of
concentrations s0 can be read off by imaging the
fluorescence levels of the spots.

Often this procedure is highly inefficient be-
cause any particular sample will contain only a
few genetic sequences of interest, i.e., the con-
centration vector s0 is sparse. Dai et al. (2009)
proposed a CS-based approach in which one
can use M < N spots, where each spot con-
tains a random subset of the N sequences of
interest. Thus each spot, now indexed by µ =
1, . . . , M , is characterized by an N-dimensional
measurement vector aµ, where the component
aµ

i reflects the binding affinity of sequence i in
the sample to the contents of spot µ. After the
CS microarray is exposed to the sample, the
M-dimensional vector of fluorescence levels x
is approximately related to the sample concen-
tration s0 through the linear relation x = As0,
where the rows of A are the measurement vec-
tors aµ. Thus if each spot contains enough ran-
domly chosen complementary sequences, such
that the measurements are incoherent with re-
gard to the basis of sequences, one can use the
LASSO method in Equation 3 to recover the
concentrations s0 from the fluorescence mea-
surements x. Dai et al. (2009) do a thorough
analysis of this basic framework. Overall, re-
ducing the number of spots required to collect
gene expression data reduces both the cost and
the size of the array, as well as the amount of
biological sample material required to make ac-
curate concentration measurements.

Compressed Connectomics
The problem of reconstructing functional cir-
cuit connectivity from recordings of neuronal
postsynaptic responses presents a considerable
challenge to neuroscience. Consider, for ex-
ample, a simple scenario in which we have a
population of N neurons that are potentially

presynaptic to a given neuron whose membrane
voltage x we can record intracellularly. The
synaptic strengths from the N neurons to the
recorded neuron is an unknown N-dimensional
vector s0. The traditional approach to estimat-
ing this set of synaptic strengths is to excite
each potential presynaptic neuron one by one
and record the resultant postsynaptic mem-
brane voltage x. Each such measurement re-
veals the strength of one synapse. This brute-
force approach is highly inefficient because the
synaptic connectivity s0 is often sparse, with
only K < N nonzero elements, where K/N is
∼10%. Thus most measurements would simply
yield 0.

Hu & Chklovskii (2009) propose a CS-based
approach to recovering s0 by randomly stimu-
lating F neurons out of N on any given trial
µ. This method corresponds to a random mea-
surement matrix A characterized by F nonzero
entries per row. Given that the true weight vec-
tor s0 is sparse, Hu & Chklovskii (2009) pro-
pose to use L1 minimization in Equation 2 to
recover s0 from knowledge of the inputs A and
outputs x. The authors find for a wide range
of parameters that F/N = 0.1 minimizes the
required number of measurements, M, and for
this value of F, M = O(K log N ) measure-
ments are required to recover s0. Thus random
stimulation of 10% of the population consti-
tutes an effective measurement basis for CS of
synaptic connectivity (Hu & Chklovskii 2009).
Alternative ideas have been proposed for CS of
connectivity using fluorescent synaptic markers
(Mishchenko 2011).

COMPRESSED SENSING
BY THE BRAIN
The problem of storing, communicating, and
processing high-dimensional neural activity
patterns, or external stimuli, presents a funda-
mental challenge to any neural system. This
challenge is complicated by the widespread
existence of convergent pathways, or bottle-
necks, in which information stored in a large
number of neurons is often compressed into
a small number of axons, or neurons in a
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downstream system. For example, 1 million op-
tic nerve fibers carry information about the
activity of 100 times as many photoreceptors.
Only 1 million pyramidal tract fibers carry in-
formation from motor cortex to the spinal cord.
And corticobasal ganglia pathways undergo a
10–1,000-fold convergence. In this section we
review how the theory of CS and RPs yields
theoretical insight into how efficient storage,
communication, and computation are possible
despite drastic reductions in the dimensionality
of neural representations through information
bottlenecks.

Semantic Similarity
and Random Projections
How much can a neural system reduce the
dimensionality of its activity patterns without
incurring a large loss in its ability to perform
relevant computations? A plausible minimal re-
quirement is that any reduction through a con-
vergent pathway should preserve the similarity
structure of the neuronal representations at
the source area. This requirement is motivated
by the observation that in higher perceptual
or association areas in the brain semantically
similar objects elicit similar neural activity
patterns (Kiani et al. 2007). This similarity
structure of the neural code is likely the basis of
our ability to categorize objects and generalize
appropriate responses to new objects (Rogers &
McClelland 2004). Moreover, this similarity
structure is remarkably preserved across
monkeys and humans, for example, in image
representations in the inferotemporal (IT)
cortex (Kriegeskorte et al. 2008).

