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Abstract

The goal of compressed sensing is to estimate a

vector from an underdetermined system of noisy

linear measurements, by making use of prior

knowledge on the structure of vectors in the rel-

evant domain. For almost all results in this lit-

erature, the structure is represented by sparsity

in a well-chosen basis. We show how to achieve

guarantees similar to standard compressed sens-

ing but without employing sparsity at all. In-

stead, we suppose that vectors lie near the range

of a generative model G : Rk ! R
n. Our main

theorem is that, if G is L-Lipschitz, then roughly

O(k logL) random Gaussian measurements suf-

fice for an `2/`2 recovery guarantee. We demon-

strate our results using generative models from

published variational autoencoder and generative

adversarial networks. Our method can use 5-10x

fewer measurements than Lasso for the same ac-

curacy.

1. Introduction

Compressive or compressed sensing is the problem of re-

constructing an unknown vector x⇤ 2 R
n after observing

m < n linear measurements of its entries, possibly with

added noise:

y = Ax⇤ + ⌘,

where A 2 R
m⇥n is called the measurement matrix and

⌘ 2 R
m is noise. Even without noise, this is an under-

determined system of linear equations, so recovery is im-

possible unless we make an assumption on the structure
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of the unknown vector x⇤. We need to assume that the un-

known vector is “natural,” or “simple,” in some application-

dependent way.

The most common structural assumption is that the vec-

tor x⇤ is k-sparse in some known basis (or approximately

k-sparse). Finding the sparsest solution to an underdeter-

mined system of linear equations is NP-hard, but still con-

vex optimization can provably recover the true sparse vec-

tor x⇤ if the matrix A satisfies conditions such as the Re-

stricted Isometry Property (RIP) or the related Restricted

Eigenvalue Condition (REC) (Tibshirani, 1996; Candes

et al., 2006; Donoho, 2006; Bickel et al., 2009). The prob-

lem is also called high-dimensional sparse linear regression

and there is vast literature on establishing conditions for

different recovery algorithms, different assumptions on the

design of A and generalizations of RIP and REC for other

structures, see e.g. (Bickel et al., 2009; Negahban et al.,

2009; Agarwal et al., 2010; Loh & Wainwright, 2011; Bach

et al., 2012).

This significant interest is justified since a large number of

applications can be expressed as recovering an unknown

vector from noisy linear measurements. For example,

many tomography problems can be expressed in this frame-

work: x⇤ is the unknown true tomographic image and the

linear measurements are obtained by x-ray or other physi-

cal sensing system that produces sums or more general lin-

ear projections of the unknown pixels. Compressed sens-

ing has been studied extensively for medical applications

including computed tomography (CT) (Chen et al., 2008),

rapid MRI (Lustig et al., 2007) and neuronal spike train

recovery (Hegde et al., 2009). Another impressive appli-

cation is the “single pixel camera” (Duarte et al., 2008),

where digital micro-mirrors provide linear combinations to

a single pixel sensor that then uses compressed sensing re-

construction algorithms to reconstruct an image. These re-

sults have been extended by combining sparsity with addi-

tional structural assumptions (Baraniuk et al., 2010; Hegde

et al., 2015), and by generalizations such as translating

sparse vectors into low-rank matrices (Negahban et al.,

2009; Bach et al., 2012; Foygel & Mackey, 2014). These

results can improve performance when the structural as-

sumptions fit the sensed signals. Other works perform “dic-

tionary learning,” seeking overcomplete bases where the

data is more sparse (see (Chen & Needell, 2016) and refer-
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ences therein).

In this paper instead of relying on sparsity, we use struc-

ture from a generative model. Recently, several neural

network based generative models such as variational auto-

encoders (VAEs) (Kingma & Welling, 2013) and genera-

tive adversarial networks (GANs) (Goodfellow et al., 2014)

have found success at modeling data distributions. In these

models, the generative part learns a mapping from a low

dimensional representation space z 2 R
k to the high di-

mensional sample space G(z) 2 R
n. While training, this

mapping is encouraged to produce vectors that resemble

the vectors in the training dataset. We can therefore use

any pre-trained generator to approximately capture the no-

tion of a vector being “natural” in our domain: the genera-

tor defines a probability distribution over vectors in sample

space and tries to assign higher probability to more likely

vectors, for the dataset it has been trained on. We expect

that vectors “natural” to our domain will be close to some

point in the support of this distribution, i.e., in the range of

G.

