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The recent theory of Compressed Sensing (Candès, Tao & Romberg,
2006, and Donoho, 2006) states that a signal, e.g. a sound record or
an astronomical image, can be sampled at a rate much smaller than
what is commonly prescribed by Shannon-Nyquist. The sampling
of a signal can indeed be performed as a function of its “intrinsic
dimension” rather than according to its cutoff frequency.

This chapter sketches the main theoretical concepts surrounding this
revolution in sampling theory. We emphasize also its deep affiliation
with the concept of “sparsity”, now ubiquitous in modern signal
processing. The end of this chapter explains what interesting effects
this theory may have on some Compressive Imaging applications.
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1 Introduction

The 20th century has seen the development of a huge variety of sensors acquiring
measurement in a faithful representation of the physical world (e.g. optical
sensors, radio receivers, seismic detector, ...). Since the purpose of these systems
was to directly acquire a meaningful “signal”, a very fine sampling of this latter
had to be performed. This was the context surrounding the famous Shannon-
Nyquist condition stating that every continuous (a priori) band-limited signal
can be recovered from its discretization if its sampling rate is at least two times
bigger than its cutoff frequency.

But a recent theory named Compressed Sensing (or Compressive Sampling)
[26, 9] states that this lower bound on the sampling rate can be highly reduced,
as soon as, first, the sampling is generalized to any linear measurement of the
signal, and second, specific a priori hypotheses on the signal are realized. More
precisely, the sensing pace is reduced to a rate equals to a few multiple of the
intrinsic signal dimension rather than to the dimension of the embedding space.

Technically, this simple statement is a real revolution both in the theory of
reliable signal sampling and in the physical design of sensors. It means that a
given signal does not have to be acquired in its initial space as previously, but it
can really been observed through a “distorting glass” (providing it is linear) with
fewer measurements. The couple encoder (sensing) and decoder (reconstruction)
are also completely asymmetric: the encoder is computationally light and linear,
and so completely independent of the acquired signal (non-adaptive), while the
decoder is non-linear and requires high CPU power.

The (short) history of Compressed Sensing has started in 2006 by the seminal
works of D. Donoho, E. Candès, T. Tao and J. Romberg [26, 9, 11], even if some
of its founding concepts, e.g. sparse recovery by convex optimization, were
known from several decades. CS has actually emerged and grown from the rich
multidisciplinary hotbed of Information and Sampling Theory, Statistics and
Measure Concentration, Inverse Problems solving, High-Dimensional (Polytope)
Geometry and Graph theory.

In this Chapter, we will emphasize how the Compressed Sensing theory may
be interpreted as an evolution of the Shannon-Nyquist sampling theorem. We
will explain that what characterizes this new theory is the generalization of the a
priori made on the signal. In other words, we will affiliate the CS theory to the
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important concept of ”sparsity” expressing the signal as the linear combination
of few elements taken in a particular basis (orthogonal or redundant).

Since the growing CS community is very active, this chapter cannot hope
to be a comprehensive presentation of the field. However, we aim at providing
a global overview of the topic from its mathematical foundations to its practi-
cal implementations reviewing the most successful algorithms. For educational
purposes, we have however selected the “axiomatic” theory of Compressed Sens-
ing, i.e. the one that relies on the so-called Restricted Isometry Property of the
sensing matrix. Other efficient approaches exist like those describing the signal
reconstruction as a stochastic process [7], or those using geometry thanks to
Graph theory [3] or polytope projections [25], or finally those exploiting the
properties of the null space of the sensing matrix [74]. Since this chapter is
dedicated to Compressed Sensing developments, we will not speak either of the
parallel (continuous) theory aiming at sampling signals of “Finite Rate of In-
novation”, as explained in the work of M. Vetterli, T. Blu, P.L. Dragotti and
collaborators [71, 30].

Our presentation of the CS theory will come with a “dense” collection of
useful tutorials, bibliographic references and internet links, since, as explained
later, the Compressed Sensing theory is truly a “Science 2.0” by-product.

Finally, we will show how CS breaks the conventional way to tackle the
problem of sensing and compression in some imaging applications.

Conventions: In this Chapter, we will use extensively the following mathe-
matical notations. A discrete signal x denotes a N -dimensional vector x ∈ R

N

of components xj for 1 ≤ j ≤ N . The support of x is suppx = {1 ≤ j ≤ N :
xj 6= 0}, i.e. a subset of the index set {1, · · · , N}.

When R
N is seen as a Hilbert space, the scalar product between two vectors

in R
N is denoted as 〈u,v〉 = u∗v =

∑N
j=1 ujvj , where 〈u,u〉 = ‖u‖2

2 is the
square of the Euclidean ℓ2-norm of u. The ℓp-norm of x for p > 0 is ‖x‖p =

(
∑N

j=1 |xj |p)1/p, and by extension, the ℓ0 “quasi” norm of x is ‖x‖0 = #suppx,
i.e. the number of non-zero elements in x.

If 1 ≤ K ≤ N , xK ∈ R
N is the best K-term approximation of x in a given

basis (see Sections 2 and 3). If T is a subset of {1, · · · , N} of size #T , according
to the context, xT is either the restriction of x to T , or a thresholded copy of
x to the indices in T , i.e. (xT )j = xj for j ∈ T and (xT )j = 0 elsewhere.

The identity matrix, or equivalently the canonical basis in R
N , is written

I ∈ R
N×N . Given a matrix A ∈ R

M×N , A∗ is its transposition (or adjoint),
and if M < N , A† is the pseudoinverse of A∗, i.e., A† = (AA∗)−1A with
A†A∗ = I. The Fourier basis is denoted by F ∈ R

N×N .
In this chapter, we define also many convex optimization techniques. In that

context, for a convex function f : R
N → R, arg minx f(x) returns the x that

minimizes f . For constrained minimization, “s.t.” is a shorthand for “subject
to”, e.g. arg minx f(x) s.t. ‖x‖2 ≤ 1. The typical big-O notation A = O(B)
means that there exists a constant c > 0 such that A ≥ cB.
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2 In Praise of Sparsity

The concept of sparse representations is one of the central methodologies of
modern signal processing and it has had tremendous impact on numerous ap-
plication fields. Despite its power, that idea is genuinely simply and intuitive.
Given a N -dimensional signal x, it is often easy to express it by means a linear
superposition of K ≪ N elementary signals, called atoms:

x =

K
∑

k=1

αkψk . (1)

The equality in (1) may not need to be reached, in which case a K-term
approximant x̃K is found:

x̃K =

K
∑

k=1

αkψk, with ‖x− x̃K‖2 ≤ ǫ(K) , (2)

for some approximation error ǫ. Such an approximant is sometimes called (ǫ,K)-
sparse. These K atoms ψk are chosen from a large collection called a dictionary,
which can be conveniently represented by a large N×D matrix Ψ, with D ≥ N ,
where each column is an atom. Strictly speaking, there is no restriction on the
dictionary but usually the atoms are chosen normalized ‖ψk‖2 = 1. With these
conventions, Eq. (1) can be written x = Ψα, where α ∈ R