When a semantic task involves a finite num-
ber of activity patterns, or objects, the JL lemma
discussed above implies that the required com-
munication resources vary only logarithmically
with the number of patterns, independent of
how many neurons are involved in the source
area. For example, suppose 20,000 images can
be represented by the corresponding popula-
tion activity patterns in the IT cortex. Then
the similarity structure between all pairs of im-
ages can be preserved to 10% precision in a

downstream area using only ∼1000 neurons.
Furthermore, this result can be achieved with a
very simple dimensionality-reduction scheme,
namely by a random synaptic connectivity ma-
trix. Moreover, any computation that relies on
similarity structure, and can be solved by the IT
cortex, can also be solved by the downstream
region.

A more stringent challenge occurs when
convergent pathways must preserve the similar-
ity structure of not just a finite set of neuronal
activity patterns, but an arbitrarily large, possi-
bly infinite, number of patterns, as is likely the
case in any pathway that represents information
about continuous families of stimuli. The theo-
ries of CS and RPs of manifolds discussed above
reveal that again drastic compression is possible
if the corresponding neural patterns are sparse
or lie on a low-dimensional manifold (for exam-
ple, as in Figure 4a–c). In this case, the number
of required neurons in a randomly connected
downstream area is proportional to the intrin-
sic dimension of the ensemble of neural activity
patterns and depends only weakly (logarithmi-
cally) on the number of neurons in the source
area.

Hidden low-dimensional structure in neu-
ral activity patterns has been found in several
systems (Ganguli et al. 2008a, Yu et al. 2009,
Machens et al. 2010), and moreover, intrinsic
spatiotemporal fluctuations exhibited in many
models of recurrent neuronal circuits, includ-
ing chaotic networks, are low dimensional
(Rajan et al. 2010, Sussillo & Abbott 2009).
The ubiquity of this low-dimensional structure
in neuronal systems may be intimately related
to the requirement of communication and
computation through widespread anatomical
bottlenecks.

Short-Term Memory
in Neuronal Networks
Another bottleneck is posed by the task of
working memory, where streams of sensory in-
puts must presumably be stored within the dy-
namic reverberations of neuronal circuits. This
is a bottleneck from time into space: Long
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temporal streams of input must be stored in the
instantaneous spatial activity patterns of a lim-
ited number of neurons. The influential idea
of attractor dynamics (Hopfield 1982) suggests
how single stimuli can be stored as stable pat-
terns of activity, or fixed points, but such sim-
ple fixed points are incapable of storing tempo-
ral sequences of information, like an ongoing
sentence, song, or motion trajectory. More re-
cent proposals ( Jaeger 2001, Maass et al. 2002,
Jaeger & Haas 2004) suggest that recurrent net-
works could store temporal sequences of in-
puts in their ongoing, transient activity. This
new paradigm raises several theoretical ques-
tions about how long memory traces can last in
such networks, as functions of the network size,
connectivity, and input statistics. Several stud-
ies have addressed these questions in the case of
simple linear neuronal networks and Gaussian
input statistics. These studies show that the du-
ration of memory traces in any network cannot
exceed the number of neurons (in units of the
intrinsic time constant) ( Jaeger 2001, White
et al. 2004) and that no network can outper-
form an equivalent delay line or a nonnormal
network, characterized by a hidden feedforward
structure (Ganguli et al. 2008b).

However, a more ethologically relevant
temporal input statistic is that of a sparse, non-
Gaussian sequence. Indeed a wide variety of
temporal signals of interest are sparse in some
basis, for example, human speech in a wavelet
basis. Recent work (Ganguli & Sompolinsky
2010a) has derived a connection between
CS and short-term memory by showing that
recurrent neuronal networks can essentially
perform online, dynamical compressed sensing
of an incoming sparse sequence, yielding
sequence memory traces that are longer than
the number of neurons, again in units of the
intrinsic time constant. In particular, neuronal
circuits with M neurons can remember sparse
sequences, which have a probability f of being
nonzero at any given time for an amount
of time that is O( M

f log(1/ f ) ). This enhanced
capacity cannot be attained by purely feedfor-
ward networks, or random Gaussian network
connectivities, but requires antisymmetric

connectivity matrices that generate complex
transient activity patterns and diverse temporal
filtering properties.

