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Abstract—In this paper, we introduce a new synthetic aperture
radar (SAR) imaging modality which can provide a high-resolu-
tion map of the spatial distribution of targets and terrain using
a significantly reduced number of needed transmitted and/or re-
ceived electromagnetic waveforms. This new imaging scheme, re-
quires no new hardware components and allows the aperture to
be compressed. It also presents many new applications and ad-
vantages which include strong resistance to countermesasures and
interception, imaging much wider swaths and reduced on-board
storage requirements.

Index Terms—Synthetic aperture radar (SAR), compressed
sensing (CS), compressive sensing.

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) is a radar imaging tech-

nology that is capable of producing high-resolution images

of the stationary surface targets and terrain. The main advan-

tages of SAR are its ability to operate at night and in adverse

weather conditions, hence overcoming limitations of both op-

tical and infrared systems. The basic idea of SAR is as fol-

lows: as the radar moves along its path, it transmits pulses at

microwave frequencies at an uniform pulse repetition interval

(PRI) which is defined as 1/PRF, where PRF is the pulse repeti-

tion frequency. The reflected energy at any instant can be mod-

eled as a convolution of the pulse waveform with the ground re-

flectivity function [1]–[3]. Each received pulse is preprocessed

and passed on to an image formation processor. The image for-

mation processor produces an image that is a two-dimensional

mapping of the illuminated scene [4].

The two-dimensional image formed is interpreted in the

dimensions of range and cross-range or azimuth. The range is

the direction of signal propagation and the cross-range is the

direction parallel to the flight path. Sometimes the range and

the cross-range samples are referred to as the fast-time and the

slow-time samples, respectively. The range resolution of a SAR

image is directly related to the bandwidth of the transmitted

signal and the cross-range is inversely proportional to the length
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of the antenna aperture. Therefore, high range resolution is

achieved by transmitting wide bandwidth waveforms, and high

cross-range resolution is achieved by coherently processing

returns transmitted from a variety of positions along a flight

path to emulate a large aperture.

There are four common modes of SAR: scan, stripmap, spot-

light, and inverse SAR (ISAR). In this paper, we will mainly

focus on the spotlight mode SAR and ISAR. In spotlight mode

SAR, the radar sensor steers its antenna beam to continuously

illuminate the terrain patch being imaged. It can provide higher

resolution than the stripmap and scan mode SAR because it

maps a scene at multiple viewing angles during a single pass

[4]. In ISAR, the radar is stationary and the target is moving.

The angular motion of the target with respect to the radar can be

used to form an image of the target. Differential Doppler shifts

of adjacent scatters on a target are observed and the target’s re-

flectivity function is obtained through the Doppler frequency

spectrum [5].

The standard methods for obtaining SAR images are basically

based on using interpolation and the Fourier transform. One

such method is known as the Polar Format Algorithm (PFA). In

spotlight-mode SAR a collection of phase histories defines a set

of samples in the Fourier space ( -space) of the scene on an an-

nular region. The PFA obtains the SAR image by appropriately

interpolating these data from an annular region to a Cartesian

grid and taking a two-dimensional inverse Fourier transform [4].

Another popular SAR image reconstruction method, based on

the tomographic formulation of SAR [3], is the filtered back-

projection (FBP) method [6]. Range migration and chirp scaling

algorithms are also used for the spotlight mode SAR image re-

construction [4].

Since a SAR image is a map of the spatial distribution of the

reflectivity function of stationary targets and terrain, many SAR

images can be sparse or compressible in some representation

such as those from wavelet or complex wavelet transform.1 The

recently introduced theory of compressed sensing (CS) states

that it is possible to recover such compressible images from a

small number of random measurements provided that the under-

sampling results in noise like artifacts in the transform domain

and an appropriate nonlinear recovery scheme is used [7], [8].

In this paper, we introduce a new SAR image formation algo-

rithm empirically derived based on the theory of CS that reduces

the number of transmitted and/or received waveforms. It will be

demonstrated that if the SAR image is assumed to be compress-

ible in some transform domain, then one can reconstruct a good

1SAR images are often characterized by the multiplicative noise known as
speckle. Speckle makes the compressibility of the SAR images difficult. How-
ever, the underlying reflectivity map without the speckle has compressibility as
good as some natural images.
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estimate of the reflectivity profile using this new image forma-

tion algorithm that relies on using a far fewer number of wave-

forms than the conventional systems do and requires no changes

to a radar system hardware to work. It is also the case, that the

radar community has considered similar concepts that we are

presenting such as that provided in [9]. Yet our method enhances

some of these suggestions and provides a framework along with

general reconstruction techniques. By using concepts provided

by CS theory we are able to propose an imaging system that

should pave the way for many new applications that are highly

desirable. In addition, not only do we demonstrate this concept

of SAR imaging using CS theory with real data but we point out

some of its valued benefits never before realized.