D. Note that an
exact sparse representation of the form (1) may be a very strong requirement.
In many cases, this assumption is replaced by a weaker notion of sparsity called
compressibility. A vector α is termed compressible if its entries sorted in de-
creasing order of magnitude decay like a power law: |αk| ≤ c k−c′ for some
constants c, c′ > 0. Alternatively, this compressibility may be characterized
by the decay of the ℓ2-approximation error e(K) obtained by the best K-term
approximation xK = ΨαK with ‖αK‖0 = K. This error is such that

e(K) = ‖x− xK‖2 ≤ ‖x− x′‖2,

for any other x′ = Ψα′ such that ‖α′‖0 ≤ K.
Sparse representations have been traditionally used in signal processing as

a way to compress data by trying to minimize the number of atoms K in the
representation. However, sparsity has recently appeared as a defining property
of signals and sparse signal models are by now very common as we shall see.
The success of these sparse models started out with wavelet non-linear approx-
imations. Indeed, many interesting signal models are sparse models involving
wavelet series. For example, piecewise smooth signals or images yield wavelet
decomposition coefficients that are compressible in the sense defined above:
most of the information is concentrated in few big coefficients that characterize
the discontinuities in the signal, or edges in the image. The main intuitive idea
behind wavelet de-noising for example is to realize that while the signal is repre-
sented by sparse wavelet coefficients, noise will induce a lot of small coefficients.
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They can be removed by enforcing sparsity via thresholding. There are many
other signal models involving sparsity: for example locally oscillatory signals are
sparse on the MDCT1 basis and are widely used in audio for tonal components
or to model textures in images. This example also shows that complex signals
cannot be well modeled by a single basis: an image contains edges, but it often
contains textures as well and the latter are not represented in a sparse way by
wavelets. Generating sparsity often requires the use of a collection of bases, or
a dictionary.

The ultimate goal of sparse representation techniques would be to find the
best, that is the sparsest, possible representation of a signal, in other words to
solve the following problem:

arg min
u

‖u‖0 s.t. x = Ψu. (Exact Sparse)

If the dictionary is well adapted to the signal, there are high hopes that a very
sparse representation or approximation may exist. When Ψ is an orthonormal
basis, there is a unique solution to that problem: the coefficients are computed
by projections on the basis α = Ψ∗x. Unfortunately, the problem of finding
a sparse expansion of a signal in a generic dictionary leads to a daunting NP-
complete combinatorial optimization problem [55]. In [17], Chen, Donoho and
Saunders proposed to solve the following slightly different problem coined Basis
Pursuit (BP):

arg min
u

‖u‖1 s.t. x = Ψu. (BP)

Minimizing the ℓ1-norm helps finding a sparse approximation, because it pre-
vents diffusing the energy of the signal over a lot of coefficients. While keeping
the essential property of the original problem, this subtle modification leads to
a tremendous change in the very nature of the optimization challenge. Indeed,
this ℓ1 problem, called Basis Pursuit or BP, is a much simpler convex prob-
lem, that can be efficiently solved by various classical optimization techniques.
Note that the same ideas can be applied when an approximation of the signal is
more suited, i.e solving the following convex quadratic problem known as Basis
Pursuit Denoising (BPDN):

arg min
u

‖u‖1 s.t. ‖x− Ψu‖2 ≤ ǫ. (BPDN)

To understand how solving this problem promotes sparsity, let us consider
its augmented lagrangian form:

α∗ = arg min
u

‖x− Ψu‖2
2 + λ‖u‖1,

where the first term is squared to be differentiable.
If the dictionary is an orthonormal basis, we can use the Parseval equality

to write everything in terms of coefficients:

α∗ = arg min
u

‖β − u‖2
2 + λ‖u‖1.

1Modified Discrete Cosine Transform.
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where β = Ψ∗x. It is easy to see that this problem decouples into independent
problems for each coefficient:

α∗
i = arg min

ui∈R

(βi − ui)
2 + λ|ui|,

and the solution to this problem is given by soft-thresholding the projection
coefficients β of the original signal, which shows that minimizing the ℓ1-norm
enforces sparsity. When the dictionary is not an orthonormal basis, a general
solution has been provided by Daubechies, Defrise and Demol in [22].

Note that the link between the Exact Sparse and the BP problems is quite
strong and has been well studied. First, let us introduce the following useful
characterization of the dictionary. The coherence of Ψ is defined as:

µ(Ψ) = sup
i 6=j

|〈ψi,ψj〉| . (3)

Intuitively, Eq. (3) shows that Ψ is not too far from being an orthonormal basis
when its coherence is sufficiently small (although it may be highly overcomplete).
Building on early results of Donoho and Huo [28], Elad and Bruckstein [33] and
later Gribonval and Nielsen [37] have shown that if a signal has a sufficiently
sparse representation, i.e

‖α‖0 < 1
2

(

1 + µ(Ψ)−1
)

then this representation is the unique solution solution of both the Exact Sparse
and Basis Pursuit problems.

In the next sections we will show how sparse signal models are central to the
idea of Compressive Sensing and how this induced new ways to “compressively”
record images.

3 Sensing and Compressing in a Single Stage

3.1 Limits of the Shannon-Nyquist Sampling

Whatever the field of application, most of the acquisition systems built during
the last 50 years have been designed under the guiding rules of the Nyquist-
Shannon sampling theorem [64, 69]. These devices implicitly relied on collecting
discrete samples from the continuous reality of the signal domain, e.g. in the
time or spatial domain for sounds or images respectively, either from the knowl-
edge of this function on specific locations or, by averaging it on very localized
domains (for instance, CCD2 cameras integrate light over each pixel area).

By the Shannon-Nyquist sampling theorem, assuming that a signal is ban-
dlimited, i.e. that it does not contain frequencies higher than a certain limit
ν, it is indeed possible to faithfully sample the signal at a period ∆T = 1/2ν
so that there exists a perfect interpolation procedure rebuilding the continuous

2Charged-Coupled Device.
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signal. In short, no information has been lost during the sampling process since
the initial continuous signal can be recovered.

As explained in Section 2, the concept of sparsity in the representation of
signals in certain bases or dictionaries has provided a way to compress the
acquired information. However, there is one problem: the process aiming at
sampling and then representing the signal with few coefficients in a
given basis from the recorded signal samples is wasteful.

This may be observed on the following idealized example. Let x(t) be a 1-D
signal with a cutoff frequency νs > 0. Within a certain interval of time [0, T ),
let us say that we collect N > 2Tνs samples xn = x(n∆T ) every ∆T = T/N
seconds.

