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Abstract

In this paper we present a novel approach for bottom-

up multi-person 3D human pose estimation from monocu-

lar RGB images. We propose to use high resolution volu-

metric heatmaps to model joint locations, devising a sim-

ple and effective compression method to drastically reduce

the size of this representation. At the core of the pro-

posed method lies our Volumetric Heatmap Autoencoder, a

fully-convolutional network tasked with the compression of

ground-truth heatmaps into a dense intermediate represen-

tation. A second model, the Code Predictor, is then trained

to predict these codes, which can be decompressed at test

time to re-obtain the original representation. Our experi-

mental evaluation shows that our method performs favor-

ably when compared to state of the art on both multi-person

and single-person 3D human pose estimation datasets and,

thanks to our novel compression strategy, can process full-

HD images at the constant runtime of 8 fps regardless of

the number of subjects in the scene. Code and models are

publicly available.

1. Introduction

Human Pose Estimation (HPE) has seen significant

progress in recent years, mainly thanks to deep Convolu-

tional Neural Networks (CNNs). Best performing methods

on 2D HPE are all leveraging heatmaps to predict body joint

locations [3, 49, 43]. Heatmaps have also been extended for

3D HPE, showing promising results in single person con-

texts [38, 29, 41].

Despite their good performance, these methods do not

easily generalize to multi-person 3D HPE, mainly because

of their high demands for memory and computation. This

drawback also limits the resolution of those maps, that have

to be kept small, leading to quantization errors. Using larger

volumetric heatmaps can address those issues, but at the

cost of extra storage, computation and training complexity.

* Work done while interning at Panasonic R&D Company of America

Figure 1: Examples of 3D poses estimated by our LoCO

approach. Close-ups show that 3D poses are correctly com-

puted even in very complex and articulated scenarios

In this paper, we propose a simple solution to the afore-

mentioned problems that allows us to directly predict high-

resolution volumetric heatmaps while keeping storage and

computation small. This new solution enables our method

to tackle multi-person 3D HPE using heatmaps in a single-

shot bottom-up fashion. Moreover, thanks to our high-

resolution output, we are able to produce fine-grained ab-

solute 3D predictions even in single person contexts. This

allows our method to achieve state of the art performance

on the most popular single person benchmark [11].

The core of our proposal relies on the creation of an alter-

native ground-truth representation that preserves the most

informative content of the original ground-truth but reduces

its memory footprint. Indeed, this new compressed repre-

sentation is used as the target ground-truth during our net-

work training. We named this solution LoCO, Learning on

Compressed Output.

By leveraging on the analogy between compression and

dimensionality reduction on sparse signals [47, 39, 1], we

empirically follow the intuition that 3D body poses can be

represented in an alternative space where data redundancy
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is exploited towards a compact representation. This is done

by minimizing the loss of information while keeping the

spatial nature of the representation, a task for which con-

volutional architectures are particularly suitable. Concur-

rently w.r.t. our proposal, compression-based approaches

have been effectively used for both dataset distillation and

input compression [48, 46] but, to the best of our knowl-

edge, this is the first time they are applied to ground truth

remapping. For this purpose, deep self-supervised networks

such as autoencoders represent a natural choice for search-

ing, in a data-driven way, for an intermediate representation.

Specifically, our HPE pipeline consists of two modules:

at first, the pretrained Volumetric Heatmap Autoencoder is

used to obtain a smaller/denser representation of the volu-

metric heatmaps. These “codes” are then used to supervise

the Code Predictor, which aims at estimating multiple 3D

joint locations from a monocular RGB input.

To summarize, the novel aspects of our proposal are:

• We propose a simple and effective method that maps

high-resolution volumetric heatmaps to a compact and

more tractable representation. This saves memory and

computational resources while keeping most of the in-

formative content.

• This new data representation enables the adoption of

volumetric heatmaps to tackle multi-person 3D HPE in

a bottom-up fashion, an otherwise intractable problem.

Experiments on both real [12] and simulated environ-

ments [8] (see Fig. 1) show promising results even in

100 meters wide scenes with more than 50 people. Our

method only requires a single forward pass and can be

applied with constant running time regardless of the

number of subjects in the scene.