Our Contributions: We present an algorithm that uses

generative models for compressed sensing. Our algorithm

simply uses gradient descent to optimize the representation

z 2 R
k such that the corresponding image G(z) has small

measurement error kAG(z)� yk22. While this is a noncon-

vex objective to optimize, we empirically find that gradient

descent works well, and the results can significantly out-

perform Lasso with relatively few measurements.

We obtain theoretical results showing that, as long as gra-

dient descent finds a good approximate solution to our ob-

jective, our output G(z) will be almost as close to the true

x⇤ as the closest possible point in the range of G.

The proof is based on a generalization of the Re-

stricted Eigenvalue Condition (REC) that we call the Set-

Restricted Eigenvalue Condition (S-REC). Our main the-

orem is that if a measurement matrix satisfies the S-REC

for the range of a given generator G, then the measure-

ment error minimization optimum is close to the true x⇤.

Furthermore, we show that random Gaussian measurement

matrices satisfy the S-REC condition with high probabil-

ity for large classes of generators. Specifically, for d-layer

neural networks such as VAEs and GANs, we show that

O(kd log n) Gaussian measurements suffice to guarantee

good reconstruction with high probability. One result, for

ReLU-based networks, is the following:

Theorem 1.1. Let G : R
k ! R

n be a generative

model from a d-layer neural network using ReLU activa-

tions. Let A 2 R
m⇥n be a random Gaussian matrix for

m = O(kd log n), scaled so Ai,j ⇠ N(0, 1/m). For any

x⇤ 2 R
n and any observation y = Ax⇤ + ⌘, let bz minimize

ky � AG(z)k2 to within additive ✏ of the optimum. Then

with 1� e�Ω(m) probability,

kG(bz)� x⇤k2  6 min
z∗2Rk

kG(z⇤)� x⇤k2 + 3k⌘k2 + 2✏.

In the error bound above, the first two terms are the mini-

mum possible error of any vector in the range of the genera-

tor and the norm of the noise; these are necessary for such a

technique, and have direct analogs in standard compressed

sensing guarantees. The third term ✏ comes from gradient

descent not necessarily converging to the global optimum;

empirically, ✏ does seem to converge to zero, and one can

check post-observation that this is small by computing the

upper bound ky �AG(bz)k2.

While the above is restricted to ReLU-based neural net-

works, we also show similar results for arbitrary L-

Lipschitz generative models, for m ⇡ O(k logL). Typi-

cal neural networks have poly(n)-bounded weights in each

layer, so L  nO(d), giving for any activation, the same

O(kd log n) sample complexity as for ReLU networks.

Theorem 1.2. Let G : Rk ! R
n be an L-Lipschitz func-

tion. Let A 2 R
m⇥n be a random Gaussian matrix for

m = O(k log Lr
δ
), scaled so Ai,j ⇠ N(0, 1/m). For any

x⇤ 2 R
n and any observation y = Ax⇤ + ⌘, let bz minimize

ky � AG(z)k2 to within additive ✏ of the optimum over

vectors with kbzk2  r. Then with 1� e�Ω(m) probability,

kG(bz)�x⇤k2  6 min
z∗2R

k

kz∗k2r

kG(z⇤)�x⇤k2+3k⌘k2+2✏+2�.

The downside is two minor technical conditions: we only

optimize over representations z with kzk bounded by r, and

our error gains an additive � term. Since the dependence

on these parameters is log(rL/�), and L is something like

nO(d), we may set r = nO(d) and � = 1/nO(d) while only

losing constant factors, making these conditions very mild.

In fact, generative models normally have the coordinates of

z be independent uniform or Gaussian, so kzk ⇡
p
k ⌧

nd, and a constant signal-to-noise ratio would have k⌘k2 ⇡
kx⇤k ⇡ p

n � 1/nd.

We remark that, while these theorems are stated in terms

of Gaussian matrices, the proofs only involve the distri-

butional Johnson-Lindenstrauss property of such matrices.

Hence the same results hold for matrices with subgaussian

entries or fast-JL matrices (Ailon & Chazelle, 2009).

2. Our Algorithm

All norms are 2-norms unless specified otherwise.

