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Abstract

In this paper we investigate a time delay neural network
(TDNN) for a keyword spotting task that requires low CPU,
memory and latency. The TDNN is trained with transfer learn-
ing and multi-task learning. Temporal subsampling enabled
by the time delay architecture reduces computational complex-
ity. We propose to apply singular value decomposition (SVD)
to further reduce TDNN complexity. This allows us to first
train a larger full-rank TDNN model which is not limited by-
CPU/memory constraints. The larger TDNN usually achieves
better performance. Afterwards, its size can be compressed by
SVD to meet the budget requirements. Hidden Markov models
(HMM) are used in conjunction with the networks to perform
keyword detection and performance is measured in terms of
area under the curve (AUC) for detection error tradeoff (DET)
curves. Our experimental results on a large in-house far-field
corpus show that the full-rank TDNN achieves a 19.7% DET
AUC reduction compared to a similar-size deep neural network
(DNN) baseline. If we train a larger size full-rank TDNN first
and then reduce it via SVD to the comparable size of the DNN,
we obtain a 37.6% reduction in DET AUC compared to the
DNN baseline.

Index Terms: keyword spotting, time delay neural network,
singular value decomposition, small-footprint.

1. Introduction

Keyword spotting refers to the task of detecting spoken words of
interest in audio signals. It has been an active research area in
speech recognition for decades, and widely used in numerous
applications. As one approach, general large vocabulary con-
tinuous speech recognition (LVCSR) systems are applied to de-
code the audio signal, with keyword searching conducted in the
resulting lattices or confusion networks [1, 2, 3]. These methods
require relatively high computational resources for the LVCSR
decoding, and also introduce latency.

Recently, with increasing popularity of voice assistant sys-
tems, small-footprint keyword spotting systems have been at-
tracting more attention [4, 5, 6]. For example, Alexa on Ama-
zon Tap requires a keyword spotting system running contin-
uously on the device under tight CPU, memory, latency and
power usage constraints. The Tap device only starts to stream
audio to the cloud for further processing after the local system
gets triggered by the spoken keyword. Such embedded key-
word spotting systems are designed to have high recall to make
devices easy to use, as well as low false accepts to mitigate pri-
vacy concerns.

1 These authors contributed equally to this work. *Work conducted
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Small-footprint keyword spotting systems often use hidden
Markov models (HMM) to represent both the keyword and the
background audio [7, 8, 9]. The background model is also
called the filler model in some literature, and can be used to
model non-keyword speech, or nonspeech noise etc. Typical
background models consist of loops over simple speech/non-
speech phones, or for more complicated cases, a normal phone
set or confusable word set. During decoding, Viterbi search is
applied to find the best path in the decoding graph. The key-
word spotting system is triggered when the likelihood ratio of
keyword model vs. background model exceeds a pre-defined
threshold. Traditionally, Gaussian mixture models (GMM)
were commonly used to model the observed acoustic features.
With deep neural networks (DNN) becoming mainstream for
acoustic modeling, which outperform GMM consistently, this
approach can be extended to include discriminative informa-
tion by incorporating a hybrid DNN-HMM decoding frame-
work [10].

As alternative approaches for small-footprint keyword spot-
ting, in recent years, it has been proposed to build systems based
on a single DNN or convolutional neural network (CNN), with
no HMM involved [4, 11, 12, 13]. During decoding, framewise
posteriors for keyword are smoothed within a sliding window.
The system fires when smoothed keyword posteriors exceed a
pre-defined threshold. The trade off between balancing false
rejects and false accepts can be performed by tuning the thresh-
old. Context information is incorporated by stacking frames as
input. Some keyword spotting systems are built on a recurrent
neural network (RNN) which can model sequential data. In the
RNN category, long short-term memory (LSTM) is a popular
model with its ability to deal with the vanishing gradient prob-
lem [14, 15, 16, 17].

Time delay neural networks (TDNN) are designed so that
the initial layers focus on modeling narrow context informa-
tion, while the higher layers learn from wider temporal context
information [18, 19]. TDNN training computation can be re-
duced by sub-sampling its temporal connections [20]. Recently,
TDNN has been widely applied to a variety of tasks [21, 22, 23].
In this work, we use a TDNN-HMM based approach for key-
word spotting. To train the TDNN acoustic model, we employ
transfer learning by initializing the TDNN model with an exist-
ing model of the same architecture trained using LVCSR phone
targets, as well as multi-task training which uses a secondary
layer with LVCSR phone targets to regularize the primary train-
ing task for keyword phone targets [10]. Similar to [20], sub-
sampling is used to reduce TDNN complexity. On top of these
techniques, we propose applying singular value decomposition
(SVD) to further reduce the ranks of the affine transform matri-
ces [24, 25, 13], which imposes further regularization on TDNN
training. With SVD compression, we have the flexibility to train



a larger TDNN model first, then compress it to meet the model
complexity requirement afterwards. We show that this approach
generates a better TDNN model than directly training a TDNN
with required model complexity, for a keyword spotting task.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces our keyword spotting system. Section 3 de-
scribes TDNN related details, including how SVD is applied
for compression. Experimental setup and results are presented
in Section 4. Section 5 is for the conclusion.

