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ABSTRACT 

 

One of the principal challenges facing the structural health monitoring (SHM) 

community is taking large, heterogeneous sets of data collected from sensors, and 

extracting information that allows the estimation of the damage condition of a 

structure.  Another important challenge is to collect relevant data from a structure in a 

manner that is cost effective, and respects the size, weight, cost, energy consumption, 

and bandwidth limitations placed on the system.  In this work we established the 

suitability of compressed sensing to address both challenges.   

A digital version of a compressed sensor is implemented on-board a 

microcontroller similar to those used in embedded SHM sensor nodes.  The sensor 

node is tested in a surrogate SHM application using acceleration measurements.  

Currently the prototype compressed sensor is capable of collecting compressed 

coefficients from measurements and sending them to an off-board processor for signal 

reconstruction using l1 norm minimization.  A compressed version of the matched 

filter known as the smashed filter, has also been implemented on-board the sensor 

node, and its suitability for detecting structural damage will be discussed.   

 

1. INTRODUCTION 

 

 Data for structural health monitoring applications is generally collected using a 

distributed sensor network.  Distributed sensor networks made up of nodes with hard-

wired data and communication lines are generally have high installation costs, 

particularly in the retrofit mode.  Lynch reported that hard-wire installation could 

consume 75% of the total testing time, and installation costs could consume 25% of 

the total system costs [1].  The goal is to transition to low-power, wireless sensor 

networks featuring minimal installation costs [2].  Two of the major problems with 

these types of sensor networks are the minimization of energy and bandwidth.  

Compressed sensing techniques hold promise to help address both of these demands.  

By collecting compressed coefficients, the signal of interest can be represented using a 

fraction of the measurements required by traditional Nyquist sampling.  The result is 
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reduced energy consumption for data collection, storage and transmission [3], [4].  In 

addition, the bandwidth required to transmit the sampled signal is also significantly 

reduced.  The focus of this work is to evaluate the applicability of compressed sensing 

techniques to expand the capabilities of wireless sensor networks for structural health 

monitoring applications.   

  

2. BACKGROUND OF COMPRESSED SENSING 

 

Compressed sensing has been a prolific research topic in applied math and statistics 

over the last few years.  Excellent tutorials covering the basics of compressed sensing 

can be found in [5], [6], and [7].  To summarize, a signal of interest x can be 

represented as: 

∑
=

=

N

i

ii
sx

1

ψ   or in matrix form as sx Ψ=    (1) 

Where Ψ is an orthonormal basis and “s” is the representation of the signal in the Ψ 

domain.  In the case of compressed sensing we are interested in the case where x is 

compressible in some domain.  That is, the number of significant non-zero elements of 

s is equal to K and K << N.  K is known as the “sparsity” of the signal.  A 

measurement matrix “Φ” is then introduced to produce compressed sensing 

coefficients y.   

ssxy Θ=ΦΨ=Φ=      (2) 

 

Where Φ has M<<N rows.  At this point it is important to note that this equation 

represents an underdetermined system of linear equations.  One of the major 

breakthroughs of the compressed sensing community was the finding that assuming 

K<<N it is possible to recover x from y assuming the matrix Φ possesses the restricted 

isometry property (RIP) and x is sparse in some basis [5].  An example of a sparse 

signal would be a signal that only contains a few non-zero Fourier coefficients such as 

a sum of decreasing harmonics that represents a structure’s impulse response.  The 

direct formulation of this problem is finding the vector s with minimal l0 norm.  

Unfortunately l0 norm minimization is numerically unstable and computationally 

expensive [7].  It has been shown though that the l0 can be replaced with an l1 norm 

relaxation [6].  The l1 norm regularization problem [5] [8] can be solved to recover 

sparse signals from the compressed coefficients y.  Amazingly, it is possible to recover 

x using an M measurements following the relation [5]: 

⎟
⎠
⎞

⎜
⎝
⎛≥
K

N
cKM log      (3) 

Where c is a constant that has empirically been found to approximately equal 4.0 [7].  

