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Abstract— In-memory computing is a promising non-von
Neumann approach where certain computational tasks are
performed within resistive memory units by exploiting their
physical attributes. In this paper, we propose a new method
for fast and robust compressed sensing (CS) of sparse
signals with approximate message passing recovery using
in-memory computing. The measurement matrix for CS
is encoded in the conductance states of resistive mem-
ory devices organized in a crossbar array. In this way,
the matrix-vector multiplications associated with both the
compression and recovery tasks can be performed by the
same crossbar array without intermediate data movements
at potential O(1) time complexity. For a signal of size N,
the proposed method achieves a potential O(N)-fold recov-
ery complexity reduction compared with a standard soft-
ware approach. We show the array-level robustness of the
scheme through large-scale experimental demonstrations
using more than 256k phase-change memory devices.

Index Terms— Approximate message passing (AMP),
compressed sensing (CS), in-memory computing,
phase-change memory (PCM).

I. INTRODUCTION

I
N-MEMORY computing is an attractive approach for per-

forming computationally expensive tasks of a high-level

algorithm in an energy-efficient manner. For instance, crossbar

arrays of resistive memory (memristive) devices can be used

to store a matrix and perform analog matrix-vector multiplica-

tions at constant O(1) time complexity without intermediate

movements of data. This capability can be exploited in a wide

range of applications from neural network inference to solving

systems of linear equations [1]–[3].

Another well-suited application domain is that of com-

plex optimization problems such as compressed sensing (CS)
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recovery. CS is an active research field in signal processing,

which attempts to perform sampling and compression simul-

taneously via a measurement matrix and allows the recovery

of a high-dimensional signal from low-dimensional noisy

measurements. CS is used in various applications, such as

MRI, facial recognition, holography, audio restoration, and in

mobile phone camera sensors. In a camera sensor, the approach

allows to significantly reduce the acquisition energy per

image or equivalently increase the image frame rate, by cap-

turing only few measurements, e.g., 10%, instead of the

whole image. However, CS recovery algorithms are usually

complex, and conventional implementations are confronted

with limited scalability owing to the large number of oper-

ations involved and high memory requirements. In-memory

computing promises to significantly reduce the memory and

computing resources needed to solve the problem as well as its

computational complexity, at the cost of potentially reducing

solution accuracy.

In Internet of Things systems, it may be desirable to

design implementations of CS with reconstruction on the same

device, e.g., a sensor, using very low power, in order to

have energy-efficient signal acquisition while at the same time

not having to send the compressed signal to the cloud for

reconstruction. Moreover, implementations of CS that can deal

with very large measurement matrices may be desirable in

applications where signals are received by large sensor arrays,

as, for example, envisaged for the Square Kilometre Array [4],

where the signal size may be on the order of 108.

In this paper, we propose an implementation of a CS recov-

ery algorithm, namely approximate message passing (AMP),

based on memristive crossbar arrays, of which we presented a

preliminary version in [5]. We experimentally investigate the

impact of this memristive implementation on the performance

of AMP, in particular on the reconstruction accuracy. The

benefits and limitations of the memristive implementation are

discussed for three use cases of the AMP algorithm, namely

linear estimation, CS with soft thresholding, and compressive

imaging with image denoising.

II. OVERVIEW OF COMPRESSED SENSING

A. Problem Setting

The basic idea of CS is to acquire few sampling measure-

ments from a high-dimensional signal and subsequently to
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recover that signal accurately. The compressive measurements

can be thought of as a linear mapping of a signal x0 of length

N to a measurement vector y of length M < N . If this

process is linear, it can be modeled by an M×N measurement

matrix A. The CS reconstruction problem is to determine the

signal x0 from the measurements y when sampled as

y = Ax0 + w (1)

where w represents the measurement noise. CS asserts that

signals can be recovered from fewer samples than dictated

by the Shannon–Nyquist theorem if they are sparse, that

is, if their information rate is lower than the Nyquist rate.

If the signal x0 is sparse in some transform domains, we can

represent it as x0 = 9ξ , where ξ contains only a few (k)

nonnegligible elements. It can be shown that if 9 is incoherent

with A, ξ can be recovered from y when M < N , as long

as k is sufficiently small. 9 represents the inverse transform

matrix, for example, an inverse wavelet transform. CS is

fundamentally different from transform coding, which is used,

for example, in JPEG or MPEG compression. In the latter,

the signal x0 needs to be fully acquired, then the transform

ξ is computed, and the largest k transform coefficients and

their locations are kept so that the signal can be reconstructed.