• We further demonstrate the generalization capabilities

of LoCO by applying it to a single person context. Our

fine-grained predictions establish a new state of the art

on Human3.6m [11] among bottom-up methods.

2. Related Work

Single-Person 3D HPE Single person 3D HPE from a

monocular camera has become extremely popular in the last

few years. Literature can be classified into three different

categories: (i) approaches that first estimate 2D joints and

then project them to 3D space, (ii) works that jointly esti-

mate 2D and 3D poses, (iii) methods that learn the 3D pose

directly from the RGB image.

The majority of works on single person 3D HPE first

compute 2D poses and leverages them to estimate 3D poses,

either using off-the-shelf 2D HPE methods [15, 10, 19, 20,

2, 24, 4] or by having a dedicated module in the 3D HPE

pipeline [26, 28, 16, 51].

Joint learning of 2D and 3D pose is also shown to be

beneficial [22, 6, 50, 54, 44, 27, 14, 30], often in conjunction

with large-scale datasets that only provide 2D pose ground-

truth and exploiting anatomical or structure priors.

Finally, recent works estimate 3D pose information di-

rectly [38, 29, 41, 18, 25, 34, 35]. Among these, Pavlakos

et al. [29] were the first to propose a fine discretization of

the 3D space around the target by learning a coarse-to-fine

prediction scheme in an end to end fashion.

Multi-Person 3D HPE To the best of our knowledge,

very few works tackle multi-person 3D HPE from monoc-

ular images. We can categorize them into two classes: top-

down and bottom-up approaches.

Top-down methods first identify bounding boxes likely

to contain a person using third party detectors and then per-

form single-person HPE for each person detected. Among

them, Rogez et al. [37] classifies bounding boxes into a

set of K-poses. These poses are scored by a classifier and

refined using a regressor. The method implicitly reasons

using bounding boxes and produces multiple proposals per

subject that need to be accumulated and fused. Zanfir et

al. [52] combine a single person model that incorporates

feed-forward initialization and semantic feedback, with ad-

ditional constraints such as ground plane estimation, mutual

volume exclusion, and joint inference. Dabral et al. [6], in-

stead, propose a two-staged approach that first estimates the

2D keypoints in every Region of Interest and then lifts the

estimated keypoints to 3D. Finally, Moon et al. [23] pre-

dict absolute 3D human root localization, and root-relative

3D single-person for each person independently. However,

these methods heavily rely on the accuracy of the people de-

tector and do not scale well when facing scenes with dozens

of people.

In contrast to top-down approaches, bottom-up methods

produce multi-person joint locations in a single shot, from

which the 3D pose can be inferred even under strong occlu-

sions. Mehta et al. [21], predict 2D and 3D poses for all

subjects in a single forward pass regardless of the number

of people in the scene. They exploit occlusion-robust pose-

maps that store 3D coordinates at each joint 2D pixel loca-

tion. However, their 3D pose read-out strategy strongly de-

pends on the 2D pose output which makes it limited by the

accuracy of the 2D module. Their method also struggles to

resolve scenes with multiple overlapping people, due to the

missing 3D reasoning in their joint-to-person association

process. Zanfir et al. [53], on the other hand, utilize a multi-

task deep neural network where the person grouping prob-

lem is formulated as an integer program based on learned

body part scores parameterized by both 2D and 3D infor-

mation. Similarly to the latter, our method directly learns a
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Figure 2: Schematization of the proposed LoCO pipeline. At training time, the Encoder e produces the compressed volumet-

ric heatmaps e(H) which are used as ground truth from the Code Predictor f . At test time, the intermediate representation

f(I) computed by the Code Predictor is fed to the Decoder d for the final output. In our case, H ′ = H/8 and W ′ = W/8

mapping from image features to 3D joint locations, with no

need of explicit bounding box detections or 2D proxy poses,

while simultaneously being robust to heavy occlusions and

multiple overlapping people.