If x(t) is piecewise continuous, an orthonormal wavelet basis Ψ = {ψj ∈
R

N , 1 ≤ j ≤ N} represents the vector (x1, · · · , xN )T ∈ R
N with few non-zero

elements αj = 〈ψj ,x〉 =
∑

n ψjnxn [51]. There exists therefore a K ≪ N such

that the K strongest coefficients in α = (α1, · · · , αN )T of indices {jk : 1 ≤
k ≤ K} suffice to provide a good approximation xK = ΨαK =

∑K
k=1 ψjk

αjk

of x, i.e. ‖x − xK‖2 is small compared to ‖x‖2. We can establish that the
global process that led from x to the K significant values αjk

demands, first,
to discretize the signal over N samples, and second, to compute the coefficients
αj and to sort them by decreasing absolute amplitude. The computation of
the αj ’s is realized in O(N2) operations, or, at best, in O(N) operations if the
sparsity basis Ψ is provided with a fast decomposition/reconstruction algorithm.
However, at the end of the day, only K ≪ N coefficients αj are recorded and
the others thrown away!

Is it possible to simplify this procedure? Can we avoid wasting time and
computations to record N samples and process them, for finally keeping only
K ≪ N? This is what Compressed Sensing, also called Compressive Sampling,
is all about.

As we will show in this section, CS answers positively to the merging of
sampling and compression thanks to three main changes:

• the switch in the a priori sparsity knowledge: the signal may be assumed
sparse in any kind of sparsity basis Ψ (not only in the Fourier domain as
for bandlimited signal).

• the generalization of the sampling procedure to any linear (and thus non-
adaptive) measurement of the signal, i.e. represented by a correlation of
the signal with a sensing basis;

• the use of non-linear reconstruction techniques, e.g. relying on convex
optimization or on greedy methods, to recover the initial signal by using
the signal sparsity a priori.

3.2 New Sensing Model

Our signal of interest from now on is finite, i.e. we work with a vector x in the
N -dimensional space R

N . This vectorial representation can be adapted to any
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space, e.g. by concatenating all the columns of a
√
N ×

√
N image into a vector

of N components3.
As for the example given in the end of Section 3.1, we assume that x has

a certain structure, or a geometrical content. In other words, there exists a
sparsity basis Ψ ∈ R

N×D, made of D ≥ N elements Ψj ∈ R
N with 1 ≤ j ≤ D,

such that x can be represented as

x = Ψα =

D
∑

j=1

Ψj αj , (4)

with few non-zero or important coefficients αj in α ∈ R
D. This kind of signal

transformations are implicitly used everyday when you listen MP3 compressed
songs or JPEG2000 coded images by using sparsity basis like the Discrete Cosine
Transform (DCT) or the 2-D Discrete Wavelet Transform [51, 23].

In this framework, a signal is said K-sparse if ‖α‖0 = K, and compressible if
the coefficients of α decay rapidly when sorted by decreasing order of magnitude.

For simplicity, we will always assume that the sparsity basis is orthonormal,
i.e. D = N and Ψ∗ = Ψ−1, leading to the relation αj = 〈Ψj ,x〉. The theory is
however validated for dictionaries and frames as explained here [59].

In Compressed Sensing theory, following a process natural in quantum physics,
we get knowledge of x by “asking” a certain number of independent questions,
or linear measurements. For M measurements, the signal is thus “sampled” in
M values yj = 〈ϕj ,x〉 (1 ≤ j ≤M), where the vectors ϕj ∈ R

N form the sens-

ing matrix Φ =
(

ϕ1, · · · ,ϕM

)∗ ∈ R
M×N . Using matrix algebra, the sensing

model is thus
y = Φx = ΦΨα, (5)

where the last equality follows from (4). Notice that the sparsity and the sensing
basis can be merged into the global sensing basis Θ = ΦΨ.

Equation (5) really models the sensing of x as if it was obtained by a physical
sensor outputting y. In that model, we have no-access to the components of x
or those of α. What we have is only y and the knowledge of the rectangular
sensing matrix Φ.

Following this framework, it is often more appropriate to consider a more
realistic sensing scenario where y is plagued by different noises:

y = Θα+ n. (6)

This equation integrates an additional noise n ∈ R
M representing for instance

the digitization (quantification) of Φx, for further storage and/or transmission,
and the unavoidable instrumental noises (Poisson, thermal, ...). Most of the
time this noise is assumed identically and independently distributed over its
components with a Gaussian distribution.

3Implicitly, this “vectorization” process must be realized correspondingly on the basis
elements that serve to sparsify the signal.
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4 Reconstructing from Compressed Information:

a Bet on Sparsity

y Φ x

M × 1 M × N

N × 1

= ∗

(a)

xLS

x = xBP

Φu = y

ℓ1-ball

ℓ2-ball

R
2

e1

e2

(b)

Figure 1: (a) Visual interpretation of the ”compressed” sensing of a signal x
sparse in the canonical basis (i.e. Ψ = I). (b) Explanation of the recovery of
1-sparse signals in R

2 with BP compared to a least square (LS) solution.

Let us now study how to reconstruct the signal from its measurements. The
fundamental theorem of algebra – “as many equations as unknowns” – teaches
us that the recovery of α or x = Ψα from y (and from the knowledge of the
sensing model) is possible if M ≥ N . This is true in all generality, whatever
the properties of x. Can we reduce M if x has a priori a certain structure?
After all, if x = Ψα was exactly K-sparse, with K ≪ N , and if the support
S ⊂ {1, · · · , N} of α was known, we would have

y = ΦΨα = ΘSαS ,

where ΘS ∈ R
M×K is the restrictions of the columns of Θ to those of index in

S, and αS is the vector α restricted to its support. Therefore, if K ≤ M , the
recovery problem stops being ill-posed.

An evident gap exists therefore between the number of measurements re-
quired for solving the known-support problem (M ≥ K) and the one needed
for the general case (M = N). This missing link is found by regularizing the
problem, i.e. by adding a prior information on the sensed x, somewhere between
the full knowledge of suppx and the general “no prior information” case. In
short, we must now assume the sparsity of x to recover it.

The signal reconstruction problem has been recasted as the recovery of the
sparse vector α from the observed (compressed) signal y = Φx = Θα given the
sparsity basis Θ = ΦΨ. According to Section 2, we may therefore use the ideal
non-linear recovery technique (or decoder)

∆0(y) , arg min
u

‖u‖0 s.t. y = Θu. (7)
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In spite of its combinatorial complexity, we can study theoretically the properties
of this decoder ∆0 and observe later how we can simplify it. For that purpose, we
need to introduce a certain regularity on the matrix Θ. After all, if the support
of α was known and equals to S, we should impose that ΘS is rank K, i.e. the K
columns of ΘS are linearly independent, so that α = Θ†

Sy = (Θ∗
SΘS)−1Θ∗

Sy,

with Θ†
S the Moore-Penrose pseudo-inverse of ΘS . The property we need now

is a generalization of this concept for all the possible support S of a given size.