SPARSE EXPANDED NEURONAL
REPRESENTATIONS
In the previous section, we have discussed
how CS and RPs can explain how convergent
pathways can compress neuronal representa-
tions. However, in many computations, neu-
ral systems may need to expand these low-
dimensional compressed representations back
into high-dimensional sparse ones. For exam-
ple, such representations reduce the overlap
between activity patterns, thereby simplifying
the tasks of learning, discrimination, catego-
rization, noise filtering, and multiscale stimulus
representation. Indeed, like convergence, the
expansion of neural representations through
divergent pathways is a widespread anatomi-
cal motif. For example, information in 1 mil-
lion optic nerve fibers is expanded into more
than 100 million primary visual cortical neu-
rons. Also in the cerebellum, a small number of
mossy fibers target a large number of granule
cells, creating a 100-fold expansion.

How do neural circuits transform com-
pressed dense codes into expanded sparse ones?
A simple mechanism would be to project the
dense activity patterns into a larger pool of neu-
rons via random divergent projections and use
high spiking thresholds to ensure sparsity of the
target activity patterns. Indeed, Marr (1969)
suggested this mechanism in his influential hy-
pothesis that the granule cell layer in the cere-
bellar cortex performs sparse coding of dense
stimulus representations in incoming mossy
fibers to facilitate learning of sensorimotor
associations at the Purkinje cell layer. Although
random expansion may work for some compu-
tations, sparse codes are generally most useful
when they represent essential sparse features of
the compressed signal. In the next sections, we
review how CS methods for generating sparse
expanded representations, which faithfully
capture hidden structures in compressed data,
can operate within neural systems.
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Figure 5
Neural L1 minimization and long-range brain communication. (a) A two-layer circuit for performing L1 minimization and dictionary
learning. (b) Nonlinear transfer function from inputs to firing rates of neurons in the second layer in panel a. (c) A scheme for efficient
long-range brain communication in which sparse activity s0 is compressed to a low-dimensional dense representation x in a source area
and efficiently communicated downstream to a target area with a small number of axons, where it could be re-expanded into a new
sparse representation u through a dictionary learning circuit as in panel a.

Neuronal Implementations
of L1 Minimization
Given that solving the optimization problem in
Equation 3 with V (s ) = |s | has proven to be an
efficient method for sparse signal reconstruc-
tion, whether neuronal circuits can perform this
computation is a natural question. Here we de-
scribe one plausible two-layer circuit solution
(see Figure 5a) proposed in Rozell et al. (2008),
inspired by gradient descent in s on the cost
function in Equation 3. Suppose that the low
M-dimensional input x is represented in the
first layer by the firing rates of a population of
M neurons such that the µth input neuron has
a firing rate xµ. Now suppose that the recon-
structed sparse signal is represented by a larger
population of N neurons where si is the firing
rate of neuron i. In this population, we denote
the synaptic potential for each neuron by vi,
which determines the neuron’s firing rate via a
static nonlinearity F, s i = F (vi ).

The synaptic connectivity from the M input
neurons to the N second-layer neurons comput-
ing the sparse representation s is given by the
N ×M matrix AT such that the ith column of A,
ai, denotes the set of M synaptic weights from
the input neurons to neuron i in the second

layer. Finally, assume there is lateral inhibition
between any pair of neurons i and j in the second
layer, governed by synaptic weights Lij, which
are related to the feedforward weight vectors to
the pair of neurons, through Li j = ai ·a j . Then
the internal dynamics of the second-layer neu-
rons obey the differential equations

τ
dvi

d t
= −vi + ai · x −

T∑

j=1

Li j s j , 5.

where x is the activity of the input layer. Rozell
et al. (2008) found that for an appropriate choice
of the static nonlinearity, this dynamic is sim-
ilar to a gradient descent on the cost function
given by Equation 3. In particular, for L1 min-
imization, the static nonlinearity F is simply a
threshold linear function with threshold λ and
gain 1 (see Figure 5b).