A. Paper Organization

In Section II, we describe previously radar related CS based

imaging methods. The tomographic formulation of the spotlight

mode SAR is given in Section III. In Section IV, we discuss

the theory of CS and propose the SAR compressive sampling

schemes in Section V. In Section VI, we show how the nonlinear

recovery promoting sparsity can be used to estimate the SAR

image from the undersampled phase histories. In Section VII,

discussion of some of the possible applications of our proposed

compressed synthetic aperture radar is given. In Section VIII,

we show some of the experimental results, and present the con-

cluding remarks in Section IX.

II. PREVIOUS COMPRESSIVE RADAR RELATED WORK

Inspired by the CS theory, more efficient schemes for sensing

signals at much lower sampling rate than required by the tradi-

tional Nyquist sampling theorem have been proposed. This sub-

Nyquist acquisition framework is often known as the analog-to-

information (A2I) conversion [10]–[12]. Motivated by the CS

theory, one such compressive radar imaging scheme based on

A2I was proposed in [13]. It was argued that such a radar system

can eliminate the need for the matched filter in the radar receiver

and reduce the required receiver analog-to-digital conversion

bandwidth [13]. A similar acquisition and imaging system for

ground penetrating radar (GPR) was proposed in [14] and [15].

Instead of sampling the radar returns at the Nyquist rate, linear

projections of the echo signals with random vectors were taken

as measurements. It was shown that, using only a small subset

of the measurements, sparser and sharper target images could

be obtained compared to the standard backprojection method

[14], [15]. In [16], a high-resolution radar was proposed based

on CS by transmitting specially designed waveforms. A similar

concept was also proposed in [17], where the theory of CS with

random convolution was used by transmitting random noise like

signals. Also, in [18], to reduce the amount of stored SAR data,

a method based on CS theory was proposed. Recently, a method

of imaging a scene of sparse targets from the perspective of scat-

tering theory and CS has been proposed in [19].

Our approach in this paper is in contrast to some of the above

mentioned compressive radar related algorithms that have only

Fig. 1. Ground plane geometry in spotlight mode SAR.

considered using CS as part of the A2I conversion or transmit-

ting specially designed waveforms. Note our method also re-

quires no changes to a system’s hardware to work unlike many

other schemes that propose using CS theory for imaging.

III. SPOTLIGHT MODE SAR PHASE HISTORIES

In this section, we give a brief description of the tomographic

formulation of the spotlight-mode SAR [3], [20]–[22]. The

ground plane geometry in spotlight-mode SAR is shown in

Fig. 1. The radar, which transverses the flight path, continu-

ously points in the direction of a ground patch. At locations

corresponding to each increments of , high-bandwidth pulses

are transmitted. The returns from the ground patch are received

and processed to image the complex reflectivity profile .

In spotlight mode SAR, a linear FM (LFM) chirp signal is

the most commonly used pulse, described mathematically as the

real part of

otherwise
(1)

where is the carrier frequency, the chirp rate, and is

the pulse length. The return from the scene patch of radius

at the distance, where denotes the transmission angle, is

then multiplied by the conjugate of a signal representing the

return from the chosen reference point and low-pass filtered.

Neglecting the residual video phase term and assuming

the demodulated signal is given by [20]

(2)

where is the speed of light,

, and . Equation (2)

represents the projection slice at angle from the Fourier trans-

form of the reflectivity field . Using the projection slice
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theorem, the signal can also be identified as a band-pass

filtered Fourier transform of the projections of the reflectivity

field

(3)

where is the projection of the reflectivity field at

angle described as

(4)

Taking advantage of a formulation of (2) that re-expresses

as , where is the continuous obser-

vation kernel, we can setup a matrix-based formulation of the

imaging acquisition problem [21], [22]. Let be the fast-

time samples at the th observation angle at times of the

continuous observation . Let be the vector of these

samples and be a digital realization of the kernel , that

is, the incorporation of all the linear image formation processes

into a matrix expression and be a lexicographically ordered

vector of unknown sampled reflectivity field of length . Then,

one can write

...
...