Let x⇤ 2 R
n be the vector we wish to sense. Let A 2

R
m⇥n be the measurement matrix and ⌘ 2 R

m be the noise

vector. We observe the measurements y = Ax⇤+ ⌘. Given

y and A, our task is to find a reconstruction x̂ close to x⇤.
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A generative model is given by a deterministic function

G : Rk ! R
n, and a distribution PZ over z 2 R

k. To

generate a sample from the generator, we can draw z ⇠ PZ

and the sample then is G(z). Typically, we have k ⌧ n,

i.e. the generative model maps from a low dimensional rep-

resentation space to a high dimensional sample space.

Our approach is to find a vector in representation space

such that the corresponding vector in the sample space

matches the observed measurements. We thus define the

objective to be

loss(z) = kAG(z)� yk2 (1)

By using any optimization procedure, we can minimize

loss(z) with respect to z. In particular, if the generative

model G is differentiable, we can evaluate the gradients

of the loss with respect to z using backpropagation and use

standard gradient based optimizers. If the optimization pro-

cedure terminates at ẑ, our reconstruction for x⇤ is G(ẑ).
We define the measurement error to be kAG(ẑ)� yk2 and

the reconstruction error to be kG(ẑ)� x⇤k2.

3. Related Work

Several recent lines of work explore generative models for

reconstruction. The first line of work attempts to project

an image on to the representation space of the genera-

tor. These works assume full knowledge of the image,

and are special cases of the linear measurements frame-

work where the measurement matrix A is identity. Excel-

lent reconstruction results with SGD in the representation

space to find an image in the generator range have been

reported by (Lipton & Tripathi, 2017) with stochastic clip-

ping and (Creswell & Bharath, 2016) with logistic mea-

surement loss. A different approach is introduced in (Du-

moulin et al., 2016) and (Donahue et al., 2016). In their

method, a recognition network that maps from the sam-

ple space vector x to the representation space vector z is

learned jointly with the generator in an adversarial setting.

A second line of work explores reconstruction with struc-

tured partial observations. The inpainting problem consists

of predicting the values of missing pixels given a part of

the image. This is a special case of linear measurements

where each measurement corresponds to an observed pixel.

The use of generative models for this task has been stud-

ied in (Yeh et al., 2016), where the objective is taken to be

a sum of L1 error in measurements and a perceptual loss

term given by the discriminator. Super-resolution is a re-

lated task that attempts to increase the resolution of an im-

age. We can view the observations as local spatial averages

of the unknown higher resolution image and hence cast this

as another special case of linear measurements. For prior

work on super-resolution see e.g. (Yang et al., 2010; Dong

et al., 2016; Kim et al., 2016) and references therein.

We also take note of the related work of (Gilbert et al.,

2017) that connects model-based compressed sensing

with the invertibility of Convolutional Neural Networks,

Bayesian compressed sensing (Ji et al., 2008) and compres-

sive sensing using Gaussian mixture models (Yang et al.,

2014).

A related result appears in (Baraniuk & Wakin, 2009),

which studies the measurement complexity of an RIP con-

dition for smooth manifolds. This is analogous to our

S-REC for the range of G, but the range of G is nei-

ther smooth (because of ReLUs) nor a manifold (because

of self-intersection). Their recovery result was extended

in (Hegde & Baraniuk, 2012) to unions of two manifolds.

4. Theoretical Results

We begin with a brief review of the Restricted Eigenvalue

Condition (REC) in standard compressed sensing. The

REC is a sufficient condition on A for robust recovery to

be possible. The REC essentially requires that all “approx-

imately sparse” vectors are far from the nullspace of the

matrix A. More specifically, A satisfies REC for a constant

� > 0 if for all approximately sparse vectors x,

kAxk � �kxk. (2)

It can be shown that this condition is sufficient for recovery

of sparse vectors using Lasso. If one examines the struc-

ture of Lasso recovery proofs, a key property that is used is

that the difference of any two sparse vectors is also approx-

imately sparse (for sparsity up to 2k). This is a coincidence

that is particular to sparsity. By contrast, the difference of

two vectors “natural” to our domain may not itself be natu-

ral. The condition we need is that the difference of any two

natural vectors is far from the nullspace of A.