In CS, however, only M < N measurements of x0 are acquired

while still being able to reconstruct the signal accurately. The

downside is the cost of complex CS reconstruction algorithms.

In the case of a sparse signal x0 and w = 0, a reconstruction

of x0 from y is obtained by solving the basis pursuit (BP) L1

minimization problem. An alternative formulation known as

BP denoising (BPDN) extends BP to the more realistic noisy

measurement case with w 6= 0. The solution of both BP and

BPDN can be obtained by convex optimization using linear

programming (LP) algorithms. However, the high computa-

tional complexity of LP represents an obstacle for the large

problem sizes that occur very often in applications.

An appealing alternative to LP algorithms is offered by

iterative thresholding algorithms because of their low com-

putational complexity. One particular iterative thresholding

scheme to recover x0 from y is of the form

x t+1 = ηt (A∗zt + x t )

zt = y − Ax t . (2)

Here, x t ∈ R
N is the current estimate of x0 at iteration t ,

zt ∈ R
M is the current residual, ηt (·) is a (typically nonlinear)

function, A∗ denotes the transpose of A, and x0 = 0. However,

while offering low complexity, the sparsity-undersampling

tradeoff achieved by algorithm (2), that is, the smallest value

that M can take given a certain sparsity of x0 to successfully

recover the signal, is usually less favorable than for LP-based

reconstruction.

Recently, Donoho et al. [6] proposed an AMP algorithm,

which adds a simple modification to (2) that substantially

improves the sparsity-undersampling tradeoff without signif-

icantly increasing the computational complexity. The AMP

algorithm is formulated as [7]

x t+1 = ηt (A∗zt + x t )

zt = y − Ax t + N

M
zt−1hη0

t−1(A∗zt−1 + x t−1)i (3)

where hvi ≡ N−1
�N

n=1 vn denotes the average of a vector

v, η0
t represents the derivative of ηt , x t ∈ R

N is the current

estimate of x0 at iteration t , zt ∈ R
M is the current residual,

A∗ denotes the transpose of A, and x0 = 0. With respect

to iterative thresholding (2), AMP includes the additional

term (N/M)zt−1hη0
t−1(A∗zt−1 + x t−1)i in the computation

of the residual, which is shown to substantially improve the

sparsity-undersampling tradeoff [6]. AMP has the remarkable

property that its solutions are governed by a state evolution

whose fixed points (when unique) yield the true posterior

means, in the limit M, N → ∞, with the ratio M/N

fixed, and assuming that the elements of A are indepen-

dent identically distributed (i.i.d.) Gaussian random variables

Amn ∼ N(0, 1/M) [7].

B. Compressed Sensing Hardware Implementations
Many works have focused on efficient hardware imple-

mentations for the acquisition of compressed measurements,

such as in a camera sensor [8]–[10]. In an image sensor,

the measurement matrix is typically binary, and the measure-

ment acquisition can be implemented either in the optical

domain [8] or on-chip [9], [10]. Efficient implementations of

single-shot imaging have been demonstrated with scalability

up to 256 × 256 pixels consuming less than 100 mW of

power and showing no loss in signal-to-noise ratio (SNR)

compared with normal (not compressed) capture [10]. In such

implementations, the reconstruction algorithm is typically not

implemented on-chip, and therefore, reconstruction has to be

done off-line.

For CS reconstruction, a number of implementations have

been reported on field-programmable gate arrays (FPGAs)

and application-specific integrated circuit (ASIC) designs.

ASIC implementations of the orthogonal matching pursuit

algorithm [11] and the AMP algorithm [12] have been pre-

sented, as well as the FPGA implementations of both [13].

Very recently, an implementation of the second-order cone pro-

gram recovery algorithm for CS based on memristive crossbar

arrays has been proposed [14], however, without experimental

validation.

In this paper, we propose an implementation of the AMP

algorithm based on memristive crossbar arrays, whereby

the memristive arrays are used to perform the required

matrix-vector multiplications. We aim to provide a robust

set of experimental results of this implementation using

phase-change memory (PCM) arrays. In comparison with

typical high-precision implementations on GPUs or FPGAs,

reconstruction with a memristive implementation will exhibit

lower accuracy. The expectation is that the energy efficiency

and scalability of a memristive implementation will allow to

deal with much larger signals than in a typical high-precision

implementation and will yield faster and low-power solutions,

at the cost of a reduced reconstruction accuracy, which may,

however, be considered acceptable in many applications.