(5)

or , where

is the total number of

slow-time samples used to form the image, and is of size

. For the sake of simplicity, we will assume that the

number of phase histories and the number of samples per

phase history are the same. The collection of phase histories

defines a set of samples in the Fourier space of the scene on an

annular region, as shown in Fig. 2. Since this system relates

the reflectivity profiles to the measurements directly, polar

to rectangular sampling is not required [20]. Note, given the

sampled phase histories typically PFA is used to estimate

the SAR image [4].

Assuming the presence of additive noise , the SAR model

can be expressed as . Assuming a similar SAR

model, a regularized -norm-based feature enhanced SAR

image formation method has been used in [20], [21]. It is

also possible to use the -norm regularized reconstruction

presented in [22] to obtain the sparse estimate of the reflectivity

field.

IV. COMPRESSED SENSING

The Shannon–Nyquist sampling theorem requires a signal to

be sampled at a frequency of twice its bandwidth to be able to

reconstruct it exactly. However, the recently introduced theory

of compressed sensing enables the reconstruction of sparse or

compressible signals from a small set of nonadaptive, linear

measurements. If properly chosen, the number of measurements

can be much smaller than the number of Nyquist rate samples

Fig. 2. Graphical representation of the phase histories on an annular region.
Here, � � � � and �� denote spatial frequency in the range direction, spatial
frequency in the cross-range direction, and the aperture angle, respectively.

[7], [8]. In this section, we give a brief introduction to the con-

cept of compressed sensing.

Suppose is -sparse in a basis or more generally a

frame , so that , with where

returns the number of nonzero elements of . In the case

when is compressible in , it can be well approximated by the

best -term representation. Consider an measurement

matrix with and assume that linear measurements

are made such that . Having observed

and knowing the matrix , the general problem is to recover

. Since , this set of equations is underdetermined

and has infinitely many solutions. To overcome this, the sparsest

solution is usually sought, which can be done by solving the

following optimization problem:

subject to (6)

Unfortunately, is NP-hard and is computationally difficult

to solve. The approach taken in compressed sensing is to instead

solve a relaxed version of

subject to (7)

where . The optimization problem is

often known as Basis Pursuit (BP) [23] which can be solved

by linear programming methods. It has been shown that under

certain conditions on and the sparsity of , the solution to

both and will coincide [24]. In the case when there

are noisy observations of the following form:

(8)

with Basis Pursuit De-Noising (BPDN) can be used

to approximate the original image

subject to (9)
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One sufficient condition for both and to have the

same solution and for to stably approximate the sparsest

near-solution of (8), is known as the Restricted Isometry Prop-

erty (RIP) [8], [25], [26]. A matrix is said to satisfy the RIP

of order with constants if

(10)

for any such that . The RIP essentially states that

all subsets of columns taken from are in fact nearly orthog-

onal. A related condition, known as incoherence, requires that

the rows of cannot sparsely represent the columns of and

vice versa [26]. Designing the matrix such that the resulting

sensing matrix has the RIP is a fundamental problem

in CS. In fact, one can show that the RIP can be achieved with

high probability by simply selecting as a random matrix [26],

[27].

In the case of SAR, the measurements may arise from a

random selection of Fourier samples. In this case, the exact

condition on the RIP depends on the incoherence between the

Fourier basis and the sparsifying basis. In [28], Candès and

Tao showed that when is a partial Fourier matrix where

rows of the Fourier matrix are selected at random

with renormalized columns, is the identity matrix and if

for some constant , then with

high probability will recover exactly.2

Even though the RIP can be established for some matrices,

in practice there is no computationally feasible way to check

this property, as it is combinatorial in nature. However, there

do exist related measures on the matrix that can be used to

prove the equivalence between and [30], [31]. One

such measure on the matrix is known as the mutual coherence.

It is defined as follows:

(11)

where denotes the th column of the matrix . Equivalently,

the mutual coherence can be viewed as the largest off-diagonal

entry of the Gram matrix , where the columns of

are assumed to have been normalized [31]. We say is inco-

herent if is small. It has been shown that the mutual coherence

satisfies the following bound with the restricted isometry con-

stants [32]

(12)

Finally, in certain cases, greedy algorithms such as orthog-

onal matching pursuit [33] can also be used to recover sparse

images. In particular, a greedy algorithm known as, CoSaMP,

is well supported by theoretical analysis and provides the same

guarantees as some of the optimization based approaches [34].