We propose a generalized version of the REC for a set

S ✓ R
n of vectors, the Set-Restricted Eigenvalue Con-

dition (S-REC):

Definition 1. Let S ✓ R
n. For some parameters � >

0, � � 0, a matrix A 2 R
m⇥n is said to satisfy the

S-REC(S, �, �) if 8 x1, x2 2 S,

kA(x1 � x2)k � �kx1 � x2k � �.

There are two main differences between the S-REC and the

standard REC in compressed sensing. First, the condition

applies to differences of vectors in an arbitrary set S of

“natural” vectors, rather than just the set of approximately

k-sparse vectors in some basis. This will let us apply the

definition to S being the range of a generative model.

Second, we allow an additive slack term �. This is neces-

sary for us to achieve the S-REC when S is the output of

general Lipschitz functions. Without it, the S-REC depends
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on the behavior of S at arbitrarily small scales. Since there

are arbitrarily many such local regions, one cannot guar-

antee the existence of an A that works for all these local

regions. Fortunately, as we shall see, poor behavior at a

small scale � will only increase our error by O(�).

The S-REC definition requires that for any two vectors in

S, if they are significantly different (so the right hand side

is large), then the corresponding measurements should also

be significantly different (left hand side). Hence we can

hope to approximate the unknown vector from the mea-

surements, if the measurement matrix satisfies the S-REC.

But how can we find such a matrix? To answer this, we

present two lemmas showing that random Gaussian matri-

ces of relatively few measurements m satisfy the S-REC for

the outputs of large and practically useful classes of gener-

ative models G : Rk ! R
n.

In the first lemma, we assume that the generative model

G(·) is L-Lipschitz, i.e., 8 z1, z2 2 R
k, we have

kG(z1)�G(z2)k  Lkz1 � z2k.

Note that state of the art neural network architectures

with linear layers, (transposed) convolutions, max-pooling,

residual connections, and all popular non-linearities satisfy

this assumption. In Lemma 8.5 in the Appendix we give a

simple bound on L in terms of parameters of the network;

for typical networks this is nO(d). We also require the input

z to the generator to have bounded norm. Since generative

models such as VAEs and GANs typically assume their in-

put z is drawn with independent uniform or Gaussian in-

puts, this only prunes an exponentially unlikely fraction of

the possible outputs.

Lemma 4.1. Let G : Rk ! R
n be L-Lipschitz. Let

Bk(r) = {z | z 2 R
k, kzk  r}

be an L2-norm ball in R
k. For ↵ < 1, if

m = Ω

✓
k

↵2
log

Lr

�

◆
,

then a random matrix A 2 R
m⇥n with IID entries such that

Aij ⇠ N
�
0, 1

m

�
satisfies the S-REC(G(Bk(r)), 1�↵, �)

with 1� e�Ω(α2m) probability.

All proofs, including this one, are deferred to Appendix A.

Note that even though we proved the lemma for an L2 ball,

the same technique works for any compact set.

For our second lemma, we assume that the generative

model is a neural network such that each layer is a com-

position of a linear transformation followed by a pointwise

non-linearity. Many common generative models have such

architectures. We also assume that all non-linearities are

piecewise linear with at most two pieces. The popular

ReLU or LeakyReLU non-linearities satisfy this assump-

tion. We do not make any other assumption, and in par-

ticular, the magnitude of the weights in the network do not

affect our guarantee.

Lemma 4.2. Let G : Rk ! R
n be a d-layer neural net-

work, where each layer is a linear transformation followed

by a pointwise non-linearity. Suppose there are at most c
nodes per layer, and the non-linearities are piecewise lin-

ear with at most two pieces, and let

m = Ω

✓
1

↵2
kd log c

◆

for some ↵ < 1. Then a random matrix A 2
R

m⇥n with IID entries Aij ⇠ N (0, 1
m
) satisfies the

S-REC(G(Rk), 1� ↵, 0) with 1� e�Ω(α2m) probability.

To show Theorems 1.1 and 1.2, we just need to show that

the S-REC implies good recovery. In order to make our

error guarantee relative to `2 error in the image space R
n,

rather than in the measurement space R
m, we also need

that A preserves norms with high probability (Cohen et al.,

2009). Fortunately, Gaussian matrices (or other distribu-

tional JL matrices) satisfy this property.