Equation (3) implies that it is possible to reconstruct a sparse signal x using far fewer 
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measurements than elements in x.  In this work, the l1 norm regularization approach 

will be explored for recovering the signal x from compressed coefficients y. 

 

To date the literature contains few examples of compressed sensing techniques being 

applied to the structural health monitoring field.  The earliest work found that 

exploited compressed sensing for SHM applications was that by Cortial [9].  Cortial 

applied compressed sensing techniques to a simulated structural health monitoring 

sensor network with a high spatial resolution installed on-board an F-16.  Cortial 

found there was potential to use a subset of his distributed sensors to locate and 

identify damage to the F-16 caused by an explosive bullet when compressed sensing 

techniques were applied.   More recently, Bao [10] applied compressed sensing 

techniques to acceleration data collected from the SHM system for the Shandong 

Binzhou Yellow River highway bridge.  This work found that for a given signal 

reconstruction error, conventional techniques such as wavelet data compression 

enjoyed a higher compression ratio than compressed sensing applied using either the 

Fourier or wavelet basis.  Despite the results presented by Bao, the author believes that 

compressed sensing techniques offer advantages that offset the compression ratio 

penalty when compared to conventional compression techniques.  For instance, 

compressed coefficient are “democratic” in the sense that no one coefficient carries 

any more information than any other.  This property could help enable the design of 

measurement systems that fail gracefully if the system experiences partial 

malfunctions.  Compressed sensing also offers the possibility of enabling low-power 

measurement hardware.  This advantage will be particularly important for long-

endurance applications such as those common in structural health monitoring 

applications.  Furthermore, by applying techniques such as the over-complete 

dictionary the performance of compressed sensing for damage detection applications 

can be improved.   

 

3. EXPERIMENTAL SETUP 

 

 In order to evaluate the applicability of compressed sensing for embedded 

structural health monitoring sensor nodes, a digital prototype of a compressed sensor 

node was built.  The prototype consisted of an ATmega1281 microcontroller, an 

Integrated Circuit – Piezoelectric (ICP®) accelerometer, and the associated 

amplification and ICP circuitry required to interface the analog-to-digital converter 

(ADC) of the microcontroller to the ICP® accelerometer.  The accelerometer was then 

attached to the second floor of a representative 3 story structure [11], [12] as shown in 

Figure 1.  The accelerometer was oriented to measure the transverse vibration of the 3-

story structure.    An electro-magnetic shaker was then attached to the base of the three 

story structure to provide a source of excitation.  The excitation to the structure was a 

sine wave with a frequency of 30.7 Hz which corresponds to the first resonant 

frequency of this structure.    In order to introduce damage into the structure, a bumper 

was used to induce a nonlinear response when the relative transverse displacement 

between the second floor and the base would exceed a threshold value.  This 

nonlinearity could represent damage such as a crack opening and closing.  The signal 

from the accelerometer was sampled by the ATmega1281 with a 10 bit ADC at a 
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sampling rate of about 3000 Hz.  The sampling rate is significantly higher than the 

structural excitation frequency in order to capture the higher frequency dynamics 

caused by induced nonlinearities.  In this work, 256 point time series were collected 

by the Atmega1281 and subsequently converted into compressed measurements by the 

microcontroller.  The elements of the measurement matrix Φ were chosen to be either 

±1.  The generation of the measurement matrix Φ was accomplished using a linear 

feedback shift register (LFSR) similar to that mentioned in [13].  The ±1 measurement 

matrix was selected in order to allow the generation of the compressed coefficients on-

board the microcontroller using integer arithmetic.  The ATmega1281 was placed 

onboard an STK500 evaluation board.  A base station laptop was then connected to 

the STK500 in order to facilitate the debugging of the compressed sensing algorithms, 

and to expedite the collection of compressed coefficients from the embedded sensor 

node.  For the purpose of this experiment, the ATmega1281 would transmit both the 

compressed measurements as well as the original signal when it was queried for a 

measurement.  By collecting both pieces of data the reconstructed signal derived from 

the compressed coefficients could be compared to the original signal in order to 

evaluate the performance of compressed sensing techniques.   