III. REALIZATION USING IN-MEMORY COMPUTING

A. Implementation of Compressed Sensing With AMP
Recovery Using Resistive Memory Arrays

The key idea of realizing CS using in-memory computing

relies on the encoding of the elements of A as conductance
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Fig. 1. (a) N × M memristive crossbar encoding the measurement matrix A used to acquire the CS measurements and to realize the matrix-vector
computations of the AMP recovery algorithm. (b) Architecture of the memristive implementation of AMP.

values of memristive devices organized in a crossbar array,

as shown in Fig. 1(a). One possible method to program

the conductance values is by an iterative program-and-verify

procedure. The compressed measurements (1) are acquired by

applying x0 as voltages to the crossbar rows via digital-to-

analog conversion and obtaining y through analog-to-digital

conversion of the resulting output currents at columns. The

positive and negative elements of A can be coded on separate

devices together with a subtraction circuit, whereas negative

vector elements can be applied as negative voltages.

Once the matrix A has been programmed in the crossbar

array and the measurements y have been obtained, the AMP

algorithm can be implemented as shown in Fig. 1(b). The

AMP algorithm is run in a dedicated processing unit, whereas

the computation of q t = Ax t and ut = A∗zt is performed

using the (same) crossbar array. The vector q t is computed

by applying x t as voltages to the rows and reading back the

resulting currents on the columns, and ut by applying zt as

voltages to the columns and reading back the resulting currents

on the rows. In a memristive crossbar, it has been argued

that the matrix-vector multiplications can be performed with

constant time complexity O(γ ), where γ is independent of

the crossbar size [3]. The reason is that the computation is

performed in parallel through Kirchhoff’s circuit law locally

at the same place where the matrix data are stored. Therefore,

the complexity of (3) is potentially reduced from O(M N)

to O(N) if A is dense, as it is the case for A with i.i.d.

Gaussian elements. The precise value of γ will depend on

the read current settling time and the time required to digitize

the current by the peripheral circuitry. Consequently, larger

crossbars may eventually lead to higher γ if some of the

readout circuitry must be shared across columns/rows and

multiplexed.

B. Physical Implementation on Prototype PCM Chip

We implemented CS with AMP recovery using a prototype

multilevel PCM chip that contains 1 million usable PCM cells.

PCM is a resistive memory technology that is based on the

rapid and reversible transition between the crystalline and

amorphous phases of certain materials by the application of

suitable electrical pulses. Each PCM cell consists of a PCM

device in series with an access transistor. The PCM devices

are based on doped-Ge2Sb2Te2 and are integrated into the

prototype chip in a 90-nm CMOS baseline technology [15].

In addition to the PCM cells, the prototype chip integrates

the circuitry for cell addressing, on-chip analog-to-digital

converter (ADC) for cell readout, and voltage- or current-

mode cell programming. The PCM chip is interfaced to a

hardware platform comprising two FPGA boards and an ana-

log front-end board. The layout, picture, and specifications of

the experimental PCM chip with integrated read/write circuitry

can be found in [5].

The selection of one PCM device is done by serially

addressing a word line and a bitline (BL). For reading a PCM

device, the selected BL is biased to a constant voltage (typi-

cally 0–300 mV) by a voltage regulator via a voltage generated

off-chip. The sensed current is integrated by a capacitor, and

the resulting voltage is then digitized by the on-chip 8-bit

cyclic ADC. The total time of one read is 1 µs. The readout

characteristic is calibrated via on-chip reference polysilicon

resistors. For programming a PCM device, a voltage generated

off-chip is converted on-chip into a programming current.

This current is then mirrored into the selected BL for the

desired duration of the programming pulse. Each programming

pulse is a box-type rectangular pulse (∼1 ns rise/fall times)

with a duration of 400 ns and an amplitude varying between

0 and 500 µA. Iterative programming involving a sequence of

program-and-verify steps is used to program the PCM devices

to the desired conductance values [16]. After each program-

ming pulse, a verify step is performed, and the value of the

device conductance programmed in the previous iteration is

read at a voltage of 0.2 V. The programming current applied

to the PCM device in the subsequent iteration is adapted

according to the sign of the value of the error between the

target level and the read value of the device conductance. The

total time of the one program-and-verify step is approximately

2.5 µs. The array can be erased (RESET) using the maximum

amplitude pulse of 500 µA and reprogrammed at will, and

each cell can sustain approximately 109 programming pulses.