2. Keyword Spotting System

Our HMM based keyword spotting system is shown in Figure 1,
which follows the conventional keyword vs. background/filler
HMM structure. Here the keyword ‘Alexa’ is shown as an ex-
ample. The keyword model consists a cascade of HMM states
for ‘Alexa’ phones. Our system uses three-state HMMs to
model each keyword phone. For simplicity purpose, single-
stage HMMs are illustrated in Figure 1. The background/filler
model loops over single-state HMMs for speech (SP) and non-
speech (NSP).

Keyword HMM: ALEXA phone state sequence

Figure 1: HMM-based keyword spotting system

DNNs or TDNNs are used as acoustic models for our
HMM-based keyword spotter. The log mel filter-bank energies
(LFBEs) are computed as input acoustic features. We extract
20-dimensional LFBEs over 25ms frames with a 10ms frame
shift. Given the input acoustic features of each frame, the out-
put layer of DNN/TDNN models its posterior distribution over
the HMM states for both keyword and background/filler mod-
els. Viterbi search is run separately in the competing keyword
and background/filler decoding graph, and the keyword hypoth-
esized segment is extracted when the final state of the keyword
model is reached. The likelihood ratio of the keyword vs back-
ground/filler model over the hypothesized keyword segment is
computed, and the system triggers when this likelihood ratio
exceeds a pre-defined threshold.

3. TDNN Architecture and Training

In a conventional DNN, temporal context information is cap-
tured by stacking [ left frames and r right frames to form the
whole input. Let d denote the feature dimension for each frame.
Then the DNN has an input layer of dimension d x (I +1 +17).
By contrast, a TDNN processes the information from the con-
text window in a hierarchical way. Figure 2 shows the architec-
ture of our TDNN based acoustic model for keyword spotting.
The input layer of TDNN focuses on modeling a narrow con-
text, while the deeper layers of TDNN work on modeling wider
temporal context information. For each hidden layer of TDNN,
its parameters are tied across different time stamps, with its
lower layers trained to learn translation invariant feature forms

[18, 19]. For our TDNN architecture, its input layer processes a
narrow context window of 5 consecutive frames (I = 2, r = 2).
This is labeled as [—2, 2]. Our training recipe starts with the ap-
proach described in [10] with transfer learning and multi-task
learning, but we replace the DNN with a temporal connection
sub-sampled TDNN. The SVD compression proposed in this
paper follows the ideas in [13]. Details will be presented in the
remaining part of this section.
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Figure 2: TDNN architecture with SVD compression. ‘BN’ la-
bels linear bottleneck layers.

3.1. Sub-sampling

A sub-sampling based approach has been proposed to reduce
the complexity of TDNN [20]. The idea is that a fully connected
TDNN computes hidden layer activations at all time stamps,
which causes redundancies due to the input context overlap-
ping for the correlated neighboring activations. As a result, for
each hidden layer, activations are computed only for a sampled
subset of time stamps, which are fed to the next hidden layer.
For example, as shown in Figure 2, at each time stamp, layer
1 splices sampled input at current frame minus 2 and current
frame plus 2. This is labeled by time offset {—2, 2}.

3.2. Transfer Learning

Transfer learning is a widely used approach in machine learn-
ing, which transfers the knowledge learned from a related task
to improve the main training task [26, 27, 28, 29]. As an appli-
cation example of transfer learning on neural networks, the hid-
den layers of a trained network can be initialized from another
network of the same size trained for a related task [4]. For our
case, an LVCSR TDNN with the same architecture is trained to
initialize the keyword spotting TDNN. This gives a better ini-
tial point and helps the keyword spotting TDNN converge to a
better local optimum.

3.3. Multi-task Learning

Multi-task learning refers to the cases where two or more auxil-
iary tasks are jointly learned with the main task during training.
It has been shown to be an effective method to regularize the
learning of the main task, and hence improves the performance
of the main task [30]. In the context of neural network train-
ing, one application of multi-task learning adds separate output
layers for auxiliary tasks [31, 32, 33, 34, 10]. The lower hid-



den layers are shared among the main task and the auxiliary
tasks, while the auxiliary tasks could have their own branches
in higher hidden layers. As a result, additional parameters are
added in training time for layers trained with auxiliary tasks.
However, after training these branches of auxiliary tasks can be
removed, and only the required branch of the main task is kept.
Hence the decoding complexity is not increased.