2Recently, this result was improved in [29] and established � �

� ������������� � for some constant � � �. It was also conjec-
tured that � � � ������������ holds for some constant � � �. This
result can also be generalized to any sparsity basis � (see [27] for details).

V. COMPRESSIVE SAMPLING FOR SAR

The design of a CS undersampling scheme for SAR entails

the selection of phase histories such that (11) is small. Some of

the results about CS are based on the fact that the -space sam-

ples are obtained randomly. However, sampling a truly random

subset of the phase histories in SAR is usually impractical for

existing hardware. In this section, we consider two compressed

sensing -space undersampling schemes for SAR. Since, the

PRF essentially determines the slow-time sampling rate, our CS

undersampling schemes are based on modifying the PRF of the

radar. Implementation of such schemes is very simple and re-

quires a minor change to the PRF scheduling of the radar.

Note that in practice the sparsity of the image will typically

mean the percentage of transform coefficients needed to form

an acceptable reconstruction. The acceptable reconstruction will

depend on specific applications in mind such as whether it will

be used for target identification or situational awareness. Thus,

before such methods that we will suggest are fielded, systematic

studies will be needed that will depend on their intended use.

A. Random Slow-Time Undersampling

As discussed earlier, as the sensor advances along its path,

pulses are transmitted and received by the radar. The pulses

are transmitted at every PRI PRF . Undersampling

methods based on sampling at regular intervals produce strong

aliases. Random changes to the PRI can break up the period-

icity of the aliasing artifacts and can convert strong aliases to

random noise like artifacts [35], [36]. For this reason, instead of

transmitting pulses with a regular PRI, we propose to transmit

fewer pulses than traditional systems at random intervals. This

amounts to undersampling the 2-D phase histories along the

slow-time axis randomly.

B. Jittered Slow-Time Undersampling

Jittered undersampling is based on a regular undersampling

which is perturbed slightly by random noise. The effect of jitter

in one dimension was analyzed by Balakrishnan in [37]. He ana-

lyzed time jitter in which the th sample is jittered by an amount

so that it occurs at time , where is the sampling

period. He reported that if the are uncorrelated then the fol-

lowing happens: high frequencies are attenuated, the energy lost

to the attenuation appears as uniform noise, and the basic struc-

ture of the spectrum does not change [35]–[37]. Jittered sam-

pling in 2-D was generalized and applied in computer graphics

in [35], [36]. Also, Hennenfent and Herrmann in [38] have suc-

cessfully applied 2-D jittered undersampling in the context of

CS for seismic data processing. Inspired by the properties of the

jittered sampling, we propose to apply jittered undersampling in

slow-time as well.

C. Point Spread Function (PSF)

To analyze the severity of artifacts introduced by these un-

dersampling schemes, we adapt the notion of the point spread

function (PSF) with regards to CS theory from [39]. Let denote

the collection of phase histories and
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represent the -space measurements obtained by incorpo-

rating one of the slow-time undersampling schemes described

above. Here, represents the restriction operator that selects

the phase histories from the SAR model. Furthermore, we as-

sume that has a sparse representation (or is compressible) in

some basis so that . In this case, the sensing matrix

is given by .

In [39], Lustig et al. proposed that the transform point spread

function (TPSF) be used to measure the incoherence of a sam-

pling scheme. It is defined as follows:

TPSF (13)

where is the th vector of the natural basis having 1 at

the th location and zeros elsewhere. Ideally, for , the

TPSF should be much smaller than 1 and should be noise

like. This implies that the aliasing artifacts introduced by under-

sampling produces relatively small uncertainty in resolving th

transform coefficient from the th coefficient. In the case, when

is the identity matrix, we call the resulting TPSF simply the

PSF. The maximum of the sidelobe-to-peak ratio (SPR) or the

maximum off diagonal entry in TPSF, TPSF

is used as a measure of severity of the aliasing artifacts [39].

Note that the SPR is also equal to the mutual coherence defined

in (11).