In our implementation of CS with AMP recovery,

the element-by-element multiplications of the matrix-vector

products were realized in the PCM chip, and the remaining

operations were implemented in software. The elements of A
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Fig. 2. Iterative programming of five representative conductance levels
[vertical lines in (b)] on 5000 devices of the PCM chip. (a) Number
of iterations needed for the convergence of the iterative programming
algorithm. (b) Conductance distributions at approximately 50 µs after
programming. (c) Evolution of the mean conductance values of the
five programmed levels versus time; filled areas represent the standard
deviation for each level, and the plot on the right shows the calculated
drift exponent ν of the five levels computed from G(t) = G(t0)(t/t0)−ν .
(d) Readout current of the 5000 programmed PCM devices for a voltage
range 0–0.3 V, plotted versus GT · V, where V is the applied voltage and
GT is the target conductance of the different levels. (e) Readout current

plotted versus GT · f(V), where f(V) = V + 5V 3 .

were mapped to conductance values between 0 and 50 µS and

programmed on four PCM devices averaged per element using

iterative programming, with a conductance margin of 1.74 µS

per device, that is, the iterative algorithm converges when

the programmed conductance reaches a value within at most

1.74 µS from the target value. The matrix is programmed only

once before CS is performed. Fig. 2(a) shows the number of

programming cycles required, and Fig. 2(b) and (c) show the

conductance distributions for five representative levels. Here,

only five levels are shown for clarity, but in our experiments,

the conductance may assume any value in the range 0–50µS.

We mapped the vector elements to voltage values in the range

0–0.3 V using a nonlinear mapping f (V ) to account for the

slight nonlinearity of the current–voltage (I–V ) characteristics

of the PCM devices [17]. The effect of this mapping is shown

in Fig. 2(d) and (e), where each point corresponds to the

Fig. 3. Comparison of the precision in the computation of y = Ax0 by
the experimental PCM chip and 4×4-bit multiplications. A is a 256×256
Gaussian matrix coded in the PCM chip, x0 is a 256-long Gaussian vector
applied as voltages, and yi is the ith element of y.

Fig. 4. Calibration procedure to prevent errors due to conductance drift.

current of one PCM device measured at the applied voltage.

The accuracy of the matrix-vector computation with our PCM

chip for a 256 × 256 matrix with i.i.d. Gaussian elements is

comparable to that of a fixed-point implementation where the

matrix and vector elements are quantized to 4 bits, as shown

in Fig. 3.

To prevent errors in the multiplication results due to con-

ductance drift of the PCM devices, we developed a drift cal-

ibration procedure which consists in periodically reading the

summed current of L columns in the array during an experi-

ment. Those L columns contain devices programmed to known

conductance values Gmn(t0), and therefore, by reading them

periodically at a constant voltage Vcal, we can compensate for a

global conductance shift, as shown in Fig. 4. This procedure is

especially simple because L can be chosen to be small, enough

to get sufficient statistics, and the sum
�N

n=1

�L
m=1 Gmn(t0)

needs to be computed only once. The additional operations

for drift calibration can be efficiently implemented and are

not expected to incur significant time/power overhead. Reading

the subset of L columns of the crossbar can be done while the

PCM array is idle, i.e., when the digital unit performs the addi-

tional computations of the recovery algorithm, and additional

means are needed to perform the L current summations as well

as computing and storing α̂. They could be implemented either

with on-chip digital circuitry or in the control/processing unit.

In our experiments, the calibration procedure was performed

in the control unit on L = 40 columns after every five

matrix-vector multiplications.

IV. EXPERIMENTAL RESULTS

A. Linear Estimation

First, we study the simple use case of linear estimation,

where the vector x0 is not sparse and its entries are i.i.d.
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Fig. 5. (a) Normalized mean square error as a function of the number
of AMP iterations for linear estimation with N = M = 256. The filled
areas represent the standard deviation over 16 different realizations of
A and x0. (b) Empirical distribution of the effective noise A∗zt + xt − x0
at the last AMP iteration t = 29 for the three implementations. All the
16 experiments were used to build the empirical distributions.