 

 
Figure 1- Representative 3 story structure used to evaluate the compressed sensor node. 

 

4. RESULTS FROM l1 NORM REGULARIZATION EXPERIMENTS 

 

The structure described in the previous section was placed in a configuration so that it 

could assume either a damaged state or an undamaged state.  In the undamaged state, 

the output from the accelerometer should assume a sine wave with a frequency of 30.7 

Hz that corresponds to the shaker excitation frequency.  In the damaged state, the 
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bumper interacts with the structure and the frequency content of the resulting output 

from the structure is more widely distributed across the spectrum.  For this work we 

assume that the resulting signals from the structure should be sparse in the Fourier 

basis.  Data x were collected from the structure in both the damaged and undamaged 

states, and were subjected to the compressed sensing measurement process to generate 

the compressed coefficients y.   

xy Φ=      (4) 

Where Φ is an M by N matrix generated using linear feedback shift registers.  The 

resulting elements of Φ take values of ±1.  M indicates the number of compressed 

coefficients, and N is the length of the original signal.  The resulting compressed 

measurements were then cast into the l1 norm regularization framework to attempt 

recovery of the original signal.   The l1 norm regularization problem can be written as: 

( )
12
ssyMinimize

s
γ+ΦΨ−             (5)       

In this work Ψ was taken to be the Fourier basis.  The l1 norm regularization problem 

trades off between the size of the residual and the sparsity of s.  The l1 norm 

regularization was implemented using the CVXMOD software [14].  256-point time-

series data were collected from the structure using the ATmega1281 and were 

transmitted to the base station laptop.  The resulting compressed coefficients were 

subjected to the l1 norm regularization with  γ = 1.0.  The value of γ was selected 

heuristically.  The basis in which the signal is sparse, Ψ, is taken to be the Fourier 

basis.  The l1 norm regularization problem was solved using 16, 32, 64 and 128 

compressed coefficients for both the damaged and undamaged cases.  These 

correspond to using only 6.25%, 12.5%, 25%, and 50% respectively of the original 

number of measurements.  The resulting reconstructions can be found in Figure 2 and 

Figure 3.  The values of the Fourier basis coefficients for the undamaged and damaged 

cases are found in Figure 4 and Figure 5, respectively.   

 By looking at the Fourier coefficient plots in Figure 4 and Figure 5  it can be 

seen that the undamaged signal has approximately 12 non-zero components, and the 

damaged signal has approximately 24 non-zero components. From this information it 

is expected that more compressed coefficients will be required to reconstruct the 

damaged signal as opposed to the undamaged signal.    From the reconstructed signals 

in Figure 2 and Figure 3 we can see that the nature of the output signal does not begin 

to become apparent until about 64 compressed coefficients are taken.  This result is to 

be expected because prior empirical results [7] suggest that the reconstruction should 

require about 4*K coefficients, or about 48 coefficients in the undamaged case, and 96 
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coefficients in the damaged case.  From the plots we see the reconstructed signal 

captures the original signal fairly well once 128 compressed coefficients (half the 

original number of measurements) are used in the reconstruction.   

 

 
Figure 2 - Undamaged case compressed sensing reconstruction 

 
Figure 3 - Damaged case compressed sensing reconstruction 
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Figure 4 - Fourier basis coefficients from the healthy structure, original and reconstructed signals. 

 

Next consider the plots of the Fourier basis coefficients displayed in Figure 4 

and Figure 5.  The first noteworthy aspect of these plots, is that the reconstructed 

signal features the most dominant peak in the Fourier basis coefficients even when 

only 16 compressed coefficients are used in the reconstruction.  This result suggests 

that if only an estimate of the dominant frequency of a signal is required, it may be 

possible to produce an accurate estimate using only a very small number of 

compressed coefficients.  At low numbers of compressed coefficients, spurious small 

but non-zero values of the basis coefficients appear across the coefficient vector.  