D. PSF Analysis

In this section, we analyze the aliasing artifacts introduced

from the slow-time undersampling schemes by the PSF. In the

case, a sparsifying transform is used, TPSF can be studied to an-

alyze the aliasing artifacts. We use the PSF of pure 2-D random

sampling where samples are chosen randomly from a Cartesian

grid, as a standard for comparison [39]. Fig. 3 shows the PSFs

for random 2-D undersampling, random slow-time undersam-

pling and jittered slow-time undersampling. The height of the

red line measures the effect of the aliasing artifacts. The higher

the line more severe the aliasing artifacts. It is clear from Fig. 3,

that by undersampling the phase histories along the slow-time

axis, we are mainly exploiting 1-D sparsity in 2-D. Therefore,

the artifacts introduced by random or jittered slow-time under-

sampling are not as good as the one obtains with truly 2-D

random -space undersampling. Nevertheless, these aliasing ar-

tifacts can be removed using a nonlinear reconstruction tech-

nique promoting sparsity as suggested in [38], [39].

VI. SAR IMAGE RECONSTRUCTION

Given the partial -space measurements of the reflectivity

map to be imaged, in this section, we show how the nonlinear

recovery can be used to reconstruct the SAR image.

From the previous discussion, in the presence of additive

measurement noise, we can write the partial -space measure-

ments as

(14)

Fig. 3. PSFs of various SAR undersampling schemes. (a1), (b1), (c1)
Random 2-D points, Random slow-time undersampling, and Jittered slow-time
undersampling, respectively. (a2), (b2), (c2) Image plots of the 2-D PSFs
corresponding to (a1), (b1), and (c1), respectively, for all� and a fixed �. (a3),
(b3), (c3) 1-D slice through the 2-D PSFs in (a2), (b2), and (c2), respectively.

where is an arbitrary noise vector with and .

Note the model in (14) may not be completely accurate as

speckle is multiplicative, but this is a commonly used model

for SAR (see [20] and [22]). The reflectivity map can be esti-

mated via by solving the following minimization problem

(15)

It was shown in [31] that if then the

solution to (15) obeys

(16)

It is very difficult to prove any general claim that satis-

fies a RIP or a mutual incoherence property for any particular

sampling scheme. This remains an open problem. Thus, the best

method for establishing mutual incoherence is to study the TPSF

for a particular proposed sampling scheme given a particular

scanning scenario. This presents no real obstacle in applications

especially since many pre-calculations can be and are done be-

fore scanning begins. Note that, in the context of CS, the TPSF

has successfully been used to characterize the incoherence of

different sampling schemes arising in magnetic resonance [39]

and in photo-acoustic tomography [40].

A. Speckle

Many coherent imaging modalities such as SAR, sonar,

holography, and ultrasound often suffer form a multiplicative

noise known as speckle. Speckle appears when objects illu-

minated by coherent radiation have surfaces that are rough

compared with the imaging wavelength. It is caused by the

constructive and destructive interference of the coherent returns
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scattered by small reflectors within each resolution cell [41],

[42]. Speckle noise can make the detection and interpretation

difficult for automated as well as human observers. In some

cases, it maybe important to remove speckle to improve appli-

cations such as segmentation. To deal with speckle, instead of

minimizing (15), we propose to minimize a modified problem

(17)

for some user specified and TV is the Total Variation [45]

defined as

By adding the TV constraint along with the constraint, we re-

quire the magnitude of the underlying complex SAR reflectivity

field to be sparse in both the transform and finite difference

domains. The assumption that the underlying reflectivity field

is piecewise smooth has been used before for image restoration

under speckle noise [20], [43]–[45]. Note that no stability re-

sults have been proven for the minimization by the TV method.

However, empirical experiments in [39] and [46] have shown

that TV minimization provides the reconstruction as good as

BP. Our experiments have shown that in practice (17) provides

much better reconstruction in the presence of high speckle.

VII. APPLICATIONS

The idea of transmitting waveforms at a nonuniform PRI for

SAR has been suggested before [9]. This method, however, suf-

fers from the smearing of the image in the cross-range dimen-

sion due to the randomness of the PRI. By solving the basis

pursuit denoising problem (15), or (17), we are able to not only

reconstruct the image as good as some of the traditional SAR

reconstruction methods do from the full data but even at a lower

sampling rate. Thus, our method of compressing the synthetic

aperture offers many advantages.