Gaussian N(0, 1). In this case, the optimal AMP algorithm

uses ηt (x) = λt x with λt = (1/1 + τ 2
t ), where τ 2

t is the

variance of the empirical distribution of A∗zt + x t − x0, which

can be seen as the effective noise of the algorithm at iteration

t [7]. τ 2
t can be estimated by τ̂ 2

t = kztk2
2/M , which is shown

to be a good approximation of the variance of A∗zt + x t − x0

in the large system limit [18].

We implemented this algorithm on the PCM chip for a

random signal x0 of size N = 256 and M = N measurements.

The M × N measurement matrix A was programmed in the

PCM chip with i.i.d. Gaussian elements normalized, such

that the norm of its columns is approximately 1 [7]. The

measurements y were obtained by applying x0 as voltages

on the PCM chip after matrix A had been programmed, thus

realizing Ax0 in hardware. Subsequently, x0 was reconstructed

with AMP using the PCM chip to compute the matrix-vector

operations Ax t and A∗zt , as shown in Fig. 1(a). We per-

formed the experiment 16 times for 16 different realizations

of randomly generated A and x0 and reported the mean

and standard deviation of the normalized mean square error

(NMSE) kx t − x0k2
2/kx0k2

2 over those 16 experiments. The

different realizations of A and x0 were chosen, such that proper

convergence of the AMP algorithm was obtained.1

1Due to the small system size (N = 256), AMP does not converge properly
for all combinations of randomly generated A and x0. In the experiments,
we ensured that for all realizations of A and x0 chosen, the NMSE neither
floors nor starts monotonically increasing in the floating-point implementation
within the number of AMP iterations performed, in the case 29.

The evolution of the NMSE between the original and recon-

structed signals is shown in Fig. 5(a). The NMSE decreases as

1/(1 + t) for the floating-point implementation as dictated by

state evolution [7]. For the PCM chip and an implementation

where the multiplications in Ax t and A∗zt are done in 4 × 4-

bit fixed-point arithmetic, the NMSE floors at values of

approximately 0.15 and 0.12, respectively. However, the initial

convergence rate of AMP is not affected by the inexact

implementations. This finding will be further confirmed in the

next experiments of Sections IV-B and IV-C.

An important feature of AMP is that the effective noise

A∗zt +x t −x0 is approximately Gaussian [18]. This allows the

asymptotically exact analysis of AMP whereby the variance

of this noise can be computed exactly from state evolution for

any t when N → ∞ [7]. Moreover, the variance can be used

as an input to the function ηt in order to optimally denoise this

Gaussian noise [7]. For iterative thresholding (2), the effective

noise is generally not Gaussian, and state evolution does not

hold [6], [7]. Hence, it is important to verify whether the

Gaussianity of this noise is affected by the PCM implemen-

tation. We obtained the effective noise A∗zt + x t − x0 at the

last AMP iteration for the three implementations. We found

no clear departure from a Gaussian distribution for both

the PCM and fixed-point implementations [see Fig. 5(b)].

The tails which deviate from an exact Gaussian distribution

close to percentiles 0.01 and 99.99 observed in all three

implementations are likely a consequence of the small system

size (N = 256).

B. Compressed Sensing With Soft-Thresholding

In this use case, the vector x0 is k-sparse, i.e., it contains k

nonzero elements, and its nonzero elements are i.i.d. Gaussian

N(0, 1). In order to reconstruct x0 from the measurements

y, we use the AMP algorithm (3) with a sequence of

soft-threshold functions ηt (x) defined as [6]

ηt (x) =

⎧

⎪

⎨

⎪

⎩

x − τt , if x > τt

0, if − τt ≤ x ≤ τt

x + τt , if x < −τt

(4)

with thresholds τt = kztk2/
√

M . For the soft-threshold

function (4), the term (N/M)zt−1hη0
t−1(A∗zt−1 + x t−1)i

in the AMP algorithm can be calculated explicitly

and yields (N/M)zt−1hη0
t−1(A∗zt−1 + x t−1)i =

(1/M)zt−1kηt−1(A∗zt−1 + x t−1)k0, where kxk0 denotes

the number of nonzero elements of x .