There is no immediately obvious bias as to how these non-zero, small components are 

distributed across the coefficient vector.  As the number of compressed coefficients 

used is increased, the magnitude of these spurious components diminishes to 0.  In 

addition, as the number of compressed coefficients increases, the less dominant peaks 

in the Fourier basis coefficients begin to emerge.  Once 128 compressed coefficients 

are used in the optimization, the Fourier basis coefficients of the original signal, and 

the reconstructed signal are very similar.     

 

It is interesting to note, that in both the undamaged and damaged cases, the 

signal reconstructions seem to basically become less “fuzzy” as additional coefficients 

are included in the l1 norm regularization process.  As we use more compressed 

coefficients, the signal comes more into focus.  This phenomenon illustrates the 

democratic property possessed by compressed coefficients.  Compressed coefficients 

are democratic in the sense that no particular compressed coefficient carries any more 
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information than any other.  If any compressed coefficient were to be lost, it could 

simply be replaced by another compressed coefficient.  Alternatively, if the coefficient 

could not be replaced, the resulting reconstructed signal would simply go slightly out 

of focus, but the main features of the signal would still be intact although not shown 

explicitly in this study.  The democratic nature of compressed coefficients can be 

exploited to produce measurement systems that degrade gracefully with minor failures 

and losses in communication.     

 
Figure 5 - Fourier basis coefficients from damaged structure, original and reconstructed signals. 

 

5. l1 RECONSTRUCTION WITH OVER-COMPLETE DICTIONARIES 

 

Oftentimes signals associated with structural health monitoring applications are 

generated by systems that are nearly linear being excited by oscillatory sources.  As a 

result, it is natural to represent these signals in the Fourier domain using the discrete 

Fourier transform.  Generally, the frequency content of the signals being measured 

does not exactly correspond to the frequencies being sampled by the discrete Fourier 

transform of the signal captured by the data acquisition.  The result is the emergence 

of the “leakage” phenomenon commonly encountered in Fourier analysis [15].  

Leakage effectively decreases the sparsity of a measured signal in the discrete Fourier 

basis.  The underlying signal being sampled may only contain a single frequency 

component, but if its frequency is in-between the frequencies sampled by the discrete 

Fourier transform, it will manifest itself as non-zero content at many frequencies.  The 

result is that the signal is less sparse in the discrete Fourier basis.  One method for 

effectively regaining sparsity in the signal, is to use an over-complete dictionary for Ψ 

instead of a basis.  The term “over-complete dictionary” refers to a set of vectors that 

contains a complete set of basis vectors plus additional vectors not in the original basis 

set.   Here the over-complete Fourier basis is used to reconstruct the signal [16].  The 
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over-complete Fourier basis is generated by sampling the standard discrete Fourier 

basis more finely in frequency.  The over-complete Fourier basis is generated by: 
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Where N is the length of the vectors, and L is the multiplicative factor by which the 

dictionary is over-complete.  For this work, L is taken to be 2, so the over-complete 

dictionary contains 2 times as many vectors as the standard Fourier basis.  The over-

complete dictionary basically includes the frequency components in-between those 

sampled by the standard Fourier basis.  The l1 norm regularization problem described 

by (4) was repeated for both the healthy and damaged signals.  Ψ was replaced with 

the over-complete Fourier dictionary, and γ = 1.0.  The l1 norm regularization 

problem was solved using 8, 16, 32, and 64 compressed coefficients for both the 

damaged and undamaged cases.  The reconstruction of the healthy signal can be found 

in Figure 6 and the reconstruction of the damaged signal is found in Figure 7.   

 

Figure 6 - l1 reconstruction of a healthy signal using a 2X over-complete Fourier basis 

 



Mascareñas, D., Cattaneo, A., Theiler, J., Farrar, C., Los Alamos National Laboratory, PO Box 1663 

MS T001, Los Alamos, NM 87544, LA-UR 12-01484 

 

First compare Figure 2  with Figure 6.  Clearly, the reconstruction using the over-

complete dictionary outperforms the reconstructions using simply the standard Fourier 

basis.  In this case, when using the over-complete dictionary the performance when 

using only 16 compressed coefficients is roughly similar to the case when using 32 

compressed coefficients with the standard Fourier dictionary.  Across all the 

reconstructions for the healthy case with L=2, using the over-complete dictionary 

produces reconstructions that are comparable to the reconstructions achieved using the 

standard Fourier basis, but with two times as many compressed measurements.  The 

reconstructions show in Figure 7 show a similar result.  Significantly fewer 

compressed measurements are needed to reconstruct a signal generated by a linear 

system when an over-complete Fourier basis is used to perform the reconstruction.   
 