Multi-Person 3D Pose Representation In a top-down

framework, the simplest 3D pose representation can be ex-

pressed by a vector of joints. By casting 3D HPE as a co-

ordinate regression task, Rogez et al. [37] and Zanfir et al.

[52] indeed utilize x, y, z coordinates of the human joints

w.r.t. a known root location. On the other hand, bottom-

up approaches require a representation whose coding does

not depend on the number of people (e.g. an image map).

Among the most recent methods, Mehta et al. [21] and Zan-

fir et al. [53] both utilize a pose representation composed by

joint-specific feature channels storing the 3D coordinate x,

y, or z at the joint/limb 2D pixel location. This representa-

tion, however, suffers when multiple overlapping people are

present in the scene. In contrast to all these approaches, we

adopted the volumetric heatmap representation proposed by

Pavlakos et al. [29], overcoming all the limitations that arise

when facing a multi-person context.

3. Proposed Method

The following subsections summarize the key elements of

LoCO. Section 3.1 gives a preliminary definition of the cho-

sen volumetric heatmap representation and elaborates on its

merits. Section 3.2 illustrates our proposed data mapping

which addresses the high dimensional nature of the volu-

metric heatmaps by producing a compact and more tractable

representation. Next, in Section 3.3, we describe how our

strategy can be easily exploited to effectively tackle the

problem of multi-person 3D HPE in a single-shot bottom-up

fashion. Finally, Section 3.4 illustrates our simple refining

approach that prevents poses from being implausible.

3.1. Volumetric Heatmaps

By considering a voxelization of the RGB-D volumetric

space [7, 29], we refer as a volumetric heatmap, h, the 3D

confidence map with size D × H × W , where D repre-

sents the depth dimension (appropriately quantized), while

H and W represent the height and width of the image plane

respectively. Given the body joint j with pseudo-3D co-

ordinates uj = (u1,j , u2,j , u3,j), where u1,j ∈ {1, ..., D}
is the quantized distance of joint j from the camera, and

u2,j ∈ {1, ..., H} and u3,j ∈ {1, ...,W} are respectively

the row and column indexes of its pixel on the image plane,

the value of hj at a generic location u is obtained by center-

ing a fixed variance Gaussian in uj :

hj(u) = e−
‖u−uj‖

2

σ2 (1)

In a multi-person context, in the same image we can si-

multaneously have several joints of the same kind (e.g. “left

ankle”), one for each of the K different people in the im-

age. In this case we aggregate those K volumetric heatmaps

hj
(k), into a single heatmap hj with a max operation:

hj(u) = maxk{hj
(k)(u)} (2)

Finally, considering N different types of joint and K
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block layer in ch. out ch. stride

e-c2d

Conv2D + ReLU D D/d1 s1
Conv2D + ReLU D/d1 D/d2 s2
Conv2D + ReLU D/d2 D/d3 s2

e-c3d
Conv3D + ReLU N 4 1

Conv3D + ReLU 4 1 1

Table 1: Structure of the encoder part of the Volumet-

ric Heatmap Autoencoder (VHA). The decoder is not

shown as it is perfectly mirrored to the encoder. VHAv1:

(d1, d2, d3) = (1, 2, 2) and (s1, s2, s3) = (1, 2, 1); for

VHAv2: (d1, d2, d3) = (2, 4, 4) and (s1, s2, s3) = (2, 2, 1);
VHAv3: (d1, d2, d3) = (2, 4, 8) and (s1, s2, s3) = (2, 2, 2)

people, we have a set of N volumetric heatmaps (each asso-

ciated with a joint type), H = {hj , j = 1, ..., N}, resulting

from the aggregation of the individual heatmaps of the K
people in the scene. Note that, given pseudo-3D coordi-

nates u = (u1, u2, u3) and the camera intrinsic parameters,

i.e. focal length f = (fx, fy) and principal point (cx, cy),
the corresponding 3D coordinates x = (x, y, z) in the cam-

era reference system can be retrieved by directly applying

the equations of the pinhole camera model.