Definition 1 ([13]) A matrix Θ ∈ R
M×N satisfies the Restricted Isometry

Property (or RIP(K, δ)) of order K < M and isometry constant 0 ≤ δ < 1 if,
for all K-sparse signal u ∈ SK = {v ∈ R

N : ‖v‖0 = K},

(1 − δ)‖u‖2
2 ≤ ‖Θu‖2

2 ≤ (1 + δ)‖u‖2
2. (8)

This definition clearly amounts to impose Θ of rank K over all the possible
support S ⊂ {1, · · · , N} of size K. We will see later what kind of matrices Θ
respect the RIP.

The RIP implies the following key result: if y = Θα and ‖α‖0 ≤ K, then

Θ is RIP(2K, δ) ⇒ α = ∆0(y).

The proof of this result is simple and enlightening. Denoting α∗ = ∆0(y),
we must show that x = Ψα = Ψα⋆, i.e. α = α⋆. Since α⋆ is the solution of
the minimization problem (7), ‖α⋆‖0 ≤ ‖α‖0 and ‖α− α⋆‖ ≤ 2K. Since Θ is
RIP(2K, δ), (1 − δ) ‖α− α⋆‖2

2 ≤ ‖Θα− Θα⋆‖2
2 = ‖y − y‖2

2 = 0, proving that
α = α⋆ since 1 − δ > 0.

We may notice that the ideal decoder (7) is not guaranteed to provide a
meaningful reconstruction in the cases where the signal x deviates from the
exact sparsity, i.e. if it is just compressible, or when measurements are corrupted
by a noise. These two problems are solved in the relaxed decoders proposed in
the next section.

From the first papers about Compressed Sensing [12, 26], inspired by sim-
ilar problems in the quest for sparse representation of signals in orthonormal
or redundant basis, researcher have used a “relaxation” of (7). As explained in
Section 2, the convex ℓ1-norm can replace favorably its non-convex ℓ0 counter-
part, and in the CS formalism, the two relaxed optimizations BP and BPDN
can thus be rephrased as:

∆(y) , arg min
u

‖u‖1 s.t. y = Θu, (BP)

∆(y, ǫ) , arg min
u

‖u‖1 s.t. ‖y − Θu‖2 ≤ ǫ. (BPDN)

The Basis Pursuit decoder is suited for sparse or compressible signal reconstruc-
tion in case of pure sensing model (5), while the Basis Pursuit DeNoise (BPDN)
program adds the capability to handle noisy measurements (6) with a noise
power assumed bounded, i.e. ‖n‖2 ≤ ǫ.
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2ε

x

‖Φu − y‖2 ≤ ε

ℓ1-ball

x
∗

d

R
2

(a)

x = xℓ1 = xℓq

Φu = y

ℓ1-ball

ℓq-ball

R
2

ℓ0-ball

(b)

Figure 2: (a) Explanation of the robustness of BPDN for 1-sparse signals in
R

2. (b) Geometrical illustration of the non-convex reconstruction minimizing
the ℓq-norm (0 < q ≤ 1).

In Figure 1(b), we provide a common illustration of why in the pure sens-
ing case the Basis Pursuit is an efficient way to recover sparse signals from
their measurements. On this Figure, the signal x is assumed 1-sparse in the
canonical basis of R

2, i.e. x lives on one of the two axis e1 or e2 of this space.
The constraint of BP is the line Dy = {u ∈ R

2 : Φu = y} intersecting one
of the two axis, here e2, in x. For a different reconstruction based on a reg-
ularization with a ℓ2-norm, i.e. the Least Square method (LS), the solution
xLS = arg minu ‖u‖2 s.t.Φu = y corresponds to the intersection of Dy with
the smallest ℓ2-ball B2(r) = {u ∈ R

2 : ‖u‖2 ≤ r} intersecting Dy. Clearly,
this point does not match the initial signal x. However, in non-degenerated
situations, i.e. when Dy is not oriented at 45◦ with e1 in our illustration, the
solution xBP of BP, which is provided by the common point between Dy and
the smallest ℓ1-ball B1(r) = {u ∈ R

2 : ‖u‖1 ≤ r} intersecting Dy = Dy(0), is
precisely the original x.

In Figure 2(a), the previous illustration is adapted to noisy measurement.
The constraint of BPDN is now a tube Dy(ǫ) = {u ∈ R

2 : ‖Φu − y‖2 ≤ ǫ}
of thickness 2ǫ around the line Dy. The solution of BPDN, i.e. x⋆, is now
the common point between Dy(ǫ) and the smallest ℓ1-ball touching this tube.
Geometrically, it is clear that, for most of the configuration, the distance d =
‖x−x⋆‖2 between the original signal x and the reconstruction x⋆ is proportional
to 2ǫ, since x⋆ and x are in Dy(ǫ).

These two intuitive explanations, i.e. perfect recovery of sparse signals and
the approximate signal reconstruction from noisy measurements, have been the-
oretically proved in [11, 8] again from the essential RIP. Mathematically, if
y = Θα+ n with ‖n‖2 ≤ ǫ (noisy sensing), then:
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Θ is RIP(2K, δ) and δ <
√

2 − 1
⇒

‖α− ∆(y, ǫ)‖2 ≤ Cǫ + D 1√
K
‖α−αK‖1.

(9)

for C and D function of δ only. For instance, for δ = 0.2, C < 4.2 and D < 8.5.
In summary, (9) proves the robustness of the Compressed Sensing setup.

Perfect recovery in the pure sensing model (ǫ = 0) of a K-sparse signal is still
achievable but at a higher price, i.e. we must have δ <

√
2 − 1 ≃ 0.41 in the

RIP. However, the result is fairly general since now it allows one to reconstruct
the signal from noisy measurements (with a linear dependence in ǫ), and this
even if x is not exactly sparse in Ψ. The deviation to the exact sparsity is
indeed measured by the compressibility error e0(K) = ‖α − αK‖1/

√
K. For

compressible signals, K is then a parameter that must be tuned to the desired
accuracy of the decoder. Since Θ must be RIP, we will see later that increasing
K comes with an increase of the number of measurements M .

5 Sensing Strategies Market

In Section 4 we detailed the required property of the sensing matrix Θ = ΦΨ to
guarantee a faithful reconstruction of the signal x. The obvious question is now:
Do such RIP matrices exist? The answer is “yes, with very high probability”.
Indeed, deterministic construction of RIP matrices exists [24] but they suffer
from very high lower bound on M with respect to the RIP(K, δ). We will not
detail them here. However, as a striking result of the Concentration of Measure
theory [48, 49], stochastic constructions of RIP matrices exist with a precise es-
timation of their probability of success. Once generated, these sensing matrices
have of course to be stored, or at least they must be exactly reproducible, for
sensing and reconstruction.