We performed the experiments for a random signal x0 of

size N = 256 and k = 64 randomly distributed nonzero

elements. We tested cases for sampling rates of M/N = 1

(no compression) and M/N = 0.75, each with 16 different

realizations of randomly generated A and x0. The evolution

of the NMSE between the original and reconstructed signals

is shown in Fig. 6(a). As in the previous use case, the initial

convergence rate of AMP is unaffected by the approximate

multiplications done in the PCM chip, and the magnitude of

the NMSE floor obtained with the PCM chip is comparable

to the 4 × 4-bit fixed-point implementation. When using a

lower sampling rate M/N = 0.75, the convergence rate of
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Fig. 6. (a) Normalized mean square error versus the number of AMP
iterations for CS with soft thresholding; filled areas represent the standard
deviation over 16 different realizations of A and x0. (b) Example of
the original and reconstructed signals for the PCM implementation with
M/N = 0.75.

AMP decreases, and the NMSE floor increases for the inexact

implementations compared with M/N = 1.

In certain applications, it is sufficient to recover only the

sparsity pattern of x0, without being concerned with the exact

values of the nonzero elements. We show in Fig. 6(b) the

original and reconstructed signals for one of the experiments

performed with 0.75 sampling rate. We see that the general

shape and the sparsity pattern of the signal are well recovered

in the PCM implementation. Thus, in applications where

the reconstruction accuracy is not of paramount importance,

the accuracy obtained with our current prototype PCM chip

may already be sufficient.

C. Compressive Imaging With Image Denoising

Compressive imaging refers to performing CS on image

signals. The elements of x0 thus represent the pixel intensities

of an image. The goal is to acquire the image with M � N

measurements and to reconstruct it accurately. A general

methodology for compressive imaging with AMP was recently

introduced by Metzler et al. [18]. They developed an extension

of the AMP algorithm that uses a denoiser within its iterations.

The proposed algorithm is given by

x t+1 = Dτt (A∗zt + x t )

zt = y − Ax t + 1
M

zt−1divDτt−1(A∗zt−1 + x t−1)

τ 2
t = kztk2

2/M

(5)

where Dτ denotes a denoiser, which takes as input a signal

plus Gaussian noise and an estimate of the standard deviation

Fig. 7. (a) Evolution of the NMSE in image reconstruction for wavelet
thresholding and BM3D denoisers with M/N = 1/2. (b) Original and
reconstructed images with the PCM implementation.

of that noise τ , and divDτ (x) =
�N

n=1(∂ Dτ (x)n/∂xn) denotes

the divergence of the denoiser, where Dτ (x)n is the nth

element of Dτ (x) and xn is the nth element of x .

We tested this algorithm using the 128 × 128 pixel “house”

image shown in Fig. 7(b) as signal x0. We implemented the

two following denoisers.

1) Wavelet Thresholding: It transforms the signal into

a wavelet basis, thresholds the coefficients, and then

inverts the transform. If W denotes the wavelet

transform, this denoiser is defined as Dτt (x) =
W−1ηt (W x). We used the soft-threshold function (4)

as ηt and 2-D Haar wavelet transform. The divergence

of this denoiser can be calculated explicitly and yields

divDτt−1 (A∗zt−1+x t−1) = kηt−1(W (A∗zt−1+x t−1))k0,

which is the number of nonzero elements of the thresh-

olded sparsified estimate.

2) Block Matching 3-D Collaborative Filtering (BM3D):

It can be considered a combination of nonlocal means

(averaging weighted neighboring pixels) and wavelet

thresholding. The term divDτt−1(A∗zt−1 + x t−1) cannot

be calculated explicitly and thus is estimated using the

Monte Carlo procedure described in [18]. The diver-

gence is estimated with divDτ (x) ' (b∗/�)(Dτ (x +
�b) − Dτ (x)) for small � and vector b with elements

i.i.d. N(0, 1). BM3D performs much better on images

than wavelet thresholding because images are not exactly

sparse in the wavelet domain.

The length of x0 in this experiment is N = 16384. For

such a large value of N , it is not possible to code all elements

of an M × N Gaussian matrix in our PCM hardware, which

has only 1 million usable devices. To overcome this diffi-

culty, we use a block-based compression approach, whereby

a small measurement matrix H of size Ms × Ns is used, with
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TABLE I

PSNR (IN dB) OF THE 128 × 128 “HOUSE” IMAGE RECONSTRUCTIONS

Ns = 256. We perform measurements on consecutive

16 × 16 pixel blocks using the same measurement matrix H .