The benefit of choosing a volumetric heatmap represen-

tation over a direct 3D coordinate regression is that it casts

the highly non-linear problem to a more tractable config-

uration of prediction in a discretized space. In fact, joint

predictions do not estimate a unique location but rather a

per voxel confidence, which makes it easier for a network

to learn the target function [29]. In the context of 2D HPE,

the benefits of predicting confidences for each pixel instead

of image coordinates are well known [31, 45]. Moreover,

in a multi-person environment, directly regressing the joint

coordinates is unfeasible when the number of people is

not known a priori, making volumetric heatmaps a natural

choice for tackling bottom-up multi-person 3D HPE.

The major disadvantage of this representation is that it

is memory and computational demanding, requiring some

compromise during implementation that limits its full po-

tential. Some of those compromises consist in utilizing low

resolution heatmaps that introduce quantization errors or

complex training strategies that involve coarse-to-fine pre-

dictions through iterative refining of network output [29].

3.2. Volumetric Heatmap Autoencoder

To overcome the aforementioned limitations without intro-

ducing quantization errors or training complexity, we pro-

pose to map volumetric heatmaps to a more tractable repre-

sentation. Inspired by [17], we propose a multiple branches

Volumetric Heatmap Autoencoder (VHA) that takes a set of

N volumetric heatmaps H as input. At first, the volumetric

heatmaps {h1, ..., hN} are processed independently with a

2D convolutional block (e-c2d) in which the kernel does not

move along the D dimension. In order to capture the mu-

tual influence between joints locations, the obtained maps

are then stacked along a fourth dimension and processed by

a subsequent set of 3D convolutions (e-c3d). The resulting

encoded representation, e(H) is finally decoded by its mir-

rored architecture d (e (H)) = H̃. The general structure of

the model is outlined in Fig. 2 top.

The goal of the VHA is therefore to learn a compressed

representation of the input volumetric heatmaps that pre-

serve their information content, which results in the preser-

vation of the position of the Gaussian peaks of the various

joints in the original maps. For the purpose, we maximize

the F1-score, F1
(

QH, QH̃

)

, between the set of ground truth

peaks (QH) and the set of the decoded maps (Q
H̃

). We de-

fine the set of peaks as follows:

QH =
⋃

n=1,...,N

{u : hn (u) > u′ ∀u′ ∈ Nū} (3)

where Nū is the 6-connected neighborhood of ū, i.e. the

set of coordinates Nū = {u : ‖u− ū‖ = 1} at unit dis-

tance from ū. Since the procedure for extracting the coordi-

nate sets from the volumetric heatmaps is not differentiable,

the former objective cannot be directly optimized as a loss

component for training the VHA. To address this issue, we

propose to use mean squared error (MSE) loss between H

and H̃ as training loss.

Note that our proposed mapping purposely reduces the

volumetric heatmap’s fourth dimension, making its shape

coherent with the output of 2D convolutions and thus ex-

ploitable by regular CNN backbones. Additional architec-

ture details can be found in the supplementary material.

3.3. Code Predictor and Body Joints Association

The input of the Code Predictor is represented by a RGB

image, I, while its output, f (I), aims to predict the codes

obtained with the VHA, Fig. 2. The architecture, Fig. 2

bottom, is inspired by [49] thus composed by a pre-trained

feature extractor (convolutional part of Inception v3 [42]),

and a fully convolutional block (f -c2d) composed of four

convolutions. We trained the Code Predictor by minimiz-

ing the MSE loss between f (I) and e (H), where H is the

volumetric heatmap associated with the image I.

At inference time, the pseudo-3D coordinates of the

body joints are obtained from the decoded volumetric

heatmap H̃ = d(f (I)) through a local maxima search.