This section aims at guiding the reader through the market of available ran-
dom constructions, with a clear idea of the different dimensionality conditions
ensuring the RIP.

Random sub-Gaussian Matrices: A first case of random construction of
sensing matrices is the one provided by the class sub-Gaussian distributions
[53]. For instance, the matrix Φ ∈ R

M×N can be generated as the realization
of a normalized Gaussian random variable of variance 1/M , identically and
independently (iid) for each entry of the matrix, i.e.

Φij ∼
iid

N (0, 1/m).

Another possibility is to select one of the discrete Bernoulli distributions, e.g.
Φij ∼iid ±1/

√
M with probability 1/2, or Φij ∼iid ±

√

3/M or 0 with proba-
bility 1/6 or 2/3 respectively. Notice that the randomness of the procedure
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above helps only at the creation of the matrices. These three cases, and matri-
ces generated by other sub-Gaussian distributions [53], have the two following
interesting properties.

First, if Φ is sub-Gaussian, then it can be shown that, for any orthonormal
sparsity basis Ψ, Θ = ΦΨ is again sub-Gaussian. In particular, if the RIP is
proved for any sub-Gaussian matrix Φ, it will hold then for any Θ = ΦΨ. The
previous stability results are thus guaranteed in this sensing strategy.

Second, in [2], it is proved that a sub-Gaussian matrix Φ satisfies the
RIP(K, δ) with a controlled probability as soon as

M = O(δ−2K lnN/K).

More precise asymptotic estimations of this last relation have been realized in
[25].

Even if they correspond to very general sensing strategy independent of
the sparsity basis, there are two main problems with the random sub-Gaussian
matrices above.

First, their randomness makes them difficult to generate. The stochastic
construction above is therefore often replaced by a pseudo-random procedure.
In short, this provides a sequence of numbers with the desired distribution of
occurrences that seems random but is in fact deterministic, i.e. it is determined
by a set of few initial values also called the seeds. This has the merit to reduce to
storage of the sensing matrix to the knowledge of the pseudo-random generator
and its initial seeds.

Second, the numerical reconstruction of α from y = Θα in greedy methods
like Orthogonal Matching Pursuit or in ℓ1-minimization programs as BPDN
often involves iterative methods relying on the application of Θ and Θ∗ onto
vectors at each iteration. Even with the use of the pseudo-randomness trick
above, the absence of structure in Φ makes the complexity of these computations
of order O(MN). For Compressed Sensing of images or of videos, this makes
the reconstruction of reasonable size objects often very slow.

Fortunately, as explained below, other sensing strategies exist, even if they
are often less general with respect to the class of RIP-compatible signal sparsity
basis Ψ.

Random Fourier Ensemble: The first possibility to obtain a “fast” sensing
matrix, i.e. offering both fast encoding and faster decoding techniques, is to use
the Fourier transform. The sensing matrix Φ is here given by

Φ = SF ,

where F ∈ R
N×N is the (real) Discrete Fourier Transform on R

N (or on the
2-D plane R

N1×N2 with N1N2 = N for vectorized N1×N2 images) and the rect-
angular matrix S ∈ R

M×N picks randomly M elements of any N -dimensional
vector.
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The point is that, when Φ or Φ∗ are applied to a vector, the Fast Fourier
Transform (FFT) Cooley-Tukey algorithm can be applied instead of the corre-
sponding matrix multiplication. This decreases the complexity from O(NM) to
O(N lnN).

For a canonical sparsity basis Ψ = I, Θ = Φ is RIP with overwhelming
probability as soon as [12, 62]

M = O(K ln4N)

About the exponent of the ln factor, some converging experimental results, for
instance for CS applied to Magnetic Resonance Imaging (MRI) or in CS for
Radio-Interferometric data sensing (see Section 7.2), seem to validate a nicer
M = O(K lnN) requirement.

Random Fourier ensemble matrices are however less general than the sub-
Gaussian random constructions. Indeed, as explained in the next subsection,
the proportionality constant implicitly involved in the last relation grows when
a non-trivial sparsity basis is used.

This problem can be bypassed by altering the sparsity term of the BPDN
reconstruction and replacing it by the TV-norm. This is detailed in the Section
6.

Random Basis Ensemble: It is possible to generalize the previous sensing
basis construction to any orthonormal basis. In other words, given an orthonor-
mal basis U ∈ R

N×N , we construct Φ as

Φ = SU ,

with the previous random selection matrix S ∈ R
M×N .

In that case, the sparsity basis Ψ and the basis U from which Φ is extracted
must be sufficiently incoherent, i.e. it must be difficult to express one element
of Ψ as a sparse representation in U , and conversely.

More precisely, this fact is measured by the concept of coherence between
two basis: similarly to the definition (3), given an orthonormal sparsity basis
V = {V 1, · · · ,V N} ∈ R

N×N and another basis U = {U1, · · · ,UN} ∈ R
N×N ,

the mutual coherence between U and V is the value

µ(U ,V ) = max
i,j

|〈U i,V j〉|.

The coherence corresponds also to the highest amplitude entry of the correlation
matrix U∗V . By construction, µ is always greater than 1/

√
N for orthonormal

basis4

The general result is then that Θ = SU Ψ is RIP(K, δ) if [12, 62]

M ≥ C µ(U ,Ψ)2N K (lnN)4, (10)

for a certain constant C > 0.

4Indeed, 1 = ‖Ui‖2

2
=

P

j |〈V j , Ui〉|2 involves maxj |〈V j , Ui〉| ≥ 1/
√

N .
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Interestingly, the combination of the Fourier basis with the canonical sparsity
basis is a perfect dual pair, i.e. it saturates the mutual coherence lower bound
with µ(F , I) = 1/

√
N . The requirement above meets then the one of Section 5.

A useful orthonormal basis choice is provided by the Noiselet transform [18].
This basis is maximally incoherent with the wavelet basis [51]. The coherence
is for instance given by

√
2 for the Haar system, and it corresponds to 2.2 and

2.9 for the Daubechies wavelets D4 and D8 respectively [14].

Random Convolution: Recently, J. Romberg introduced another fast sens-
ing strategy called random convolution [61]. Working again in the (complex)
Fourier domain, the idea is simply to disturb the phase of the Fourier coeffi-
cients of a signal by multiplying them with a random complex sequence of unit
amplitude; M samples of the result are subsequently randomly selected in the
spatial domain. Mathematically, this amounts to consider

Φ = S F ∗ΣF ,

with Σ ∈ R
N×N a complex diagonal matrix made of unit amplitude diagonal

element and random phase (their generation respects a certain symmetry to
guarantee a real measurement vector) [61].