To obtain a qualitative understanding of
this circuit, consider what happens when the
second-layer activity pattern is initially inactive
so that s = 0 and an input x occurs in the first
layer. Then the internal variable vi (t) of each
second-layer neuron i will charge up with a rate
controlled by the overlap of the input x with
the synaptic weight vector, ai, which is closely
related to the receptive field (RF) of neuron
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i. As neuron i’s internal activation crosses
the threshold λ, it starts to fire and inhibits
neurons with RFs similar to ai. This sets up a
competitive dynamic in which a small number
of neurons with RFs similar to the input x come
to represent it, yielding a sparse representation
ŝ of the input x, which is the solution to
Equation 3. In the case of zero noise, the above
circuit dynamic needs to be supplemented
with an appropriate dynamic update of the
threshold λ, which eventually approaches zero
at the fixed point (Donoho et al. 2009). Finally,
we note that several works (Olshausen et al.
1996, Perrinet 2010) have proposed synaptic
Hebbian plasticity and homeostasis rules that
supplement Equation 5 and allow the circuit
to solve the full dictionary learning problem,
Equation 4, without prior knowledge of A.

An intriguing feature of the above dynamic
is that the inhibitory recurrent connections are
tightly related to the feedforward excitatory
drive. Koulakov & Rinberg (2011) suggest that
exactly this computation may be implemented
in the rodent olfactory bulb. They propose that
reciprocal dendrodendritic synaptic coupling
between mitral cells and granule cells yields
an effective lateral inhibition between granule
cells that is related to the feedforward drive
from mitral cells to granule cells, in accordance
with the requirements of Equation 5. Thus the
composite olfactory circuit builds up a sparse
code for odors in the granule cell population.
Likewise, Hu et al. (2011) proposed that
sparse coding is implemented within the
amacrine/horizontal cell layers in the retina.

Compression and Expansion in
Long-Range Brain Communication
A series of papers (Coulter et al. 2010, Isely et al.
2010, Hillar & Sommer 2011) have integrated
the dual aspects of CS theory: dimensionality
reduction of sparse neural representations, and
the recoding of stimuli in sparse overcomplete
representations into a theory of efficient
long-range brain communication (see also
Tarifi et al. 2011). According to this theory
(see Figure 5c), each area in a long-range

communication pathway has both dense and
sparse representations. Local sparse represen-
tations are first compressed to communicate
them using a small number of axons and
potentially re-expanded in a downstream area.

Where in the brain might these transforma-
tions occur? Coulter et al. (2010) predict that
this could occur within every cortical column,
with compressive projections, possibly random,
occurring between more superficial cortical
layers and the output layer 5. A key testable
physiological prediction would then be that
activity in more superficial layers is sparser than
activity in deeper output layers. Another pos-
sibility is the transformation from sparse high-
dimensional representations of space in the
CA3/CA1 fields of the hippocampus to denser,
lower-dimensional representations of space in
the subiculum, which constitutes the major out-
put structure of the hippocampus. A functional
explanation for this representational dichotomy
could be that the hippocampus is performing an
RP from CA3/CA1 to the subiculum, thereby
minimizing the number of axons required
to communicate the results of hippocampal
computations to the rest of the brain.

Overall, these works suggest more generally
that random compression and sparse coding can
be combined to yield computational strategies
for efficient use of the limited bandwidth avail-
able for long-range brain communication.

LEARNING IN
HIGH-DIMENSIONAL
SYNAPTIC WEIGHT SPACES
Learning new skills and knowledge is thought
to be achieved by continuous synaptic mod-
ifications that explore the space of possible
neuronal circuits, selecting through experience
those that are well adapted to the given task.
We review how regularization techniques
used by statisticians to learn high-dimensional
statistical models from limited amounts of data
can also be employed by synaptic learning
rules to search efficiently the high-dimensional
space of synaptic patterns to learn appropriate
rules from limited experience.
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Neural Learning of Classification
A simple model of neural decision making
and classification is a single-layer feedforward
network in which the postsynaptic potential of
the readout neuron is a sum of the activity of its
afferents, weighted by a set of synaptic weights,
and the decision is signaled by firing or not
firing depending on whether the potential
reaches threshold. Such a model is equivalent
to the classical perceptron (Rosenblatt 1958).
Computationally, this model classifies N-
dimensional input patterns into two categories
separated by a hyperplane determined by the
synaptic weights. These weights are learned
through experience-dependent modifications
based on a set of M training input examples
and their correct classifications. Of course,
the goal of any organism is not to classify past
experience correctly, but rather to generalize to
novel experience. Thus an important measure
of learning performance is the generalization
error, or the probability of incorrectly clas-
sifying a novel input, and a central question
of learning theory is how many examples M
are required to achieve a good generalization
error given a number of N unknown synaptic
weights that need to be learned.