Eventually, if camera parameters are available, the pinhole

camera equations recover the true three-dimensional coor-

dinates of the detected joints. Additional details in the sup-

plementary material.
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F1 on JTA F1 on Panoptic F1 on Human3.6m

model bottleneck size @0vx @1vx @2vx @0vx @1vx @2vx @0vx @1vx @2vx

VHA(1) D
2 × H′

2 × W ′

2 97.1 98.4 98.5 - - - - - -

VHA(2) D
4 × H′

4 × W ′

4 92.5 97.0 97.1 97.1 98.6 98.9 100.0 100.0 100.0

VHA(3) D
8 × H′

8 × W ′

8 56.5 90.3 92.9 91.9 98.7 99.6 99.7 100.0 100.0

Table 2: VHA bottleneck/code size and performances on the JTA, Panoptic and Human3.6m (protocol P2) test set in terms

of F1 score at different thresholds @0, @1, and @2 voxel(s); @t indicates that a predicted joint is considered “true positive”

if the distance from the corresponding ground truth joint is less than t

As in almost all recent 2D HPE bottom-up approaches

[3, 9, 5] (i.e. methods which does not require a people de-

tection step) detected joints have to be linked together to

obtain people skeletal representations. In a single person

context, joint association is trivial. On the other hand, in

a multi-person environment, linking joints is significantly

more challenging. For the purpose, we rely on a sim-

ple distance-based heuristic where, starting from detected

heads (i.e. the joint with the highest confidence), we con-

nect the remaining (N − 1) joints by selecting the clos-

est ones in terms of 3D Euclidean distance. Associations

are further refined by rejecting those that violates anatom-

ical constraints (e.g. length of a limb greater than a cer-

tain threshold). Despite its simplicity, this approach is par-

ticularity effective when 3D coordinates of body joints are

available, especially in surveillance scenarios where prox-

emics dynamics often regulate the spatial relationships be-

tween different individuals. Additional details are reported

in the supplementary material.

3.4. Pose Refiner

The predicted 3D poses are subsequently refined by a MLP

network trained to account for miss-detections and location

errors. The objective of the Pose Refiner is indeed to make

sure that the detected poses are complete (i.e. all the N
joints are always present). To better understand how the

Pose Refiner works, we define the concept of 3D poses and

root-relative poses. Given a person k, its 3D pose is the set

p(k) =
{

x
(k)
n , n = 1, ..., N

}

of the 3D coordinates of its

N joints. The corresponding root-relative pose is then given

by:

prr

(k) =

{

x
(k)
n − x

(k)
1

ln
, n = 2, ..., N

}

(4)

where x1 are the 3D coordinates of the root joint (“head-

top” in our experiments) and ln is a normalization constant

computed on the training set as the maximum length of the

vector that points from the root joint to any other joint of

the same person.

The Pose Refiner is hence trained with MSE loss tak-

ing as input the root-relative version of the 3D poses with

randomly removed joints, and an additional Gaussian noise

applied to the coordinates. Given the 3D position of the root

joint and the refined poses, it is straightforward to re-obtain

the corresponding 3D poses by using Eq. (4).

4. Experiments

A series of experiments have been conducted on two multi-

person datasets, namely JTA [8] and CMU Panoptic [12, 40,

13], as well as one well established single-person bench-

mark: Human3.6m [11].

JTA is a large synthetic dataset for multi-person HPE and

tracking in urban scenarios. It is composed of 512 Full HD

videos, 30s long, each containing an average of 20 people

per frame. Due to its recent publication date, this dataset

does not have a public leaderboard and it is not mentioned

in other comparable HPE works. Despite this limitation, we

believe it is crucial to test LoCO on JTA because it is much

more complex and challenging than older benchmarks.

CMU Panoptic is another large dataset containing both

single-person and multi-person sequences for a total of 65

sequences (5.5 hours of video). It is less challenging than

JTA as the number of people per frame is much more lim-

ited, but it is currently the largest real-world multi-person

dataset with 3D annotations.

To further demonstrate the generalization capabilities of

LoCO, we also provide a direct comparison with other HPE

approaches on the single person task. Without any modifi-

cation to the multi-person pipeline, we achieve state of the

art results on the popular Human3.6m dataset.

For each dataset we also show the upper bound obtained

by using the GT volumetric heatmaps in order to highlight

the strengths of this data representation. In all the following

tables, we will indicate with LoCO(n) our complete HPE

pipeline, composed of the Code Predictor, the decoder of

VHA(n) and the subsequent post-processing. LoCO(n)+ is

the same system with the addition of the Pose Refiner.