Interestingly, given 0 < γ < 1, it is proved then that the coherence between
the orthonormal basis H = F ∗ΣF and any sparsity basis Ψ is

µ(H,Ψ) ≤ 2
√

ln(2N2/γ)/N,

with probability exceeding 1 − γ.
Equation (10) involves then that Θ = ΦΨ is RIP(K, δ) with high probability

if
M ≥ C K (lnN)5,

for a certain constant C > 0.
Despite a stronger requirement on the number of measurements, and con-

trarily to the Random Fourier Ensemble, Random Convolution sensing works
with any kind of sparsity basis with possibly very fast implementation. In addi-
tion, its structure seems very adapted to analog implementations in the optical
domain [60], or even for CMOS Imager implementing random convolution on
the focal plane [42], as detailed in Section 7.1.

Other Sensing Strategies: Nowadays, more and more different sensing strate-
gies are developed in the field [15, 34].

Under various but similar requirements on the number of measurements, we
can mention the sensing matrix of the Analog-to-Information Converter (AIC)
designed in [47, 44] to compressively acquire a 1-D signal of infinite length by
temporal blocks. It is also possible to design Toeplitz-structured sensing matri-
ces [1], or to play with scrambled block Hadamard ensemble [35, 36], or with
the use of a spread-spectrum sequence preceding an Hadamard partial trans-
form adapted to pulse train sensing [54], ... Possible choices are now numerous,
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and the final selection of a sensing matrix depends on criteria like: the existence
of an analog model corresponding to this sensing, the availability of a fast im-
plementation of the numerical sensing at the decoding stage, the storage of the
sensing matrix in the sensors or/and in the decoder, the coherence between this
sensing and the (sparsity) class of signal to be observed, ...

6 Reconstruction Relatives

Previous sections have explained the main concepts of the Compressed Sensing
theory where the reconstruction (or decoding) task is solved through an opti-
mization program relying on the ℓ1-norm sparsity measure. In this section, we
present briefly some variations around the reconstruction task. These either al-
ter the sparsity measure of the BP or the BPDN reconstruction, or complement
their constraints by adding signal priors, or replace the often heavy optimization
process by less optimal but fast iterative (greedy) algorithms.

Be Sparse in Gradient: As explained in Section 5, sensing based on Random
Fourier Ensemble is perhaps fast but it lacks of universality, i.e. it is adapted
mainly to signal sparse in the canonical basis Ψ = I. In certain applications
however, the sensing strategy is not a choice, it can be imposed by the physics
of the acquisition. For instance, in Magnetic Resonance Imaging [50] or in
Radio-Interferometry [72] (Section 7.2), the signal (an image) is acquired in the
k-space, i.e. in the Fourier frequency domain, on a subset of the whole frequency
plane.

To face this problem, researcher have introduced a variation around the
previous reconstructions algorithms. Rather than expressing the signal sparsity
in the spatial domain using the ℓ1-norm measure, it is indeed possible to impose
the sparsity of the gradient of the image, leading to the “Total Variation” (TV)
quasi-norm [63].

In its discrete formulation, the TV-norm of a signal x representing an image
is given by

‖x‖TV =
∑

i

[

(xp+1,q − xp,q)
2
i + (xp,q+1 − xp,q)

2
i

]1/2
,

where (p, q) are the coordinates of the ith pixel of x. This norm is small for
“cartoon” images composed of smooth areas separated by curved edges (i.e. C2

smooth), i.e. a good approximation of many natural images showing of distinct
objects not too textured. [63]

For a noisy sensing model, the TV norm leads then to the new program

arg min
u

‖u‖TV s.t. ‖y − Φu‖2 ≤ ǫ. (BPDN-TV)

In [10], it is proved that BPDN-TV recovers with overwhelming probability
the initial image for random Fourier ensemble matrices and in the absence of
noise. To our knowledge, nothing has been proved for general sensing matrix and
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for noisy measurements. Experimentally however, BPDN-TV provides always
an increasing in reconstruction quality compared to the results obtained with
the ℓ1-norm, even for other sensing strategies, e.g. for random convolutions
[61, 42].

Add or Change Priors: In addition to the sparsity prior on the signal,
other priors can enforce the stability of a reconstruction program when they are
available.

For instance, if the signal is known to be positive in the spatial domain, we
may alter BPDN into

arg min
u

‖u‖1 s.t.

{

‖y − Θu‖2 ≤ ǫ,

Ψu ≥ 0.
(BPDN+)

Some stability guarantees have been established in this formalism thanks to
particular requirement on the null space of the sensing matrix [74, 43].

Sometimes, it is difficult to estimate the noise power on the measurements
but easy to have a bound on the signal sparsity, e.g. there exist a τ such that
‖α‖1 ≤ τ . In that case the Lasso formulation [66] can be useful:

arg min
u

‖y − Θu‖2 s.t. ‖u‖1 ≤ τ, (Lasso)

In [70], it is explained that there is a continuous and differentiable mapping
between the parameter τ of Lasso and the noise power ǫ of BPDN, i.e. the
Pareto frontier. It is therefore possible to solve the latter from the first by
probing this Pareto curve. In addition, for the right ǫ(τ), the stability results
of BPDN holds therefore for Lasso.

In certain situation, the noise level on the measurements depends on the
component of the measurement vector. For Random Fourier Ensemble, this
amounts to say that the noise on the measurement is the result of a “colored”
noise on the initial signal, i.e. a non-flat spectrum noise. From the knowledge of
the noise spectrum, a whitening of the measurement can be obtained by weight-
ing the ℓ2-norm of the BPDN constraint so that each weighted-components of
the measurement vector has a normalized standard deviation, i.e.

arg min
u

‖u‖1 s.t. ‖W (y − Θu)‖2 ≤ ǫ,

where W ∈ R
M×M is non-negative diagonal matrix. The direct effect of this

treatment is to give more confidence to (perhaps small) measurements with low
noise level and less to those with higher standard deviation [72].

Finally, in case where the measurement noise is non-Gaussian, the fidelity
term of BPDN can be altered. For instance, if the noise comes from a uniform
quantization of the measurements, i.e. the kind of digitization process that is
implicitly used by any Compressed Sensing sensor [31, 47, 42], or if it follows
a Generalized Gaussian Distribution (GGD) of shape parameter p, we can use
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the Basis Pursuit DeQuantization program

arg min
u

‖u‖1 s.t. ‖y − Θu‖p ≤ ǫ, (with p ≥ 2). (BPDQp)

For uniformly quantized measurements, as suggested initially in [12] for p = ∞,
it is shown in [41, 40] that if M is higher than a bound growing with p, i.e.
in oversampled situation compared to p = 2 (i.e. BPDN), BPDQp improves
the quality of the reconstructed signal. Other variations of BPDN in the same
context exist [57, 20].