A. Counter-Countermeasure

In many military applications of SAR, the user encounters

scenarios where the adversary uses a transmitting radar to send

out a signal within the band of the SAR system transmitter to

confuse the SAR receiver. This process is called the electronic

countermeasure (ECM) [47], [48]. The ECM causes the SAR

system to receive and process erroneous information, which ob-

scures targets or features of interest.

The ECM schemes used to jam a SAR system often relies

on estimating the radar signal parameters such as PRI by ex-

ploiting the multiple transmissions of the signal at each syn-

thetic aperture position. An elementary electronic counter-coun-

termeasure (ECCM) is to jitter the PRF [47], [49]. Each out-

going pulse is either delayed or not depending on a sequence

generated by a random number generator. A simpler imple-

mentation of changing the interpulse period is to drop pulses

randomly. Hence, our compressive aperture method can offer

strong countermeasures resistance [9], [47], [49].

B. Reduction in Data

In many SAR systems, radar data is directly stored on board

and then transmitted to the ground in some reduced form. Our

system has the potential to significantly reduce the amount of

data to be stored and transmitted [2], [18].

Based on the CS theory, Bhattacharya et al. in [18], proposed

a method of compressing the raw SAR data by using a simple

encoder with a 2-D FFT and a random sampler. The decoding

was done by using one of the CS recovery algorithms. Similarly,

one can also encode the raw SAR data by using our compressed

aperture method.

C. Obtaining Wider Swaths

In [50], Stoyle proposed a satellite imaging method that

obtains an image of a wide swath of a planet’s surface. He

argued that by transmitting pulses at random PRIs, it is possible

to image a much wider swath than possible by the conventional

methods (see [50] for more details). Our method can also

achieve the same task with an additional advantage of reduced

data transmission.

VIII. EXPERIMENTAL RESULTS

In the following sections, we present results of our proposed

CS SAR methods on synthetic and real SAR data.

A. Phase Transition Diagrams

We evaluate the performance of our compressed synthetic

aperture radar methods by generating phase transition diagrams

[51]. A phase transition diagram provides a way of checking

equivalence, indicating how sparsity and indetermi-

nancy affect the success of minimization [51], [52]. Let

be a normalized measure of undersampling factor

and be a normalized measure of sparsity. A

plot of the pairing of the variables and describes a 2-D

phase space . In the following experiments, the

values of and ranged through 30 equispaced points in the

interval and . At each point on the grid,

corresponding to a CS SAR model for certain values of

and (in this case ), we recorded the mean number

of coordinates at which original and reconstruction differed by

more than averaged over 30 independent realizations. In

our approach, we employed a highly efficient algorithm that

is suitable for large-scale applications known as the spectral

projected gradient (SPGL1) algorithm [53], [54] for solving

BP and BPDN problems such as (15).

In Fig. 4(a) and (b), we show the phase transition diagrams

corresponding to the slow-time random and jittered undersam-

pling, respectively, for the case when there is no complex white

Gaussian measurement noise and in (14). In

Fig. 4(c) and (d), we show the phase transition diagrams for the

slow-time random and jittered undersampling, respectively, for

the case when the complex white Gaussian measurement noise

has been added with signal-to-noise-ratio of 20 dB in (14).

These plots indicate that the original target scene (image) can
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Fig. 4. Phase transition diagrams corresponding to Random slow-time under-
sampling (a) without noise, (c) with noise, and Jittered slow-time undersampling
(b) without noise and (d) with noise.

be recovered well as long as it is sparse enough and enough

measurements are taken.

B. Reconstruction From the Compressive Measurements

In this section, we demonstrate the performance and appli-

cability of our compressive imaging algorithm on synthetic and

real SAR data and compare it with the PFA. Note that the ap-

proximation underlying the PFA is generally poorer compared

with the other algorithms. However, it is one of the most com-

monly used reconstruction methods for SAR which is why it is

chosen for comparison.

In the first example, we used eleven point targets with unit

magnitude to generate the phase histories. The control param-

eters used in our simulation are summarized in Table I. These

determine all other variable parameters (see [4] for details). The

range resolution is given by m and the

cross-range resolution is given by

m. In Fig. 5(a), we show the generated phase histories from

the eleven point targets. Fig. 5(b) shows the reconstruction of

the point targets from the full simulated data using the PFA

[4]. In Fig. 5(c), we show the phase histories obtained after

applying 75% random slow-time undersampling (25% of data

used). Fig. 5(d), shows the traditional reconstruction from the

compressive measurements using the PFA. Fig. 5(e) shows the

reconstructed image using our proposed method. It is clear from

Fig. 5 that our method produces image from the compressive

measurements as good as the PFA does from the full simulated

data.