 

 

Figure 7 - l1 reconstruction of a damaged signal using a 2X over-complete Fourier basis.  

 

6. SMASHED FILTER 

 

 In structural health monitoring, the main concern is generally the detection of 

damage and not necessarily the collection of accurate time series.  With this in mind it 

was decided to investigate alternate techniques to try and detect the presence of 

damage while using a relatively small number of compressed coefficients.  An 

extension of the matched filter to the compressed domain known as the “smashed 

filter” seemed an appropriate technique to evaluate [17].  The matched filter is an 

optimal detection scheme for detecting the presence of a known signal obscured by 

white Gaussian noise [18].  The implementation is simply: 

( ) ( ) ( )∑
−

=

=−
1

0

1
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k

n
kxkhNT      (8) 
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Where x is the measured signal, hn is the signal whose presence is being ascertained, N 

is the length of the signal, and T(N-1) is the test statistic. If the value of the test statistic 

T(N-1) is above a user-defined threshold, the decision is made that the signal is present 

in the measurement.   The smashed filter is implemented in basically the same manner 

as the conventional matched filter.  The main difference is that the smashed filters are 

generated by taking time-shifted versions of the signals of interest, and then subjecting 

them to the measurement process Φ.  The time-shifted versions of the signal of interest 

are used because in this work, the arrival in time of the signal of interest is not known.  

To compensate a dictionary of time-shifted versions of the signal of interest are used 

instead.  The matched filters in the compressed domain Hm for the discrete time-shift n 

are generated from the signals of interest hn as: 

 
nm
hH Φ=      (9) 

The smashed filter can then be written as: 
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Where y is the measured signal in the compressed domain, Hm is the compressed 

version of the signal whose presence is being ascertained, m is the number of 

compressed coefficients, and T(N-1) is the test statistic.  For this work, training signals 

from both the damaged and undamaged states were collected.  The training signal for 

the damaged case was collected at a different time in order to allow the possibility for 

a small mismatch between the training data and the data acquired from the partially 

damaged structure.  Once the smashed filters were generated, 303 experiments 

resulting in 128 compressed coefficients per experiment were collected from the 

structure in both the damaged and healthy cases.  Subsets of the 128 compressed 

coefficients were then used to evaluate the performance of the smashed filter for 

various numbers of compressed coefficients.  To implement the smashed filter, the 

inner product of the compressed coefficients and the smashed filter vectors was 

calculated for each experiment.  The smashed filter with the largest inner product was 

then selected and the experiment was classified as damaged or healthy based on 

whether or not the corresponding smashed filter came from the damaged or healthy 

case. Table 1 and Table 2 illustrate the results of applying the smashed filter to the 

experiments for the healthy and damaged cases, respectively.  Table 3 shows the 

numerical results of these experiments.  From this data we see that once at least 16 

compressed coefficients are used to calculate smashed filters, the probability of 

misclassifications become very low.  No more than 8 in 303 experiments and usually 

less.  It is noteworthy that the number of compressed coefficients needed to achieve 

accurate classification with the smashed filter is only 1/16 the number of data points in 

the original time series measurement.  Based on these results, the smashed filter has 

the potential to significantly reduce the number of measurements needed to classify 

whether or not a structure is damaged.   