This question has been studied exhaustively
(Gardner 1988, Seung et al. 1992) (see Engel &
den Broeck 2001 for an overview), and the gen-
eral consensus finds that for a wide variety of
learning rules, a small generalization error can
occur only when the number of examples M is
larger than the number of synapses N. This re-
sult has striking implications because it suggests
that learning may suffer from a curse of dimen-
sionality: Given the large number of synapses
involved in any task, this theory suggests we
need an equally large number of training exam-
ples to learn any task.

Recent work (Lage-Castellanos et al. 2009)
has considered the case when a categorization
task can be realized by a sparse synaptic weight
vector, meaning that only a subset of inputs are
task relevant, though which subset is a priori
unknown. The authors showed that a simple
learning rule that involves minimization of the

classification error on the training set, plus an
L1 regularization on the synaptic weights of the
perceptron, yields a good generalization error
even when the number of examples can be less
than the number of synapses. Thus a sparsity
prior is one route to combat the curse of dimen-
sionality in learning tasks that are realizable by
a sparse rule.

Optimality and Sparsity
of Synaptic Weights
Consider again the perceptron learning to
classify a finite set of M input patterns. In gen-
eral, many synaptic weight vectors will classify
these inputs correctly. We can, however, look
for the optimal weight vector that maximizes
the margin, or the minimal distance between
input patterns and the category boundary.
For such weights, the induced synaptic po-
tentials are as far as possible from threshold,
and the resultant classifications yield good
generalization and noise tolerance (Vapnik
1998).

A remarkable theoretical result is that if
synapses are constrained to be either excitatory
or inhibitory, then near capacity, the optimal
solution is sparse, with most of the synapses
silent (Brunel et al. 2004), even if the input
patterns themselves show no obvious sparse
structure. This result has been proposed as a
functional explanation for the abundance of
silent synapses in the cerebellum and other
brain areas.

When the sign of the weights are uncon-
strained, the optimal solutions are still sparse,
but not in the basis of neurons. Instead, the op-
timal weight vector can be expressed as a linear
combination of a small number of input pat-
terns, known as support vectors, the number of
support vectors being much smaller than their
dimensionality. Indeed, several powerful learn-
ing algorithms, including support vector ma-
chines (SVMs) (see Burges 1998, Vapnik 1998,
Smola 2000 for reviews), exploit this form of
sparsity to achieve good generalization from
relatively few high-dimensional examples.
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Finally, because a sufficiently large number
of RPs preserve Euclidean distances, they
incur only a modest reduction in the margin
of the optimal category boundary separating
classes (Blum 2006). Hence, classification
problems can also be learned directly in a
low-dimensional space. In summary, there
is an interesting interplay among sparsity,
dimensionality, and the learnability of high-
dimensional classification problems: Any such
rapidly learnable problem (i.e., one with a large
margin) is both (a) sparse, in the sense that its
solution can be expressed in terms of a sparse
linear combination of input patterns, and
(b) low-dimensional in the sense that it can be
learned in a compressed space after a RP.

DISCUSSION

Dimensionality Reduction:
CS versus Efficient Coding

Efficient coding theories (Barlow 1961, Atick
1992, Atick & Redlich 1992, Barlow 2001)
suggest that information bottlenecks in the
brain perform optimal dimensionality re-
duction by maximizing mutual information
between the low-dimensional output and the
high-dimensional input (Linsker 1990). The
predictions of such information maximization
theories depend on assumptions about input
statistics, neural noise, and metabolic con-
straints. In particular, infomax theories of early
vision, based on Gaussian signal and noise
assumptions, predict that high-dimensional
spatiotemporal patterns of photoreceptor
activation should be projected onto the linear
subspace of their largest principal components.
Furthermore, the individual projection vectors,
i.e., retinal ganglion cell (RGC) RFs, depend
on the stimulus SNR; in particular, at a high
SNR, RFs should decorrelate or whiten the
stimulus. This is consistent with the center-
surround arrangement of RFs, which removes
much of the low-frequency correlations in
natural images (Atick 1992, Atick & Redlich
1992, Borghuis et al. 2008).