In the second experiment, we used ISAR data collected on a

SAAB 9000 car using System Planning Corporation’s Mark V

Fig. 5. Point targets example. (a) Simulated full data. (b) Traditional PFA-
based reconstruction from the full simulated data. (c) Random slow-time under-
sampled phase histories (25% of data used). (d) Reconstructed by the PFA from
the compressive measurements. (e) Reconstructed image using our method.

TABLE I
PARAMETERS USED IN THE FIRST EXAMPLE

radar.3 We reconstructed the image after 60% jittered slow-time

undersampling was applied to the data (40% of data used).

As can be seen from Fig. 6, the reconstructed image from the

compressed measurements, shown in Fig. 6(e), is identical to

the one reconstructed from the full measurements, shown in

Fig. 6(a). Fig. 6(d) shows how the traditional reconstruction

fails to recover the ISAR image from the compressive measure-

ments shown in Fig. 6(c).

3specifications of the radar can be found at www.sysplan.com/Radar.
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Fig. 6. SAAB 9000 car ISAR example. (a) Full measured data. (b) Traditional reconstruction from the full data. (c) Jittered slow-time undersampled phase histories
(40% of data used). (d) Traditional reconstruction from the compressive measurements in (c). (e) Reconstructed image using our proposed method.

Fig. 7. MSTAR example. (50% of data used) (a) Traditional reconstruction
with the full data. (b) Reconstructed by solving (15). (c) Reconstructed by
solving (17). (d) Reconstructed by using PFA. (e) The residual [i.e., (a)–(b)].
(f) The residual [i.e., (a)–(c)].

In the third experiment, we used a SAR image from the

MSTAR public target database [55]. We simulated SAR phase

histories using the acquisition method described in [21]. We

used Daubechies 4 wavelet as a sparsifying transform for this

experiment. The reconstruction from only 50% of the jittered

slow-time undersampled data using the PFA, (15) and (17) is

shown in Fig. 7(d), (b), and (c), respectively. In Fig. 7(e) and

(f), we show how much speckle has been removed by solving

(15) and (17), respectively. This experiment shows that it is

possible to reconstruct and despeckle simultaneously from

the compressive measurements. The value of was chosen

to be 3.8 after experimenting with different values for and

checking its performance.

In the final experiment, we used the ISAR dataset of a B-747

[5]. Fig. 8(a)–(c) shows the reconstructed image from the tradi-

tional method with full data, traditional method with partial data
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Fig. 8. B-747 example. (a) Traditional reconstruction with the full data. (b) Traditional reconstruction with the partial data (30% of data used). (c) Reconstructed
image using our proposed method.

and our method from the partial data, respectively. The recon-

struction was done using 70% random slow-time undersampled

phase histories (30% of data used). As can be seen from Fig. 8

that our compressive imaging method provides a good recon-

struction compared to the traditional method based on the full

measurements.

Note that in our experiments the additive noise was either

nonexistent or almost negligible. In the case when noise was

nonexistent, was chosen to be 0. For the other cases, was set

to , which was a value we determined by trial and error.

It has been observed by many researchers [25], [39], [46],

[56], that in practice, Fourier samples in the order of three to

five times the number of sparse coefficients suffice for a good

reconstruction. Our experiments also support this claim. In our

experiments, we have noticed that taking more measurements

generally improves the quality of reconstruction especially

when the presence of speckle is high.

IX. DISCUSSION AND CONCLUSION

We have utilized CS theory and demonstrated that it is pos-

sible to compress the synthetic aperture for radar imaging. Most

importantly, not only can our suggested undersampling be used

in novel collection schemes to produce high-quality images but

many new applications such as signals intelligence, imaging

much wider swaths, and reduced storage constraints are pos-

sible because of it.

Further research is currently being done by the authors that

includes many follow on ideas presented here. In particular,

a more general model for SAR is being investigated where

speckle is explicitly modeled. We are currently investigating

this possibility of CS theory to deal directly with speckle noise.

However, the minimization with the TV constraint seems to

handle this but a more accurate formulation is still needed. We

are also extending the application of our compressed SAR to

ideas related to reducing the antenna size and the application in

moving target indication using staggered PRIs.
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