In the same quantization context, we may notice that a realistic quantization
model must tackle the problem of saturation. A quantizer has indeed a limited
number of bits to digitize its continuous input value. Therefore, every values
outside of a certain range [−B,B] for B ≥ 0, will be assigned to the same digital
number (up to a sign bit). Considering the matrix Θ̃ obtained by retaining the
rows of Θ leading to the measurements that did not saturate, and the matrix
Θ± of those that saturated over and under B and −B respectively, the two
following optimization program can be considered [45, 46]

arg min
u

‖u‖1 s.t. ‖y − Θ̃u‖2 ≤ ǫ,

arg min
u

‖u‖1 s.t.











‖y − Θ̃u‖2 ≤ ǫ,

Θ+u ≥ B

Θ−u ≤ −B,

the first method consisting simply in the rejection of saturated measurements,
and the second to the consistency of the rejected ones with respect to the range
limit B. The democratic property of RIP matrices, i.e. the fact that they
remain RIP (with higher constant) if some of their rows are removed, proves
the theoretical stability of these two reconstruction methods [45, 46].

Outside Convexity: As explained in Section 4, the ideal reconstruction method
using the ℓ0 sparsity measure is usually relaxed by preferring to it the convex
ℓ1-norm. This allows one to efficiently solve the optimization programs BP and
BPDN and to reach their global minimum.

Recently, some researches have focused on non-convex relaxation, where the
ℓ0-norm is rather replaced by the ℓq-norm, i.e. the sparsity term on u ∈ R

N is
‖u‖q = (

∑

i |ui|q)1/q with 0 < q ≤ 1:

arg min
u

‖u‖q s.t. ‖y − Θu‖2 ≤ ǫ, (ℓq−BPDN)

Even if the non-convexity of the new optimization program prevents us to reach
each a global minimum of ℓq-BPDN, several authors in [16, 6] introduced sub-
optimal reconstruction based on reweightings of the ℓ1 or the ℓ2-norm.

Roughly speaking, the interest of this non-convex setting relies on the fact
that an ℓq-ball is close to the “ℓ0-ball” characterizing exactly sparse signals in
R

N (Figure 2(b)).
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Be greedy: From the advent of the sparsity concept in signal representa-
tions, and therefore also from the beginning of the Compressed Sensing theory,
researchers have tried to find fast algorithms to solve the different convex opti-
mization programs presented so far. However, even if optimal in the way they
provide a global minimum, the complexity of these methods is generally high
and function of the dimension of the signal space. Consequently, some sub-
optimal iterative methods, coined greedy, have quickly been proposed. Match-
ing Pursuit (MP) [52], Orthogonal Matching Pursuit (OMP) [58], Compressive
Sampling Matching Pursuit (CoSaMP) [56], Iterative Hard Thresholding (IHT)
[4], Subspace Pursuit (SP) [19], ... are such examples of iterative procedures.
They all follow the same principle.

Considering the noiseless case to simplify our explanation, given a signal x
assumed to be sparse or compressible in the basis Ψ, for a measurement vector
y = Φx sensed by Φ, a greedy algorithm applied to CS tries to find a sparse
vector α that explains the measurements through the lens of the sparsity basis,
i.e. a vector α such that y ≈ ΦΨα. The signal x is subsequently recovered or
approximated by computing x = Ψα.

Practically, we can say that a greedy procedure starts by setting a residual
r to y and a current coefficient vector α to 0. It checks then amongst all the
columns of Θ = ΦΨ, or amongst all the subset of columns of fixed size in this
matrix, the one that is best correlated with r. This selection is included in
the current coefficient vector α following various procedures, and the residual is
updated by removing from it the influence of the selection. The process is then
repeated on the new residual and the algorithm stops either naturally or after
the minimal number of iterations needed to significantly reduce a certain score
function, e.g. the energy of the residual.

The first greedy methods used in CS were MP and OMP. The approximation
error obtained with these was unfortunately not very well controlled. Recently
however, CoSaMP, IHT and SP filled this gap and provided stability guarantees
similar to the one given in (9).

7 Some Compressive Imaging Applications

Compressed Sensing is a very general concept reported to be adaptable to
a tremendous amount of applications covering astronomy, radars, seismology,
satellite telemetry, ... In this section we restrict our attention to only two of
them, namely Compressive Imagers and Radio-Interferometry. We refer the
readers to Chapters 14 and 23 of this book, or to parse the web references
[15, 34] to get a complementary overview of the huge activity developped nowa-
days around applicative CS.

7.1 Compressive Imagers

The single pixel camera [31] was the first device to implement an optical Com-
pressed Sensing directly acquiring compressive measurements. It relies on the
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Figure 3: CMOS Compressive Imager. (a) The imager scheme. (b) and (c),
simulated example of image sensing and reconstruction. In (b) original image
(Lausanne Cathedral, Switzerland). In (c), reconstruction from a sensing of
M = ⌊N/3⌋ 11-bits quantized measurements, corrupted by an additional Gaus-
sian white noise (PSNR 27.3 dB).

use of a Digital Micromirror Device (DMD), a key element of a lot of Digital
Light Processing (DLP) projectors. This DMD is composed of a grid of mirrors
that may have only two different orientations, and one of them is used to fo-
cus scene light onto a single photodetector (PD). By setting electronically the
grid arrangement according to a random configuration, the photodector actually
collects a linear combination of the spatial light intensity with binary weights.
Repeating the acquisition M times with different random patterns provides M
measurements. In other words, M photodetector analog signals are generated,
digitized and sent to a receiver which can reconstruct the image following one
of the non-linear reconstructions described before. Pictures of this camera may
be found in the Chapter 23 of this book.

Other Compressive Imagers have been realized since the single pixel camera.
We may cite the Georgia Tech Analog Imager of R. Robucci et al. [60], and some
multispectral and coded aperture extensions as described in much more details
by R. Willet et al. in Chapter 23. The CMOS Compressive Imager presented
in Figure 3 developed in the Swiss Federal Institute of Technology (EPFL) is
one of them [42].
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As for the Georgia Tech imager, this imager proceeds by embedding in the
analog domain the compressed sensing of images. The selected sensing strategy
relies on the Random Convolutions (RC) (Sec. 5) performed in the focal plane
of the imager. This sensing has indeed a very simple electronic translation.
Indeed, in the spatial domain, a RC of an image x ∈ R

N is equivalent to

yi = (Φx)i =
∑

i

ar(i)−j xj = (x ∗ a)r(i), (11)

where a is the random filter and the indices r(i) are selected uniformly at random
in {1, · · · , N}. For this compressive imager, the filter is not defined in the fre-
quency domain but it corresponds to a suboptimal pseudorandom Rademacher
sequence, i.e. ai = ±1 with equal probability. Practically, a one-bit flip-flop
memory is integrated in each pixel of the camera. Its binary state alters the
direction of the electric current outgoing from the photodiode electronics before
being gathered on column wires thanks to the Kirchoff law. Therefore, if the
N flip-flop memories are set into a random pattern driven by the filter a, the
sum of all the column currents provides one CS measurement of the image seen
on the focal plane. The next measurement are obtained easily since the one-bit
memory are connected in a big chain represented in Fig. 3(a), creating a N
shift register closed by connecting the last pixel memory to the first. In few
clock signals, the whole random pattern can therefore be shifted on its chain,
hence performing the desired convolution operation for the next measurements.
We refer the reader to [42] for more details about the electronic design of this
imager.