Lemma 4.3. Let A 2 R
m⇥n by drawn from a distribution

that (1) satisfies the S-REC(S, �, �) with probability 1�p
and (2) has for every fixed x 2 R

n, kAxk  2kxk with

probability 1� p.

For any x⇤ 2 R
n and noise ⌘, let y = Ax⇤ + ⌘. Let bx

approximately minimize ky �Axk over x 2 S, i.e.,

ky �Abxk  min
x2S

ky �Axk+ ✏.

Then,

kbx� x⇤k 
✓
4

�
+ 1

◆
min
x2S

kx⇤ � xk+ 1

�
(2k⌘k+ ✏+ �)

with probability 1� 2p.

Combining Lemma 4.1, Lemma 4.2, and Lemma 4.3 gives

Theorems 1.1 and 1.2. In our setting, S is the range of the

generator, and bx in the theorem above is the reconstruction

G(bz) returned by our algorithm.

5. Models

In this section we describe the generative models used in

our experiments. We used two image datasets and two dif-

ferent generative model types (a VAE and a GAN). This

provides some evidence that our approach can work with

many types of models and datasets.

In our experiments, we found that it was helpful to add a

regularization term L(z) to the objective to encourage the
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Figure 1. We compare the performance of our algorithm with baselines. We show a plot of per pixel reconstruction error as we vary the

number of measurements. The vertical bars indicate 95% confidence intervals.

optimization to explore more in the regions that are pre-

ferred by the respective generative models (see compari-

son to unregularized versions in Fig. 1). Thus the objective

function we use for minimization is

kAG(z)� yk2 + L(z).

Both VAE and GAN typically imposes an isotropic Gaus-

sian prior on z. Thus kzk2 is proportional to the negative

log-likelihood under this prior. Accordingly, we use the

following regularizer:

L(z) = �kzk2, (3)

where � measures the relative importance of the prior as

compared to the measurement error.

5.1. MNIST with VAE

The MNIST dataset consists of about 60, 000 images of

handwritten digits, where each image is of size 28⇥28 (Le-

Cun et al., 1998). Each pixel value is either 0 (background)

or 1 (foreground). No pre-processing was performed. We

trained VAE on this dataset. The input to the VAE is a vec-

torized binary image of input dimension 784. We set the

size of the representation space k = 20. The recognition

network is a fully connected 784�500�500�20 network.

The generator is also fully connected with the architecture

20� 500� 500� 784. We train the VAE using the Adam

optimizer (Kingma & Ba, 2014) with a mini-batch size 100
and a learning rate of 0.001. We use � = 0.1 in Eqn. (3).

The digit images are reasonably sparse in the pixel space.

Thus, as a baseline, we use the pixel values directly for

sparse recovery using Lasso. We set shrinkage parameter

to be 0.1 for all the experiments.

5.2. CelebA with DCGAN

CelebA is a dataset of more than 200, 000 face images

of celebrities (Liu et al., 2015). The input images were

cropped to a 64 ⇥ 64 RGB image, giving 64 ⇥ 64 ⇥ 3 =
12288 inputs per image. Each pixel value was scaled so

that all values are between [�1, 1]. We trained a DCGAN

(Radford et al., 2015; Kim, 2017) on this dataset. We set

the input dimension k = 100 and use a standard normal dis-

tribution. The architecture follows that of (Radford et al.,

2015). The model was trained by one update to the discrim-

inator and two updates to the generator per cycle. Each up-

date used the Adam optimizer (Kingma & Ba, 2014) with

minibatch size 64, learning rate 0.0002 and �1 = 0.5. We

use � = 0.001 in Eqn. (3).

For baselines, we perform sparse recovery using Lasso on

the images in two domains: (a) 2D Discrete Cosine Trans-

form (2D-DCT) and (b) 2D Daubechies-1 Wavelet Trans-

form (2D-DB1). While we provide Gaussian measure-

ments of the original pixel values, the L1 penalty is on ei-

ther the DCT coefficients or the DB1 coefficients of each

color channel of an image. For all experiments, we set the

shrinkage parameter to be 0.1 and 0.00001 respectively for

2D-DCT, and 2D-DB1.

6. Experiments and Results

6.1. Reconstruction from Gaussian measurements

We take A to be a random matrix with IID Gaussian entries

with zero mean and standard deviation of 1/m. Each entry

of noise vector ⌘ is also an IID Gaussian random variable.