Figure 3 shows the architecture for our multi-task training
scheme, with an auxiliary training task with the LVCSR targets.
As a result, we prepare two sets of targets for TDNN train-
ing data. One set is used for keyword spotting, which repre-
sents HMM states shown in Figure 1. The other set consists the
LVCSR targets. Our TDNN architecture has two shared hidden
layers for both keyword and LVCSR targets, while a separate
hidden layer is added for each task before the output layer. It
has been shown in our previous experiments that having the last
hidden layer separated for each task could improve the perfor-
mance of multi-task training [10].
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Figure 3: Multi-task training
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Cross-entropy loss is used for TDNN training in our exper-
iments. For multi-task learning, the total loss is calculated as

L =Mt + (1 —N)LF (1)

Here £} is the cross-entropy loss for the main task key-
word spotting output layer, and L7 is the cross-entropy loss for
the auxiliary task LVCSR output layer. The weighting factor A
can be tuned to balance the two tasks during training. For our
experiments, we choose A = 0.9 from development set.

3.4. SVD Approximation

In this paper we propose to further regularize and compress the
TDNN using SVD. Linear bottlenecks based low-rank weight
matrices have been extensively studied for speech recognition
[24, 25, 13]. The total number of parameters can be reduced by
inserting bottleneck layers into networks. To elaborate, let M
and N denote the number of hidden nodes in two neighboring
hidden layers. When a bottleneck layer of R nodes is added be-
tween, with R properly chosen, the number of multiplications
could be reduced from M x N to (M + N) x R. In general,
LVCSR neural networks have the majority of their parameters
in the input and output layer, and these layers are where SVD
is mostly applied to. Instead, we apply SVD to approximate
all hidden layers of our TDNN network, as well as the input
layer. Figure 2 shows bottleneck layers (labeled by ‘BN’) are
added to our TDNN model. It has been shown that DNN with
SVD compression effectively improves keyword spotting per-
formance [13].

To train TDNN with SVD approximation, we start with
training a larger size full-rank TDNN at first. After that, we
add linear bottleneck layers initialized by SVD of the full-rank
affine matrices to TDNN, one layer at time, starting from the
input layer. The dimensions of the linear bottleneck layers are
selected to meet the parameter budget, and they are within a rea-
sonable range to maintain the performance of full-rank TDNN
measured by frame accuracy on the cross-validation set. One
epoch of pre-training is applied at each time when a bottleneck
layer is added. Finally the SVD-compressed TDNN is trained
with additional epochs for the purpose of fine-turning.

3.5. Summary of TDNN Training Algorithm

The details of our TDNN training, including transfer learning,
multi-task learning and SVD compression are summarized as
follows:

i. Train a full-rank LVCSR TDNN with the same architec-
ture as the full-rank keyword TDNN. The hidden layers
of the LVCSR TDNN are used for initialization.

ii. Add a separate hidden layer and an output layer for the
main keyword spotting task. Other hidden layers are ini-
tialized by the LVCSR TDNN model.

iii. Train a TDNN jointly with the keyword spotting task and
LVCSR task using multi-task learning setup.

iv. Add linear bottleneck layers to the full-rank TDNN and
pre-train. These linear bottleneck layers are initialized
by SVD.

v. Run additional epochs of multi-task fine-tuning for the
SVD compressed TDNN.

vi. Remove the last separate hidden layer and output layer
for the LVCSR task. The remaining TDNN is used for
keyword spotting.

4. Experimental Results

The word ‘Alexa’ is chosen as the keyword for our experiments.
We use an in-house far-field corpus which contains far-field data
collected under different conditions. This dataset contains an
order of magnitude more instances of keyword and background
speech utterances than the largest previous studies [4, 12] for
model training, tuning and testing. Considering the large size
of our corpus, the development set partition is sufficient to tune
parameters, and the test set partition is large enough to show
strong statistical difference.

4.1. Model Building

The GPU-based distributed trainer described in [35] is used for
our experiments. Sigmoid function is used as the activation
function. We use exponential decaying learning rate scheduling
for TDNN training, including all stages of LVCSR TDNN train-
ing, full-rank TDNN multi-task training, and SVD-compressed
TDNN multi-task fine-tuning. The initial learning rate is set to
be 0.008 for both LVCSR TDNN training and full-rank TDNN
multi-task training, and 0.000125 for SVD-compressed TDNN
multi-task fine-tuning. The decaying factor is 2 for the first few
epochs, and it is reduced to 1.2 for annealing in the remaining
epochs.