In order to obtain uncorrelated measurements and ensure the

convergence of AMP, we perform a (fixed) random permuta-

tion P of the pixel intensities before doing the measurements.

The matrix A can thus be written as A = blkdiag(H )P , where

blkdiag(H ) is an M × N matrix with N/Ns main diagonal

blocks matrices H , where it is assumed that N is a multiple

of Ns and Ms/Ns = M/N . The elements of H are i.i.d.

∼ N(0, 1/Ms ).

We programmed a 128×256 Gaussian measurement matrix

H in the PCM chip (sampling rate M/N = 1/2), divided the

image into 16 × 16 pixel blocks, and compressed each block

individually with the PCM chip. Subsequently, the image was

reconstructed with algorithm (5) using the PCM chip to com-

pute the matrix-vector operations Ax t and A∗zt . In Fig. 7(a),

we show the NMSE evolution for the PCM, fixed-point, and

floating-point implementations for wavelet thresholding and

BM3D denoisers. The peak SNR2 (PSNR) at the last AMP

iteration is reported in Table I. It can be seen that using a

better denoiser (e.g., BM3D) results in a lower final NMSE

in the PCM and fixed-point implementations. It indicates that

denoisers can be used effectively to improve the reconstruc-

tion accuracy by mitigating the errors from the PCM chip.

Moreover, the convergence rate of AMP is only affected

by the choice of the denoiser but not by the approximate

implementations.

V. DISCUSSION

There are several reasons why AMP is well suited for a

memristive implementation. First, matrix A does not change

over iterations, and thus, only read operations are performed

during AMP reconstruction. Therefore, matrix A needs to

be programmed only once and will be retained in the array

thanks to the nonvolatility of the PCM devices. The read

operations that are performed during reconstruction require

significantly less power than programming and thus can be

heavily parallelized. With the 90-nm PCM technology used in

this paper, we estimate the read energy to be between 1 and

100 fJ per device depending on the programmed resistance

state, compared with approximately 100 pJ for program-

ming (assuming five program-and-verify iterations). Moreover,

unlike programming endurance, the read endurance (at least in

PCM) is essentially unlimited; hence, this implementation is

favorable with respect to device reliability issues and will not

lead to device degradation due to excessive reprogramming at

every iteration.

The effect of device imperfections and failures on the final

reconstruction NMSE is discussed in [5]. We found that the

AMP recovery can tolerate conductance variations due to

programming errors (up to 20%) and up to 20% stuck-SET and

2PSNR = 10 log10(2552/(kx̂ − x0k2
2/N )), where x̂ is the estimate of x0.

stuck-RESET device failures. Device imperfections that have

a detrimental effect on the reconstruction accuracy include

the device conductance noise (most dominant effect) and

the I–V nonlinearity. Finally, the achievable reconstruction

NMSE is ultimately limited by the resolution of the digital-

to-analog/analog-to-digital converters used at the input/output

of the crossbar array.

To quantify the potential energy gains of the memristive

implementation over a digital design, based on the figures cur-

rently achieved with our prototype PCM chip, we made

an FPGA design that operates at the same speed and the

same precision at which we expect a PCM-based crossbar

to perform [5]. In (3), the matrix-vector multiplications are

the most expensive operations, so we compared the memris-

tive crossbar analog multiplier with a 4-bit FPGA multiplier

design. The 4-bit matrix elements are stored in the FPGA

block-RAM, and 32 dot-product units operate in parallel to

compute a 256 × 256 matrix-vector product in 1.2 µs. The

dynamic power consumption achieved with this design is

800 mW [5]. In a 256×256 PCM-based crossbar, the dynamic

power dissipation in the devices for one read operation would

be in the order of 13.1 mW (read current of 1 µA per

device at 0.2 V). Thus, a 256 × 256 PCM-based crossbar

in the 90-nm technology operating at 1 µs cycle time plus

two 8-bit ADCs operating at 125 MS/s to convert the current

(12-mW/GS/s power consumption) is expected to consume

16.2 mW, which is 50 times less than the FPGA design.

The power advantage arises because only read operations,

which consume little energy, are performed in the memristive

crossbar for multiplications.