For all the experiments in the paper we utilized Adam

optimizer with learning rate 10−4. We employed batch size

1 when training the VHA and batch size 8 when training the
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PR RE F1 PR RE F1 PR RE F1

@0.4 m @0.8 m @1.2 m

Location Maps [21, 22] 5.80 5.33 5.42 24.06 21.65 22.29 41.43 36.96 38.26

Location Maps [21, 22] + ref. 5.82 5.89 5.77 23.28 23.51 23.08 38.85 39.17 38.49

[33] + [19] 75.88 28.36 39.14 92.85 34.17 47.38 96.33 35.33 49.03

Uncompr. Volumetric Heatmaps 25.37 24.40 24.47 45.40 43.11 43.51 55.55 52.44 53.08

LoCO(1) 48.10 42.73 44.76 65.63 58.58 61.24 72.44 64.84 67.70

LoCO(1)
+. 49.37 43.45 45.73 66.87 59.02 62.02 73.54 65.07 68.29

LoCO(2) 54.76 46.94 50.13 70.67 60.48 64.62 77.00 65.92 70.40

LoCO(2)
+. 55.37 47.84 50.82 70.63 60.94 64.76 76.81 66.31 70.44

LoCO(3) 48.18 41.97 44.49 66.96 58.22 61.77 74.43 64.71 68.65

LoCO(3)
+. 49.15 42.84 45.36 67.16 58.45 61.92 74.39 64.76 68.57

GT Location Maps [21, 22] 76.07 64.83 69.59 76.07 64.83 69.59 76.07 64.83 69.59

GT Volumetric Heatmaps 99.96 99.96 99.96 99.99 99.99 99.99 99.99 99.99 99.99

Table 3: Comparison of our LoCO approach with other strong baselines and competitors on the JTA test set. In PR (precision),

RE (recall) and F1, @t indicates that a predicted joint is considered “true positive” if the distance from the corresponding

ground truth joint is less than t. Last two rows contain the upper bounds obtained using the ground truth location maps and

volumetric heatmaps respectively

Code Predictor. We employed Inception v3 [42] as back-

bone for the Code Predictor, which is followed by 3 convo-

lutions with ReLU activation having kernel size 4 and with

1024, 512 and 256 channels respectively. A last 1× 1 con-

volution is performed to match the compressed volumetric

heatmap’s number of channels. Additional training details

in the supplementary material.

4.1. Compression Levels

In order to understand how different code sizes in the VHA

affects the performance of our Code Predictor network,

multiple VHA versions have been tested. Specifically, we

designed three VHA versions with decreasing bottleneck

sizes. Each version has been trained on JTA first and then

finetuned on CMU Panoptic and Human3.6m. VHA’s ar-

chitecture details are depicted in Tab. 1 for every version.

As shown in Tab. 2, as the bottleneck size decreases,

there is a corresponding decrease in the F1-score. Intu-

itively, the more we compress, the less information is being

preserved. VHA(1) is only considered when using JTA, as

VHA(2) and VHA(3) already obtain an almost lossless com-

pression on Panoptic and Human3.6m, due to their smaller

number of people in the scene.

All the experiments has been conducted considering a 14

joints volumetric heatmap representation of shape 14×D×
H ′×W ′, where H ′ and W ′ are height and width downsam-

pled by a factor of 8, while D has been fixed to 316 bins.

Note that the real-world depth grid covered by our repre-

sentation is a uniform discretization in [0, 100]m for JTA,

[0, 7]m for Panoptic and [1.8, 8.1]m for Human3.6m. Thus,

every bin has a depth size of approximately 0.32m for JTA

and 0.02m for Panoptic and Human3.6m.

4.2. HPE Experiments on JTA Dataset

On the JTA dataset we compared LoCO against the Loca-

tion Maps based approaches of [21, 22]. Currently the Lo-

cation Maps representation is the most relevant alternative

to volumetric heatmaps to approach the 3D HPE task in a

bottom-up fashion and therefore represents our main com-

petitor.

A Location Maps is a per-joint feature channel that stores

the 3D coordinate x, y, or z at the joint 2D pixel location.