What is the relation between infomax
theories and CS? According to CS theory, for
sparse inputs, close to optimal dimensionality
reduction is achieved when the projection
vectors are maximally incoherent with respect
to the basis in which the stimulus is sparse. As-
suming visual stimuli are approximately sparse
in a wavelet or Gabor-like basis, incoherent
projections are likely to be spatially distributed.
If sparseness is a prominent feature of natural
visual spatiotemporal signals, how can we
reconcile the observed RGC center-surround
RFs with the demand for incoherence? Inco-
herent or random projections are optimal for
signal ensembles composed of a combination
of a few feature vectors in which the identity
of these vectors varies across signals. This
may be an adequate description of natural
images after whitening. However, prewhitened
natural images have strong second-order
correlations, implying that they lie close to a
low-dimensional linear space given by their
principal components. Thus, the ensemble of
natural images is characterized by both linear
low-dimensional structure and sparse structure
imposed by higher-order statistics. In such en-
sembles, whether sensory stimuli or neuronal
activity patterns, when second-order correla-
tions are strong enough, the optimal dimen-
sionality reduction may indeed be close to that
predicted by Gaussian-based infomax, as has
been argued in recent work (Weiss et al. 2007).

Expansion and Sparsification:
Compressed Sensing versus
Independent Components Analysis
What does efficient coding theory predict re-
garding the recoding of signals through ex-
pansive transformations, for example, from the
optic nerve to visual cortex? Several modern
efficient coding theories, such as basis pur-
suit, independent components analysis (ICA),
maximizing non-Gaussianity, and others, sug-
gest that even after decorrelation, natural
images include higher-order statistical depen-
dencies that arise through linear mixing of sta-
tistically independent sources. The role of the
cortical representation is to further reduce the
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redundancy of the signal by separating the
mixed signal into its independent causes (i.e., an
unmixing operation), essentially generating a
factorial statistical representation of the signal.

The application of ICA to natural im-
ages and movies yields at the output layer,
single-neuron response histograms, which are
considerably sparser than those in the input
layer. These responses have Gabor-like RFs
similar to those of simple cells in V1 (Olshausen
et al. 1996, Bell & Sejnowski 1997, van Hateren
& Ruderman 1998, van Hateren & van der
Schaaf 1998, Simoncelli & Olshausen 2001,
Hyvarinen 2010). ICA algorithms have also
been applied to natural sounds (Lewicki 2002),
yielding a set of temporal filters, resembling
auditory cortical RFs.

Although the algorithms and results of
ICA and source extraction by CS are often
similar, there are important differences. First,
CS results in signals that are truly sparse,
i.e., most of the coefficients are zero, whereas
ICA algorithms generally yield signals with
many small values, i.e., distributions with high
kurtosis but no coefficients vanish (Olshausen
et al. 1996, Bell & Sejnowski 1997, Hyvarinen
2010). Second, ICA emphasizes the statistical
independence of the unmixed sources (Barlow
2001). Sparseness is a special case; ICA can be
applied to reconstruct dense sources as well.
In contrast, signal extraction by CS relies only
on the assumed approximate sparseness of
the signal, and not on any statistical priors,
and is similar in spirit to the seminal work of
Olshausen et al. (1996). Indeed, a recent study
suggests that sparseness may be a more useful
notion than independence and that the success
of ICA in some applications is due to its ability
to generate sparse representations rather than
to discover statistically independent features
(Daubechies et al. 2009).

Beyond Linear Projections:
Neuronal Nonlinearities

The abundance of nonlinearities in neuronal
signaling raises the question of the relevance of
the CS linear projections to neuronal informa-
tion processing. One fundamental nonlinearity
is the input-output relation between synaptic
potentials and action potential firing of individ-
ual neurons. This nonlinearity is often approx-
imated by the linear-nonlinear (LN) model
(Dayan & Abbott 2001, Ostojic & Brunel 2011)
in which the firing rate of a neuron, x, is related
to its input activity a through x = σ (a · s0),
where s0 is the neuron’s spatiotemporal linear
filter and σ (·) is a scalar sigmoidal function. As
long as σ (·) is an invertible function of its input,
the nonlinearity in the measurement can be
undone to recover the fundamental linear rela-
tion between the synaptic input to the neuron
and the source, given by As0; hence, the results
of CS should hold. More generally, it will be
an important challenge to evaluate the role
of dimensionality reduction, expansion, and
sparse coding in neuronal circuit models that
incorporate additional nonlinearities, including
nonlinear temporal coding of inputs, synaptic
depression and facilitation, and nonlinear feed-
back dynamics through recurrent connections.

In summary, we have reviewed a relatively
new set of surprising mathematical phenomena
related to RPs of high-dimensional patterns.
But far from being a set of intellectual curiosi-
ties, these phenomena have important practical
implications for data acquisition and analysis
and important conceptual implications for neu-
ronal information processing. It is likely that
more surprises await us, lurking in the proper-
ties of high-dimensional spaces and mappings,
properties that could further change the way
we measure, analyze, and understand the brain.
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