Compared to common CMOS imagers, this compressive acquisition has some
advantages: (i) data are compressed at a reasonable compression ratio without
to integrate a Digital Signal Processing (DSP) block in the whole scheme, (ii) no
complex strategies must be developed to address numerically the pixels/columns
of the grid before data transmission, and (iii) the whole system has a low power
consumption since it benefit of the parallel analog processing (e.g. for filter
shifting in the Shift Register). The proposed sensor is of course not designed
for end-user systems (e.g. mobile phone). It meets however the requirements of
technological niches with strong constraints (e.g. low power consumption) since
the adopted CS coding involves a low computational complexity compared to
systems embedding transform-based compression (e.g. JPEG 2000).

7.2 Compressive Radio-Interferometry

Recently, the Compressed Sensing paradigm has been successfully applied to
the field of Radio-Interferometry detailed in Chapter 14.

In radio-interferometry, radio-telescope arrays5, synthesize the aperture of
a unique telescope of size related to the maximum distance between two tele-
scopes. This allows observations with otherwise inaccessible angular resolutions
and sensitivities in radio astronomy. The small portion of the celestial sphere

5As the one of Arcminute Microkelvin Imager (AMI) (Fig. 4(c))
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(a)

(b) (c)

Figure 4: Radio-Interferometry by aperture synthesis. (a) General principles.
(b) Typical visibility maps in the Fourier plane. (c) AMI radio-telescopes con-
figuration

accessible to the instrument around the pointing direction ω tracked during
observation defines the original image Iω (or intensity field) to be recovered.
As a matter of fact, thanks to the Van Cittert Zernike Theorem [72], the time
correlation of the two electric fields E1 and E2 recorded by two radio-telescopes
separated by a baseline vector b corresponds to Îω(b⊥), i.e. the evaluation of
the Fourier transform of Iω on the frequency vector b⊥ = b− (ω · b)ω obtained
by projecting b on the plane of observation perpendicular to ω. Since there are
(

N
2

)

different pairs in a group of N telescope, and since the Earth is rotating,
radio-interferometry amounts finally to sample the image of interest Iω in the
Fourier domain on a list of frequencies, or visibilities, similar to one represented
in Fig. 4(b).

As explained in Chapter 14, many techniques have been designed by radio-
astronomers to reconstruct Iω from the set of visibilities. One commonly used
method is the CLEAN algorithm [38] and the many variants generated since
its first definition in 1974. Interestingly, CLEAN is actually nothing else but
a Matching Pursuit greedy procedure (Sec. 6) that iteratively subtract from
the visibilities the elements of the sky that are the most correlated with them.
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Figure 5: (a) Compact object intensity field I in some arbitrary intensity units.
In (b) and (c), CLEAN and BP+ (i.e. BPDN+ with ǫ = 0) reconstructions for
M = N/10 and random visibilities. (d) The graph of the mean SNR with 1σ
error bars over 30 simulations for the CLEAN, BP, and BP+ reconstructions of
I as a function of M (in percentage of N).

CLEAN suffers however from a lack of flexibility and it is for instance not
obvious to impose the positivity of the intensity field to be reconstructed. In
[72], it is shown that, for random arrangements of visibilities in the frequency
plane, Compressed Sensing reconstruction procedures like BPDN+ or BPDN-
TV (Sec. 6) provide significative gains in the quality of the reconstructions, as
reported by Fig. 5 for one synthetic example.

In spirit, the sampling in radio-interferometry is very similar to this obtained
in Magnetic Resonance Imaging (MRI) [50] where Compressed Sensing provides
also significative improvements over the previous reconstruction schemes.

Recently, it has been shown in [73] that the modulating wave arising from the
non-planar configuration of large radio-telescopes arrays on the Earth surface
can advantageously be used as a “spread-spectrum” technique improving farther
the image reconstruction quality.
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8 Conclusion and the “Science 2.0” Effect

Let us conclude this chapter by one important, and somehow “sociologic”, ob-
servation. The Compressed Sensing paradigm is born in what is often called
the “Science 2.0.” evolution. This term represents a real boom in the exchange
of information in the scientific community, a byproduct of the steady Internet
development. This recent trend take several forms. It consists for instance in
the online publication of preprint before their acceptance in scientific journals
(through ArXiv [68] or directly on personal homepages), or, more remarkably,
in the writing of scientific blogs regularly fed by researchers and often the source
of fruitful online discussions with other scientists. Another aspect of this trend
is the free exchange of numerical codes guaranteeing the reproducibility of the
results.

Information Sources: For Compressed Sensing, the two most visited sources
of information are the Compressed Sensing Resource webpage maintained by
Richard Baraniuk and his team at the Rice University [34] and the “Nuit
Blanche” blog of Igor Carron [15]. The first link lists and classifies new preprints,
papers, tutorial and softwares in the field, often from the personal announce-
ments of the authors.

Thanks to his untiring writer Igor Carron, Nuit Blanche is realizing the
same task than the first link but in addition his author comments the content of
added research topics, trying to link certain of these to others, observing some
new trends in the theory, disseminating the different softwares and toolboxes
guaranteeing the reproducibility of the experiments.

Many other blogs exist in related topics to CS and it could be difficult to
list them all here. We can mention for instance the applied mathematics blog
“What’s new” by Terence Tao [65], one of the founders of CS; “La vertu d’un
LA” of L. Duval [32] about “*lets” bases, mathematics and anagrams; the “Ge-
omblog” of Piotr Indyk and Suresh Venkatasubramanian about computational
geometry and algorithms [39]; or the blog of D. Brady [5] on optical imaging
and spectroscopy. Actually, many other interesting links can be found by surfing
on these blogs since most of them maintain a “blogroll” section listing websites
related to their own contents.

Reproducible Research: The advent of compressed sensing theory is also
related to a free dissemination of the numerical codes helping the community
to reproduce experiments. A lot of toolboxes have therefore been produced
in different languages: C, C++, Matlab c©, Python, ... One of the first tool
designed to solve optimizations program as BP, BPDN or BPDN-TV was the
ℓ1-magic toolbox6 in Matlab. Now, a lot of different implementation allow one
to perform the same operation with more efficient methods, to give few names,
CVX, SPGL1, Sparco, SPOT, TwIST, YALL, . . . are such examples of recent
toolboxes. Once again, a comprehensive list is maintained on [34, 15].

6http://www.acm.caltech.edu/l1magic
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