For each joint there are three location-maps and the 2D

heatmap. The 2D heatmap encodes the pixel location of

the joint as a confidence map in the image plane. The 3D

position of a joint can then be obtained from its Location

Map at the 2D pixel location of the joint. For a fair compar-

ison, we utilized the same network (Inception v3 + f -c2d) to

directly predict the Location Maps. The very low F1 score

demonstrate that Location Maps are not suitable for images

with multiple overlapping people, not being able to effec-

tively handle the challenging situations peculiar of crowded

surveillance scenarios (see Tab. 3).

Additionally, we report a comparison with a strong top-

down baseline that uses YOLOv3 [33] for the people detec-

tion part and [19] as the single-person pose estimator. [19],

like almost all single person methods, provides root-relative

joint coordinates and not the absolute 3D position. We thus

performed the 3D alignment according to [37] by minimiz-

ing the distance between 2D pose and re projected 3D pose.

We outperform this top-down pipeline by a large margin in

terms of F1-score, while being significantly faster; LoCO is

able to process Full HD images with more than 50 people at

8 FPS on a Tesla V100 GPU, while the top-down baseline

runs at an average of 0.5 FPS (16 times slower). The re-
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Figure 3: Qualitative results of LoCO(2)+ on the JTA and Panoptic datasets. We show both the 3D poses (JTA: 2nd row,

Panoptic: 4th row) and the corresponding 2D versions re-projected on the image plane (JTA: 1st row, Panoptic: 3rd row)

call gap is mostly due to the fact that the detection phase in

top-down approaches usually miss overlapped or partially

occluded people on the crowded JTA scenes.

Finally, we compared against an end-to-end model

trained to directly predict the volumetric heatmaps with-

out compression (“Uncompr. Volumetric Heatmaps” in

Tab. 3). Specifically, we stacked the Code Predictor and

the VHA(2)’s decoder and trained it in an end-to-end fash-

ion. Our technique outperforms this version at every com-

pression rate. In fact, the sparseness of the target makes it

difficult to effectively exploit the redundancy of body poses

in the ground truth annotation leading to a more complex

training phase.

We point out that LoCO(2)+ obtains by far the best result

in terms of F1-score compared to all evaluated approaches

and baselines, thus demonstrating the effectiveness of our

method. Moreover, the best result has been obtained us-

ing the VHA(2)’s mapping, which seemingly exhibits the

best compromise between information preserved and den-

sity of representation. It is also very interesting to note that

the upper bound for Volumetric Heatmaps is much higher

than that of Location Maps (last two rows of Tab. 3), high-

lighting the superiority of volumetric heatmaps in crowded

scenarios. It is finally worth noticing that LoCO(1)+ and

LoCO(3)+ obtain very close results, indicating that an ex-

tremely lossy compression can lead to a poor solution as

much as utilizing a too sparse and oversized representation.

Following the protocol in [8], we trained all our models

(and those with Location Maps) on the 256 sequences of

the JTA training set and tested our complete pipeline only

on every 10th frame of the 128 test sequences. Qualitative

results are presented in Fig. 3.

4.3. HPE Experiments on Panoptic Dataset

Here we propose a comparison between LoCO and three

strong multi-person approaches [53, 52, 32] on CMU

Panoptic following the test protocol defined in [52]. The

results, shown in the Tab. 4, are divided by action type and

are expressed in terms of Mean Per Joint Position Error

(MPJPE). MPJPE is calculated by firstly associating pre-

dicted and ground truth poses, by means of a simple Hun-

garian algorithm. In the Tab. 4 we also report the F1-score:

the solely MPJPE metric is not meaningful as it does not

take into account missing detections or false positive pre-

dictions.

The obtained results show the advantages of using vol-

umetric heatmaps for 3D HPE, as LoCO(2)+ achieves the

best result in terms of average MPJPE on the Panoptic test

set. For the sake of fairness, we also tested on the no longer

maintained “mafia” sequence. However, the older version
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MPJPE [mm]

Haggl. Mafia Ultim. Pizza Mean F1

[32] 218 187 194 221 203 -

[52] 140 166 151 156 153 -

[53] 72 79 67 94 72 -

LoCO(2)+ 45 95 58 79 69 89.21

LoCO(3)+ 48 105 63 91 77 87.87

GT 9 12 9 9 10 100

Table 4: Comparison on the CMU Panoptic dataset. Results

are shown in terms of MPJPE [mm] and F1 detection score.