 
TABLE 1.  SMASHED FILTER RESULTS FOR HEALTHY CASE 
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TABLE 2.  SMASHED FILTER RESULTS FOR DAMAGED CASE 

 
TABLE 3.  SMASHED FILTER CLASSIFICATION RESULTS 

	  

#	  CS	  coefficients	   2	   4	   8	   16	   32	   64	   128	  

Healthy	  

Case	  

#	  damaged	   115	   14	   1	   8	   0	   0	   0	  

#	  healthy	   188	   289	   302	   295	   303	   303	   303	  

Damaged	  

Case	  

#	  damaged	   145	   283	   260	   303	   301	   302	   303	  

#	  healthy	   158	   20	   43	   0	   2	   1	   0	  

 

7. COMPRESSED SENSING WIRELESS SENSOR NETWORK 

FRAMEWORK 

 

The results obtained in this work doing l1 norm minimization and using the smashed 

filter suggest a signal classification approach that will better enable novel, low-power, 

low-bandwidth, robust wireless sensor networks.  The main power consumer in 
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wireless sensor nodes is generally the wireless transmission of data.  For this reason, 

the proposed framework should reduce the amount of data needed for wireless 

transmission.  The proposed framework would have two main processing stages.  The 

first stage would be an extremely low-power smashed filter processor.  The smashed 

filter stage would collect a minimum of coefficients needed to perform adequately 

reliable classification.  The smashed filter is simply a matrix-vector multiplication 

operation over integers and can be performed on-board the sensor node relatively 

easily.  Alternatively, the very small number of smashed filter coefficients can be 

transmitted to other sensor nodes or base stations for further analysis.  If preliminary 

smashed filter analysis indicates that the wireless sensor node is experiencing an 

“event of interest” it may be deemed wise to request and adequate number of 

compressed coefficients be transmitted to a base-station to perform l1 norm 

minimization reconstruction.  In order to further minimize the number of required 

compressed coefficients that must be transmitted, the base-station could make use of 

dynamic updating techniques for l1 minimization as described in [19].  In this way the 

base-station could perform reconstruction and request more CS measurements if it 

determines the reconstructed signal is still changing significantly as measurements are 

added.  Once it is deemed that an adequate reconstruction of the signal has been 

obtained, the techniques developed by the structural health monitoring community can 

be leveraged to perform detailed analysis on the measurements.   

 The adoption of a multi-stage compressed sensing framework has the potential 

to significantly reduce the power and bandwidth requirements of a wireless sensor 

network for structural health monitoring applications.  The further development and 

analysis of potential compressed sensing wireless sensor network frameworks for 

structural health monitoring applications will be the focus of future research efforts.   

 

8. CONCLUSIONS 

 

The contribution of this work is the development of a 2-stage compressed sensing 

framework with the potential to conserve energy and bandwidth in embedded wireless 

sensor nodes for structural health monitoring applications.  The fitness of the 2-stage 

compressed sensing framework for structural health monitoring applications has been 

shown by executing performance evaluations of l1 norm regularization to reconstruct 

time series measurements of acceleration collected from representative structures.  

This work was followed by an evaluation of the smashed filter for damage 

classification in the same representative structure.  It was found that the smashed filter 

has potential to significantly reduce the number of measurements required to classify 

the state of health of a structure.  The 2-stage compressed sensing framework 

proposed in this work can readily be applied to embedded wireless sensor networks 

for structural health monitoring applications with the effect of lowering bandwidth and 

power requirements.  In order to make this system a reality, future research should 

consider the use of sparse binary measurement matrices Φ in order to reduce the time 
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and energy needed to apply the digital compressed sensing matrix vector 

multiplication used to generate the compressed measurements [20].  It is also 

important to select an appropriate dictionary of signals for the optimization routine to 

try and find a sparse match too.  Ongoing research by the authors is revealing that the 

choice of the dictionary used to perform the signal reconstruction has a significant 

effect on the quality of the reconstruction.  Preliminary results suggest that the choice 

of the reconstruction dictionary is application dependent.  Another technique that 

looks very promising for structural health monitoring applications is the SpaRCS 

procedure for recovering low-rank and sparse matrices from compressive 

measurement [21].  For many applications, the low-rank portion of this matrix would 

correspond to the system dynamics, and the sparse portion would correspond to 

anomalous damage expressing itself in the measurement.  This technique would be 

particularly useful for SHM applications that require full-field measurements, and 

long-term monitoring of structures for anomalous events. 
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