For comparison purposes, we also train a baseline DNN
model with SVD compression, as well as a full-rank TDNN
without SVD compression. This SVD compressed DNN model



is trained following the same recipe as in Section 3.5. Our pre-
vious experiments have shown that SVD improves DNN per-
formance for keyword spotting [13]. Hence this DNN model is
a strong baseline. For the full-rank TDNN without SVD com-
pression, we allow additional multi-task training epochs, so that
the total number of training epochs are the same for the purpose
of fair comparison. As a result, the DNN and TDNN with SVD
have 20 epochs in the full-rank multi-task learning stage and
20 additional epochs after SVD compression, while the TDNN
without SVD is trained with 40 epochs in the multi-task training
directly. To enable a fair comparison, all three models have the
same total temporal context and roughly the same number of pa-
rameters (< 100k). All three models are initialized by LVCSR
models. They all have two shared hidden layers and one sepa-
rate hidden layer for multi-task learning with the keyword and
LVCSR tasks. The architecture details of all three models are
summarized in Table 1.

Table 1: Summary of model architecture details. Both DNN and
TDNN-B are compressed with SVD, while TDNN-A has no SVD.
All three models have similar number of parameters (< 100k)

Model DNN TDNN-A TDNN-B
Network Context | [—20,10] [—20,10] [-20, 10]
Tnput Context | [—20,10 —2,2] [—2,2]

Dim 620 100 100

BN Dim 55 — 55
Layerl | Context {0} {-2,2} {—2,2}
Dim 200 135 x 2 193 x 2

BN Dim 55 — 55
Layer2 | Context {0} {—4,4} {—4,4}
Dim 200 135 x 2 193 x 2

BN Dim 55 - 55
Layer3 | Context {0} {-12,2} {-12,2}
Dim 200 135 x 2 193 x 2

TDNN-A represents the TDNN model with no SVD, while
DNN and TDNN-B are compressed by SVD. For example,
TDNN-B has input layer dimension 100 by splicing 5 frames (2
in past and 2 in future) of 20-dimensional LFBE features. The
100 dimensional input vector is connected to a bottleneck (BN)
layer with dimension 55, which is later mapped to dimension
193 at layer 1. Since two time stamp contexts (t — 2 & ¢t + 2
) are spliced at layer 1, the dimension of layer 1 is labeled as
193 x 2, which is further connected to the bottleneck of next
layer with dimension 55.

4.2. Evaluation

Our keyword spotting system is evaluated using two metrics:
miss rate, which is one minus recall, and false accept rate, which
is a normalized number of false accepts. Detection error trade-
off (DET) curves can be obtained by tuning the transition pa-
rameters and exit penalties for the HMM structure shown in
Figure 1. The DET curves for all three models described in
Section 4.1 are plotted in Figure 4.

The x-axis labels false accept rate, and the y-axis labels
miss-rate. Absolute numbers of false accept rates have been
obscured in this paper due to confidentiality. Instead, we plot
false accept rates up to a multiplicative constant. The false ac-
cept range considered in our experiments is aligned with a low
value range which can be considered for production deployment
purpose. To compare overall performance, we compute area un-
der the curve (AUC) numbers for HMM DET curves. Smaller
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Figure 4: DNN/TDNN-HMM DET curves for ‘Alexa’ detection.

AUC numbers indicate better keyword spotting performance.
The black circle curve represents the DNN, while the green tri-
angle and red plus curves represent the TDNN without SVD and
the TDNN with SVD, respectively. Note that all three models
have a similar number of parameters. The DNN and TDNN-B
are first trained using larger, full-rank affine matrices. This is
followed by SVD compression which brings their total param-
eter count down to similar as the parameter count of TDNN-A.
‘We observe that the TDNN improves over the DNN for keyword
spotting performance, while the TDNN with SVD compression
shows the best performance among all three models. Table 2
condenses the contents of Figure 4 into AUC relative change
over the baseline. We see that the TDNN without SVD (TDNN-
A) improves on the DNN baseline with 19.7% AUC reduction,
while the TDNN with SVD (TDNN-B) further improves on the
DNN baseline with 37.6% AUC reduction.

Table 2: Relative change of HMM DET AUC for TDNN mod-
els without SVD compression (TDNN-A) and with SVD com-
pression (TDNN-B), compared to the baseline SVD compressed
DNN. All three models have comparable number of parameters
(< 100k). Lower AUC indicates better performance

Model DNN
AUC Relative Change | 0%

TDNN-A
—19.7%

TDNN-B
—37.6%

5. Conclusions

In this paper we present our work of building a TDNN-HMM
based keyword spotting system. We propose to apply SVD
compression on TDNN to regularize training and reduce com-
plexity, together with LVCSR initialization, multi-task learning
and temporal connection sub-sampling. Our experimental re-
sults show that for similar size models, the TDNN with no SVD
compression already outperforms the SVD compressed DNN
baseline by 19.7% HMM DET AUC reduction. Finally, the
TDNN with SVD compression further improves keyword spot-
ting performance, which shows 37.6% AUC reduction over the
SVD compressed DNN baseline.
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