We compare performance of different sensing algorithms

qualitatively and quantitatively. For quantitative compari-

son, we use the reconstruction error = kx̂� x⇤k2, where x̂
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is an estimate of x⇤ returned by the algorithm. In all cases,

we report the results on a held out test set, unseen by the

generative model at training time.

MNIST: The standard deviation of the noise vector is

set such that
p
E[k⌘k2] = 0.1. We use Adam opti-

mizer (Kingma & Ba, 2014), with a learning rate of 0.01.

We do 10 random restarts with 1000 steps per restart and

pick the reconstruction with best measurement error.

In Fig. 1a, we show the reconstruction error as we change

the number of measurements both for Lasso and our algo-

rithm. We observe that our algorithm is able to get low

errors with far fewer measurements. For example, our

algorithm’s performance with 25 measurements matches

Lasso’s performance with 400 measurements. Fig. 2a

shows sample reconstructions by Lasso and our algorithm.

However, our algorithm is limited since its output is con-

strained to be in the range of the generator. After 100
measurements, our algorithm’s performance saturates, and

additional measurements give no additional performance.

Since Lasso has no such limitation, it eventually surpasses

our algorithm, but this takes more than 500 measurements

of the 784-dimensional vector. We expect that a more

powerful generative model with representation dimension

k > 20 can make better use of additional measurements.

celebA: The standard deviation of the noise vector is

set such that
p

E[k⌘k2] = 0.01. We use Adam opti-

mizer (Kingma & Ba, 2014), with a learning rate of 0.1.

We do 2 random restarts with 500 update steps per restart

and pick the reconstruction with best measurement error.

In Fig. 1b, we show the reconstruction error as we change

the number of measurements both for Lasso and our algo-

rithm. In Fig. 3 we show sample reconstructions by Lasso

and our algorithm. We observe that our algorithm is able

to produce reasonable reconstructions with as few as 500
measurements, while the output of the baseline algorithms

is quite blurry. Similar to the results on MNIST, if we con-

tinue to give more measurements, our algorithm saturates,

and for more than 5000 measurements, Lasso gets a better

reconstruction. We again expect that a more powerful gen-

erative model with k > 100 would perform better in the

high-measurement regime.

6.2. Super-resolution

Super-resolution is the task of constructing a high resolu-

tion image from a low resolution version of the same im-

age. This problem can be thought of as special case of

our general framework of linear measurements, where the

measurements correspond to local spatial averages of the

pixel values. Thus, we try to use our recovery algorithm

to perform this task with measurement matrix A tailored

to give only the relevant observations. We note that this

measurement matrix may not satisfy the S-REC condition

(with good constants � and �), and consequently, our theo-

rems may not be applicable.

MNIST: We construct a low resolution image by spatial

2⇥2 pooling with a stride of 2 to produce a 14⇥14 image.

These measurements are used to reconstruct the original

28 ⇥ 28 image. Fig. 2b shows reconstructions produced

by our algorithm on images from a held out test set. We

observe sharp reconstructions which closely match the fine

structure in the ground truth.

celebA: We construct a low resolution image by spatial 4⇥
4 pooling with a stride of 4 to produce a 16 ⇥ 16 image.

These measurements are used to reconstruct the original

64⇥ 64 image. In Fig. 4 we show results on images from a

held out test set. We see that our algorithm is able to fill in

the details to match the original image.

6.3. Understanding sources of error

Although better than baselines, our method still admits

some error. This error can be decomposed into three com-

ponents: (a) Representation error: the unknown image is

far from the range of the generator (b) Measurement error:

The finite set of random measurements do not contain all

the information about the unknown image (c) Optimization

error: The optimization procedure did not find the best z.

In this section we present some experiments that suggest

that the representation error is the dominant term. In our

first experiment, we ensure that the representation error is

zero, and try to minimize the sum of other two errors. In

this setting, we observe that the reconstructions are almost

perfect. In the second experiment, we ensure that the mea-

surement error is zero, and try to minimize the sum of other

two. Here, we observe that the total error obtained is very

close to the total error in our reconstruction experiments

(Sec. 6.1).