While PCM devices were used for the experiments pre-

sented in this paper, other memory devices could be con-

sidered to perform the analog matrix-vector multiplications

in the proposed CS implementation. Potential candidates

include metal–oxide resistive random-access memory [3],

NOR Flash [19], and static random-access memory [20]. The

main advantages of PCM for this application are its multilevel

capability along with fast read/write latency and nonvolatility;

however, the PCM programming current is generally higher

than the other technologies, and resistance drift poses addi-

tional challenges that need to be addressed. Assessing dif-

ferent technologies for in-memory computing should account

for array-level variability, device noise, and accuracy/ease

of device programming in addition to latency and power

consumption.

In the ASIC implementation of AMP reported in [12],

the multiply–accumulate (MAC) units and the matrix gener-

ating unit take most of the chip area and are responsible for

most of the power consumption, which amounts to > 90% in

the proposed AMP-M design for arbitrary matrices. In such an

implementation, matrix A would have to be explicitly stored

[in off-chip dynamic random-access memory (DRAM)], or its

coefficient would have to be generated on the fly at every

AMP iteration. In a memristive implementation, matrix A is

stored in the memristive array(s) in a nonvolatile manner, thus

avoiding the need of a unit to generate its coefficients or using

an off-chip DRAM, while still being able to reprogram it

without redesigning the entire circuit. Moreover, by computing
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the matrix-vector multiplications inside the memristive array,

the use of MAC units, which are expensive in both power and

area when implemented in CMOS, is completely avoided.

Furthermore, a remarkable property of AMP is that its

convergence rate is independent of the precision of the

matrix-vector multiplications. This is a highly desirable prop-

erty for this type of implementation, as the number of AMP

iterations needed for reconstruction will not be larger than

in a floating-point implementation. We also found that the

NMSE floor due to computational errors can be lowered by

using appropriate denoisers within AMP. Obviously, using

a complex denoiser, such as BM3D, might not be efficient

from an implementation point of view, because the speedup

obtained by performing the matrix-vector multiplications in

the memristive array may be overcompensated by the time

required to apply the denoiser. However, an interesting avenue

would be to design a denoiser that is specifically aimed

at removing the computational errors from the memristive

array.

Regarding the limitations of the memristive implementation,

the computational errors from the memristive array are cur-

rently the biggest drawback. Very accurate reconstruction can-

not be currently achieved with our prototype PCM chip, which

performs with a precision similar to that of a matrix-vector

product in the 4 × 4-bit fixed-point implementation. However,

the precision of analog in-memory computation is expected

to improve as the technology matures, e.g., with concepts

such as projected memory to reduce the noise and drift [21].

The precision could be further increased by mapping a single

column of the matrix across multiple physical columns of an

array encoding different bits and applying the input vector

to the array one or several bits at a time, still performing

in-memory computing, at the expense of area and energy

penalty, and additional support required by the peripheral

circuitry.

Another limitation is that, for CS applications, it might be

hard to justify the memristive implementation versus a digital

implementation with a 1-bit measurement matrix, as the latter

shows no loss in SNR for the compressed measurement acqui-

sition and no multipliers are needed for a binary matrix [10].

However, this type of implementation is limited to one specific

application only, i.e., only a binary measurement matrix is

supported, whereas a memristive implementation can be used

for any arbitrary measurement matrix. Moreover, such effi-

cient implementations currently only acquire the compressed

measurements and do not support reconstruction, which has

to be done off-chip. The attractiveness of the memristive

implementation is that both compression and reconstruction

could be done on the same platform.

VI. CONCLUSION

We propose an implementation of CS with AMP recovery

based on the memristive crossbar arrays. The measurement

matrix elements are programmed as conductance values of

memristive devices in crossbar arrays, which are used to per-

form the matrix-vector multiplications in both the compression

and the recovery algorithm. In this way, the computational

complexity of AMP recovery is potentially reduced from

O(M N) to O(N). We tested this implementation experimen-

tally for three use cases of AMP using more than 256k PCM

devices in a prototype multilevel PCM chip to perform the

matrix-vector multiplications. We found that the convergence

rate of AMP is not affected by performing the matrix-vector

multiplications in the PCM array. The accuracy achieved with

our prototype PCM chip is comparable to that of a fixed-point

implementation where the matrix and vector elements are

quantized to 4 bits. In applications where the reconstruction

accuracy is not of paramount importance, the memristive

implementation could represent a viable solution to provide

more efficient AMP reconstruction than a full von Neumann

implementation.
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