Last row: results with ground truth volumetric heatmaps

method N P1 P1 (a) P2 P2 (a)

to
p

-d
o
w

n Rogez et al. [36] 13 63.2 53.4 87.7 71.6

Dabral et al. [6] 16 - - - 65.2

Rogez et al. [37] 13 54.6 45.8 65.4 54.3

Moon et al. [23] 17 35.2 34.0 54.4 53.3

b
o

tt
o

m
-u

p Mehta et al. [22] 17 - - 80.5 -

Mehta et al. [21] 17 - - 69.9 -

LoCO(2)
+ 14 84.0 75.4 96.6 77.1

LoCO(3)
+ 14 51.1 43.4 61.0 49.1

GT Vol. Heatmaps 14 15.6 14.9 15.0 14.3

Table 5: Comparison on the Human3.6m dataset in terms of

average MPJPE [mm]. “(a)” indicates the addition of rigid

alignment to the test protocol; N is the number of joints

considered by the method. Last row: results with ground

truth volumetric heatmaps

of the dataset utilizes a different convention for the joint

positions. This, in fact, is reflected by the worst perfor-

mance in that sequence only. Once again, the best trade-off

is obtained using VHA(2), due to VHA(3)’s mapping partial

loss of information. The GT upper bound in Tab. 4 further

demonstrate the potential of our representation. Qualitative

results are presented in Fig. 3.

4.4. HPE Experiments on Human3.6m Dataset

In analogy with previous experiments, we tested LoCO on

Human3.6m. Unlike most existing approaches, we apply

our multi-person method as it is, without exploiting the

knowledge of the single-person nature of the dataset, as we

want to demonstrate its effectiveness even in this simpler

context. Results, with and without rigid alignement, are re-

ported in terms of MPJPE following the P1 and P2 proto-

cols. In the P1 protocol, six subjects (S1, S5, S6, S7, S8

and S9) are used for training and every 64th frame of sub-

ject S11/camera 2 is used for testing. For the P2 protocol,

all the frames from subjects S9 and S11 are used for testing

and only S1, S5, S6, S7 and S8 are used for training.

Tab. 5 shows a comparison with recent state-of-the-art

multi-person methods, showing that our method is well

Figure 4: Qualitative results of LoCO(3)+ on the Hu-

man3.6m dataset

suited even in the single person context, as LoCO(3)+
achieves state of the art results among bottom up meth-

ods. Note that, although Moon et al. reports better numer-

ical performance, they leverage additional data for training

and evaluate on a more redundant set of joints containing

pelvis, torso and neck. It is worth noticing that LoCO(3)+
performs substantially better than LoCO(2)+, demonstrat-

ing that a smaller representation is preferred when the

same amount of information is preserved (99.7 and 100.0

F1@0vx respectively on VHA(3) and VHA(2)). Qualitative

results are presented in Fig. 4.

5. Discussion and Conclusions

In conclusion, we presented a single-shot bottom-up ap-

proach for multi-person 3D HPE suitable for both crowded

surveillance scenarios and for simpler, even single person,

contexts without any changes. Our LoCO approach allows

us to exploit volumetric heatmaps as a ground truth repre-

sentation for the 3D HPE task. Instead, without compres-

sion, this would lead to a sparse and extremely high dimen-

sional output space with consequences on both the network

size and the stability of the training procedure. In compari-

son with top-down approaches, we removed the dependency

on the people detector stage, hence gaining both in terms of

robustness and assuring a constant processing time at the

increasing of people in the scene. The experiments show

state-of-the-art performance on all the considered datasets.

We also believe that this new simple compression strategy

can foster future research by enabling the full potential of

the volumetric heatmap representation in contexts where it

was previously intractable.
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