6.3.1. SENSING IMAGES FROM RANGE OF GENERATOR

Our first approach is to sense an image that is in the range

of the generator. More concretely, we sample a z⇤ from

PZ . Then we pass it through the generator to get x⇤ =
G(z⇤). Now, we pretend that this is a real image and try to

sense that. This method eliminates the representation error

and allows us to check if our gradient based optimization

procedure is able to find z⇤ by minimizing the objective.

In Fig. 6a and Fig. 6b, we show the reconstruction error for

images in the range of the generators trained on MNIST

and celebA datasets respectively. We see that we get almost

perfect reconstruction with very few measurements. This

suggests that objective is being properly minimized and we

indeed get ẑ close to z⇤. i.e. the sum of optimization error

and the measurement error is small in the absence of the
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(a) We show original images (top row) and reconstructions by
Lasso (middle row) and our algorithm (bottom row).

(b) We show original images (top row), low resolution version
of original images (middle row) and reconstructions (last row).

Figure 2. Results on MNIST. Reconstruction with 100 measurements (left) and Super-resolution (right)
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Figure 3. Reconstruction results on celebA with m = 500 measurements (of n = 12288 dimensional vector). We show original images

(top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis (third row), and our algorithm (last row).
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Figure 4. Super-resolution results on celebA. Top row has the original images. Second row shows the low resolution (4x smaller) version

of the original image. Last row shows the images produced by our algorithm.
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Figure 5. Results on the representation error experiments on celebA. Top row shows original images and the bottom row shows closest

images found in the range of the generator.
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(a) Results on MNIST
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(b) Results on celebA

Figure 6. Reconstruction error for images in the range of the generator. The vertical bars indicate 95% confidence intervals.

Figure 7. Results on the representation error experiments on

MNIST. Top row shows original images and the bottom row

shows closest images found in the range of the generator.

representation error.

6.3.2. QUANTIFYING REPRESENTATION ERROR

We saw that in absence of the representation error, the over-

all error is small. However from Fig. 1, we know that the

overall error is still non-zero. So, in this experiment, we

seek to quantify the representation error, i.e., how far are

the real images from the range of the generator?

From the previous experiment, we know that the ẑ recov-

ered by our algorithm is close to z⇤, the best possible value,

if the image being sensed is in the range of the generator.

Based on this, we make an assumption that this property is

also true for real images. With this assumption, we get an

estimate to the representation error as follows: We sample

real images from the test set. Then we use the full image in

our algorithm, i.e., our measurement matrix A is identity.

This eliminates the measurement error. Using these mea-

surements, we get the reconstructed image G(ẑ) through

our algorithm. The estimated representation error is then

kG(ẑ)�x⇤k2. We repeat this procedure several times over

randomly sampled images from our dataset and report av-

erage representation error values. The task of finding the

closest image in the range of the generator has been stud-

ied in prior work (Creswell & Bharath, 2016; Dumoulin

et al., 2016; Donahue et al., 2016).

On the MNIST dataset, we get average per pixel represen-

tation error of 0.005. The recovered images are shown in

Fig. 7. In contrast, with only 100 Gaussian measurements,

we get a per pixel reconstruction error of about 0.009. On

the celebA dataset, we get average per pixel representation

error of 0.020. The recovered images are shown in Fig. 5.

In contrast, with only 500 Gaussian measurements, we get

a per pixel reconstruction error of about 0.028.

This suggests that the representation error is the major com-

ponent of the total error, and thus a more flexible generative

model can help reduce it on both datasets.

7. Conclusion

We demonstrate how to perform compressed sensing us-

ing generative models from neural nets. These models can

represent data distributions more concisely than standard

sparsity models, while their differentiability allows for fast

signal reconstruction. This will allow compressed sensing

applications to make significantly fewer measurements.

Our theorems and experiments both suggest that, after rel-

atively few measurements, the signal reconstruction gets

close to the optimal within the range of the generator. To

reach the full potential of this technique, one should use

larger generative models as the number of measurements

increase. Whether this can be expressed more concisely

than by training multiple independent generative models of

different sizes is an open question.

Generative models are an active area of research with ongo-

ing rapid improvements. Because our framework applies to

general generative models, this improvement will immedi-

ately yield better reconstructions with fewer measurements.

We also believe that one could also use the performance of

generative models for our task as one benchmark for the

quality of different models.
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